Properties

Label 504.3.g.d.379.1
Level $504$
Weight $3$
Character 504.379
Analytic conductor $13.733$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(379,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.1
Character \(\chi\) \(=\) 504.379
Dual form 504.3.g.d.379.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.97309 - 0.326994i) q^{2} +(3.78615 + 1.29038i) q^{4} -4.09875i q^{5} +2.64575i q^{7} +(-7.04846 - 3.78407i) q^{8} +(-1.34027 + 8.08719i) q^{10} -3.52638 q^{11} +12.2733i q^{13} +(0.865145 - 5.22030i) q^{14} +(12.6699 + 9.77111i) q^{16} -3.97553 q^{17} -6.32165 q^{19} +(5.28893 - 15.5185i) q^{20} +(6.95787 + 1.15311i) q^{22} +39.8630i q^{23} +8.20025 q^{25} +(4.01329 - 24.2163i) q^{26} +(-3.41401 + 10.0172i) q^{28} +0.832427i q^{29} -23.7963i q^{31} +(-21.8037 - 23.4222i) q^{32} +(7.84407 + 1.29998i) q^{34} +10.8443 q^{35} -9.82415i q^{37} +(12.4732 + 2.06714i) q^{38} +(-15.5100 + 28.8899i) q^{40} +47.1852 q^{41} -31.2784 q^{43} +(-13.3514 - 4.55036i) q^{44} +(13.0350 - 78.6532i) q^{46} +87.1081i q^{47} -7.00000 q^{49} +(-16.1798 - 2.68143i) q^{50} +(-15.8372 + 46.4685i) q^{52} +25.5892i q^{53} +14.4538i q^{55} +(10.0117 - 18.6485i) q^{56} +(0.272198 - 1.64245i) q^{58} -26.9359 q^{59} +58.4964i q^{61} +(-7.78124 + 46.9521i) q^{62} +(35.3616 + 53.3438i) q^{64} +50.3052 q^{65} +99.8159 q^{67} +(-15.0520 - 5.12993i) q^{68} +(-21.3967 - 3.54601i) q^{70} +77.8151i q^{71} +119.267 q^{73} +(-3.21244 + 19.3839i) q^{74} +(-23.9347 - 8.15731i) q^{76} -9.32994i q^{77} +142.651i q^{79} +(40.0493 - 51.9306i) q^{80} +(-93.1006 - 15.4293i) q^{82} +90.4847 q^{83} +16.2947i q^{85} +(61.7150 + 10.2278i) q^{86} +(24.8556 + 13.3441i) q^{88} -64.1455 q^{89} -32.4721 q^{91} +(-51.4382 + 150.927i) q^{92} +(28.4838 - 171.872i) q^{94} +25.9109i q^{95} -81.1434 q^{97} +(13.8116 + 2.28896i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 10 q^{4} - 10 q^{8} + 12 q^{10} - 32 q^{11} + 14 q^{14} + 66 q^{16} - 16 q^{17} - 64 q^{19} - 20 q^{20} + 12 q^{22} - 72 q^{25} - 100 q^{26} - 14 q^{28} - 98 q^{32} - 108 q^{34} + 72 q^{38}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97309 0.326994i −0.986544 0.163497i
\(3\) 0 0
\(4\) 3.78615 + 1.29038i 0.946537 + 0.322594i
\(5\) 4.09875i 0.819750i −0.912142 0.409875i \(-0.865572\pi\)
0.912142 0.409875i \(-0.134428\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) −7.04846 3.78407i −0.881058 0.473009i
\(9\) 0 0
\(10\) −1.34027 + 8.08719i −0.134027 + 0.808719i
\(11\) −3.52638 −0.320580 −0.160290 0.987070i \(-0.551243\pi\)
−0.160290 + 0.987070i \(0.551243\pi\)
\(12\) 0 0
\(13\) 12.2733i 0.944099i 0.881572 + 0.472050i \(0.156486\pi\)
−0.881572 + 0.472050i \(0.843514\pi\)
\(14\) 0.865145 5.22030i 0.0617960 0.372879i
\(15\) 0 0
\(16\) 12.6699 + 9.77111i 0.791866 + 0.610694i
\(17\) −3.97553 −0.233855 −0.116927 0.993140i \(-0.537304\pi\)
−0.116927 + 0.993140i \(0.537304\pi\)
\(18\) 0 0
\(19\) −6.32165 −0.332719 −0.166359 0.986065i \(-0.553201\pi\)
−0.166359 + 0.986065i \(0.553201\pi\)
\(20\) 5.28893 15.5185i 0.264446 0.775924i
\(21\) 0 0
\(22\) 6.95787 + 1.15311i 0.316267 + 0.0524139i
\(23\) 39.8630i 1.73317i 0.499026 + 0.866587i \(0.333691\pi\)
−0.499026 + 0.866587i \(0.666309\pi\)
\(24\) 0 0
\(25\) 8.20025 0.328010
\(26\) 4.01329 24.2163i 0.154357 0.931395i
\(27\) 0 0
\(28\) −3.41401 + 10.0172i −0.121929 + 0.357758i
\(29\) 0.832427i 0.0287044i 0.999897 + 0.0143522i \(0.00456860\pi\)
−0.999897 + 0.0143522i \(0.995431\pi\)
\(30\) 0 0
\(31\) 23.7963i 0.767622i −0.923412 0.383811i \(-0.874611\pi\)
0.923412 0.383811i \(-0.125389\pi\)
\(32\) −21.8037 23.4222i −0.681364 0.731945i
\(33\) 0 0
\(34\) 7.84407 + 1.29998i 0.230708 + 0.0382346i
\(35\) 10.8443 0.309836
\(36\) 0 0
\(37\) 9.82415i 0.265518i −0.991148 0.132759i \(-0.957616\pi\)
0.991148 0.132759i \(-0.0423836\pi\)
\(38\) 12.4732 + 2.06714i 0.328242 + 0.0543985i
\(39\) 0 0
\(40\) −15.5100 + 28.8899i −0.387749 + 0.722247i
\(41\) 47.1852 1.15086 0.575429 0.817851i \(-0.304835\pi\)
0.575429 + 0.817851i \(0.304835\pi\)
\(42\) 0 0
\(43\) −31.2784 −0.727404 −0.363702 0.931515i \(-0.618487\pi\)
−0.363702 + 0.931515i \(0.618487\pi\)
\(44\) −13.3514 4.55036i −0.303441 0.103417i
\(45\) 0 0
\(46\) 13.0350 78.6532i 0.283369 1.70985i
\(47\) 87.1081i 1.85336i 0.375845 + 0.926682i \(0.377352\pi\)
−0.375845 + 0.926682i \(0.622648\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) −16.1798 2.68143i −0.323596 0.0536286i
\(51\) 0 0
\(52\) −15.8372 + 46.4685i −0.304561 + 0.893625i
\(53\) 25.5892i 0.482816i 0.970424 + 0.241408i \(0.0776091\pi\)
−0.970424 + 0.241408i \(0.922391\pi\)
\(54\) 0 0
\(55\) 14.4538i 0.262796i
\(56\) 10.0117 18.6485i 0.178781 0.333008i
\(57\) 0 0
\(58\) 0.272198 1.64245i 0.00469308 0.0283181i
\(59\) −26.9359 −0.456540 −0.228270 0.973598i \(-0.573307\pi\)
−0.228270 + 0.973598i \(0.573307\pi\)
\(60\) 0 0
\(61\) 58.4964i 0.958957i 0.877554 + 0.479478i \(0.159174\pi\)
−0.877554 + 0.479478i \(0.840826\pi\)
\(62\) −7.78124 + 46.9521i −0.125504 + 0.757293i
\(63\) 0 0
\(64\) 35.3616 + 53.3438i 0.552525 + 0.833496i
\(65\) 50.3052 0.773925
\(66\) 0 0
\(67\) 99.8159 1.48979 0.744895 0.667182i \(-0.232500\pi\)
0.744895 + 0.667182i \(0.232500\pi\)
\(68\) −15.0520 5.12993i −0.221352 0.0754401i
\(69\) 0 0
\(70\) −21.3967 3.54601i −0.305667 0.0506573i
\(71\) 77.8151i 1.09599i 0.836482 + 0.547994i \(0.184608\pi\)
−0.836482 + 0.547994i \(0.815392\pi\)
\(72\) 0 0
\(73\) 119.267 1.63380 0.816898 0.576781i \(-0.195692\pi\)
0.816898 + 0.576781i \(0.195692\pi\)
\(74\) −3.21244 + 19.3839i −0.0434113 + 0.261945i
\(75\) 0 0
\(76\) −23.9347 8.15731i −0.314931 0.107333i
\(77\) 9.32994i 0.121168i
\(78\) 0 0
\(79\) 142.651i 1.80571i 0.429944 + 0.902856i \(0.358533\pi\)
−0.429944 + 0.902856i \(0.641467\pi\)
\(80\) 40.0493 51.9306i 0.500617 0.649133i
\(81\) 0 0
\(82\) −93.1006 15.4293i −1.13537 0.188162i
\(83\) 90.4847 1.09018 0.545089 0.838378i \(-0.316496\pi\)
0.545089 + 0.838378i \(0.316496\pi\)
\(84\) 0 0
\(85\) 16.2947i 0.191703i
\(86\) 61.7150 + 10.2278i 0.717616 + 0.118928i
\(87\) 0 0
\(88\) 24.8556 + 13.3441i 0.282450 + 0.151637i
\(89\) −64.1455 −0.720736 −0.360368 0.932810i \(-0.617349\pi\)
−0.360368 + 0.932810i \(0.617349\pi\)
\(90\) 0 0
\(91\) −32.4721 −0.356836
\(92\) −51.4382 + 150.927i −0.559111 + 1.64051i
\(93\) 0 0
\(94\) 28.4838 171.872i 0.303020 1.82843i
\(95\) 25.9109i 0.272746i
\(96\) 0 0
\(97\) −81.1434 −0.836530 −0.418265 0.908325i \(-0.637362\pi\)
−0.418265 + 0.908325i \(0.637362\pi\)
\(98\) 13.8116 + 2.28896i 0.140935 + 0.0233567i
\(99\) 0 0
\(100\) 31.0474 + 10.5814i 0.310474 + 0.105814i
\(101\) 24.8807i 0.246343i 0.992385 + 0.123172i \(0.0393065\pi\)
−0.992385 + 0.123172i \(0.960693\pi\)
\(102\) 0 0
\(103\) 49.7695i 0.483199i 0.970376 + 0.241600i \(0.0776721\pi\)
−0.970376 + 0.241600i \(0.922328\pi\)
\(104\) 46.4430 86.5078i 0.446567 0.831806i
\(105\) 0 0
\(106\) 8.36752 50.4898i 0.0789389 0.476319i
\(107\) 168.829 1.57784 0.788920 0.614496i \(-0.210641\pi\)
0.788920 + 0.614496i \(0.210641\pi\)
\(108\) 0 0
\(109\) 23.9528i 0.219750i 0.993945 + 0.109875i \(0.0350451\pi\)
−0.993945 + 0.109875i \(0.964955\pi\)
\(110\) 4.72630 28.5186i 0.0429663 0.259260i
\(111\) 0 0
\(112\) −25.8519 + 33.5213i −0.230821 + 0.299297i
\(113\) −171.416 −1.51696 −0.758478 0.651699i \(-0.774056\pi\)
−0.758478 + 0.651699i \(0.774056\pi\)
\(114\) 0 0
\(115\) 163.388 1.42077
\(116\) −1.07414 + 3.15169i −0.00925985 + 0.0271698i
\(117\) 0 0
\(118\) 53.1468 + 8.80787i 0.450397 + 0.0746429i
\(119\) 10.5183i 0.0883888i
\(120\) 0 0
\(121\) −108.565 −0.897228
\(122\) 19.1280 115.418i 0.156787 0.946053i
\(123\) 0 0
\(124\) 30.7061 90.0963i 0.247630 0.726583i
\(125\) 136.080i 1.08864i
\(126\) 0 0
\(127\) 63.2004i 0.497641i 0.968550 + 0.248821i \(0.0800429\pi\)
−0.968550 + 0.248821i \(0.919957\pi\)
\(128\) −52.3284 116.815i −0.408816 0.912617i
\(129\) 0 0
\(130\) −99.2565 16.4495i −0.763511 0.126534i
\(131\) −126.893 −0.968650 −0.484325 0.874888i \(-0.660935\pi\)
−0.484325 + 0.874888i \(0.660935\pi\)
\(132\) 0 0
\(133\) 16.7255i 0.125756i
\(134\) −196.946 32.6392i −1.46974 0.243576i
\(135\) 0 0
\(136\) 28.0214 + 15.0437i 0.206040 + 0.110615i
\(137\) 145.277 1.06041 0.530207 0.847869i \(-0.322114\pi\)
0.530207 + 0.847869i \(0.322114\pi\)
\(138\) 0 0
\(139\) −81.0035 −0.582759 −0.291379 0.956608i \(-0.594114\pi\)
−0.291379 + 0.956608i \(0.594114\pi\)
\(140\) 41.0580 + 13.9932i 0.293272 + 0.0999513i
\(141\) 0 0
\(142\) 25.4451 153.536i 0.179191 1.08124i
\(143\) 43.2803i 0.302660i
\(144\) 0 0
\(145\) 3.41191 0.0235304
\(146\) −235.325 38.9996i −1.61181 0.267121i
\(147\) 0 0
\(148\) 12.6768 37.1957i 0.0856543 0.251322i
\(149\) 144.331i 0.968664i −0.874884 0.484332i \(-0.839063\pi\)
0.874884 0.484332i \(-0.160937\pi\)
\(150\) 0 0
\(151\) 100.770i 0.667348i 0.942689 + 0.333674i \(0.108288\pi\)
−0.942689 + 0.333674i \(0.891712\pi\)
\(152\) 44.5579 + 23.9216i 0.293144 + 0.157379i
\(153\) 0 0
\(154\) −3.05083 + 18.4088i −0.0198106 + 0.119538i
\(155\) −97.5350 −0.629258
\(156\) 0 0
\(157\) 274.593i 1.74900i −0.485023 0.874501i \(-0.661189\pi\)
0.485023 0.874501i \(-0.338811\pi\)
\(158\) 46.6461 281.463i 0.295228 1.78141i
\(159\) 0 0
\(160\) −96.0019 + 89.3677i −0.600012 + 0.558548i
\(161\) −105.468 −0.655078
\(162\) 0 0
\(163\) −111.290 −0.682764 −0.341382 0.939925i \(-0.610895\pi\)
−0.341382 + 0.939925i \(0.610895\pi\)
\(164\) 178.650 + 60.8866i 1.08933 + 0.371260i
\(165\) 0 0
\(166\) −178.534 29.5879i −1.07551 0.178241i
\(167\) 145.281i 0.869947i 0.900443 + 0.434974i \(0.143242\pi\)
−0.900443 + 0.434974i \(0.856758\pi\)
\(168\) 0 0
\(169\) 18.3663 0.108677
\(170\) 5.32827 32.1509i 0.0313428 0.189123i
\(171\) 0 0
\(172\) −118.425 40.3608i −0.688515 0.234656i
\(173\) 19.2583i 0.111319i −0.998450 0.0556597i \(-0.982274\pi\)
0.998450 0.0556597i \(-0.0177262\pi\)
\(174\) 0 0
\(175\) 21.6958i 0.123976i
\(176\) −44.6788 34.4567i −0.253857 0.195777i
\(177\) 0 0
\(178\) 126.565 + 20.9752i 0.711038 + 0.117838i
\(179\) −122.983 −0.687056 −0.343528 0.939142i \(-0.611622\pi\)
−0.343528 + 0.939142i \(0.611622\pi\)
\(180\) 0 0
\(181\) 321.748i 1.77761i −0.458281 0.888807i \(-0.651535\pi\)
0.458281 0.888807i \(-0.348465\pi\)
\(182\) 64.0702 + 10.6182i 0.352034 + 0.0583416i
\(183\) 0 0
\(184\) 150.844 280.973i 0.819807 1.52703i
\(185\) −40.2667 −0.217658
\(186\) 0 0
\(187\) 14.0193 0.0749693
\(188\) −112.402 + 329.804i −0.597884 + 1.75428i
\(189\) 0 0
\(190\) 8.47270 51.1244i 0.0445932 0.269076i
\(191\) 176.871i 0.926026i −0.886351 0.463013i \(-0.846768\pi\)
0.886351 0.463013i \(-0.153232\pi\)
\(192\) 0 0
\(193\) −304.692 −1.57871 −0.789357 0.613935i \(-0.789586\pi\)
−0.789357 + 0.613935i \(0.789586\pi\)
\(194\) 160.103 + 26.5334i 0.825274 + 0.136770i
\(195\) 0 0
\(196\) −26.5030 9.03263i −0.135220 0.0460848i
\(197\) 388.291i 1.97102i 0.169609 + 0.985511i \(0.445749\pi\)
−0.169609 + 0.985511i \(0.554251\pi\)
\(198\) 0 0
\(199\) 122.637i 0.616265i −0.951343 0.308132i \(-0.900296\pi\)
0.951343 0.308132i \(-0.0997040\pi\)
\(200\) −57.7991 31.0303i −0.288996 0.155152i
\(201\) 0 0
\(202\) 8.13582 49.0917i 0.0402763 0.243028i
\(203\) −2.20239 −0.0108492
\(204\) 0 0
\(205\) 193.400i 0.943417i
\(206\) 16.2743 98.1997i 0.0790016 0.476697i
\(207\) 0 0
\(208\) −119.924 + 155.501i −0.576556 + 0.747600i
\(209\) 22.2926 0.106663
\(210\) 0 0
\(211\) −284.157 −1.34672 −0.673358 0.739316i \(-0.735149\pi\)
−0.673358 + 0.739316i \(0.735149\pi\)
\(212\) −33.0197 + 96.8847i −0.155753 + 0.457003i
\(213\) 0 0
\(214\) −333.114 55.2060i −1.55661 0.257972i
\(215\) 128.202i 0.596289i
\(216\) 0 0
\(217\) 62.9590 0.290134
\(218\) 7.83241 47.2609i 0.0359285 0.216793i
\(219\) 0 0
\(220\) −18.6508 + 54.7241i −0.0847763 + 0.248746i
\(221\) 48.7929i 0.220782i
\(222\) 0 0
\(223\) 307.496i 1.37891i 0.724331 + 0.689453i \(0.242149\pi\)
−0.724331 + 0.689453i \(0.757851\pi\)
\(224\) 61.9694 57.6870i 0.276649 0.257531i
\(225\) 0 0
\(226\) 338.219 + 56.0520i 1.49654 + 0.248018i
\(227\) 227.172 1.00076 0.500378 0.865807i \(-0.333194\pi\)
0.500378 + 0.865807i \(0.333194\pi\)
\(228\) 0 0
\(229\) 323.439i 1.41240i −0.708014 0.706198i \(-0.750409\pi\)
0.708014 0.706198i \(-0.249591\pi\)
\(230\) −322.380 53.4270i −1.40165 0.232291i
\(231\) 0 0
\(232\) 3.14996 5.86733i 0.0135774 0.0252902i
\(233\) 215.163 0.923448 0.461724 0.887024i \(-0.347231\pi\)
0.461724 + 0.887024i \(0.347231\pi\)
\(234\) 0 0
\(235\) 357.035 1.51930
\(236\) −101.983 34.7574i −0.432132 0.147277i
\(237\) 0 0
\(238\) −3.43941 + 20.7535i −0.0144513 + 0.0871995i
\(239\) 343.504i 1.43726i −0.695395 0.718628i \(-0.744771\pi\)
0.695395 0.718628i \(-0.255229\pi\)
\(240\) 0 0
\(241\) 300.189 1.24560 0.622800 0.782381i \(-0.285995\pi\)
0.622800 + 0.782381i \(0.285995\pi\)
\(242\) 214.207 + 35.5000i 0.885155 + 0.146694i
\(243\) 0 0
\(244\) −75.4823 + 221.476i −0.309354 + 0.907689i
\(245\) 28.6913i 0.117107i
\(246\) 0 0
\(247\) 77.5875i 0.314119i
\(248\) −90.0468 + 167.727i −0.363092 + 0.676319i
\(249\) 0 0
\(250\) −44.4972 + 268.497i −0.177989 + 1.07399i
\(251\) 176.192 0.701959 0.350979 0.936383i \(-0.385849\pi\)
0.350979 + 0.936383i \(0.385849\pi\)
\(252\) 0 0
\(253\) 140.572i 0.555622i
\(254\) 20.6662 124.700i 0.0813628 0.490945i
\(255\) 0 0
\(256\) 65.0508 + 247.597i 0.254105 + 0.967177i
\(257\) 72.9213 0.283741 0.141870 0.989885i \(-0.454688\pi\)
0.141870 + 0.989885i \(0.454688\pi\)
\(258\) 0 0
\(259\) 25.9923 0.100356
\(260\) 190.463 + 64.9125i 0.732549 + 0.249664i
\(261\) 0 0
\(262\) 250.371 + 41.4933i 0.955616 + 0.158371i
\(263\) 74.1913i 0.282096i 0.990003 + 0.141048i \(0.0450472\pi\)
−0.990003 + 0.141048i \(0.954953\pi\)
\(264\) 0 0
\(265\) 104.884 0.395788
\(266\) −5.46915 + 33.0009i −0.0205607 + 0.124064i
\(267\) 0 0
\(268\) 377.918 + 128.800i 1.41014 + 0.480597i
\(269\) 34.4460i 0.128052i −0.997948 0.0640259i \(-0.979606\pi\)
0.997948 0.0640259i \(-0.0203940\pi\)
\(270\) 0 0
\(271\) 337.074i 1.24382i 0.783090 + 0.621908i \(0.213642\pi\)
−0.783090 + 0.621908i \(0.786358\pi\)
\(272\) −50.3695 38.8454i −0.185182 0.142814i
\(273\) 0 0
\(274\) −286.643 47.5046i −1.04614 0.173374i
\(275\) −28.9172 −0.105154
\(276\) 0 0
\(277\) 63.1547i 0.227995i −0.993481 0.113998i \(-0.963634\pi\)
0.993481 0.113998i \(-0.0363657\pi\)
\(278\) 159.827 + 26.4876i 0.574917 + 0.0952793i
\(279\) 0 0
\(280\) −76.4354 41.0355i −0.272984 0.146555i
\(281\) −64.2556 −0.228668 −0.114334 0.993442i \(-0.536473\pi\)
−0.114334 + 0.993442i \(0.536473\pi\)
\(282\) 0 0
\(283\) 168.359 0.594910 0.297455 0.954736i \(-0.403862\pi\)
0.297455 + 0.954736i \(0.403862\pi\)
\(284\) −100.411 + 294.620i −0.353559 + 1.03739i
\(285\) 0 0
\(286\) −14.1524 + 85.3959i −0.0494839 + 0.298587i
\(287\) 124.840i 0.434984i
\(288\) 0 0
\(289\) −273.195 −0.945312
\(290\) −6.73200 1.11567i −0.0232138 0.00384715i
\(291\) 0 0
\(292\) 451.563 + 153.899i 1.54645 + 0.527053i
\(293\) 109.708i 0.374431i −0.982319 0.187215i \(-0.940054\pi\)
0.982319 0.187215i \(-0.0599462\pi\)
\(294\) 0 0
\(295\) 110.403i 0.374249i
\(296\) −37.1753 + 69.2451i −0.125592 + 0.233936i
\(297\) 0 0
\(298\) −47.1953 + 284.778i −0.158374 + 0.955629i
\(299\) −489.250 −1.63629
\(300\) 0 0
\(301\) 82.7548i 0.274933i
\(302\) 32.9510 198.827i 0.109109 0.658368i
\(303\) 0 0
\(304\) −80.0945 61.7696i −0.263469 0.203189i
\(305\) 239.762 0.786105
\(306\) 0 0
\(307\) −309.446 −1.00797 −0.503984 0.863713i \(-0.668133\pi\)
−0.503984 + 0.863713i \(0.668133\pi\)
\(308\) 12.0391 35.3245i 0.0390881 0.114690i
\(309\) 0 0
\(310\) 192.445 + 31.8934i 0.620791 + 0.102882i
\(311\) 115.287i 0.370699i −0.982673 0.185350i \(-0.940658\pi\)
0.982673 0.185350i \(-0.0593418\pi\)
\(312\) 0 0
\(313\) 215.554 0.688672 0.344336 0.938846i \(-0.388104\pi\)
0.344336 + 0.938846i \(0.388104\pi\)
\(314\) −89.7904 + 541.797i −0.285957 + 1.72547i
\(315\) 0 0
\(316\) −184.074 + 540.099i −0.582511 + 1.70917i
\(317\) 177.444i 0.559760i −0.960035 0.279880i \(-0.909705\pi\)
0.960035 0.279880i \(-0.0902947\pi\)
\(318\) 0 0
\(319\) 2.93546i 0.00920206i
\(320\) 218.643 144.938i 0.683259 0.452932i
\(321\) 0 0
\(322\) 208.097 + 34.4873i 0.646263 + 0.107103i
\(323\) 25.1319 0.0778079
\(324\) 0 0
\(325\) 100.644i 0.309674i
\(326\) 219.586 + 36.3913i 0.673576 + 0.111630i
\(327\) 0 0
\(328\) −332.583 178.552i −1.01397 0.544367i
\(329\) −230.466 −0.700506
\(330\) 0 0
\(331\) 225.169 0.680270 0.340135 0.940377i \(-0.389527\pi\)
0.340135 + 0.940377i \(0.389527\pi\)
\(332\) 342.589 + 116.759i 1.03189 + 0.351684i
\(333\) 0 0
\(334\) 47.5061 286.653i 0.142234 0.858241i
\(335\) 409.121i 1.22126i
\(336\) 0 0
\(337\) −244.467 −0.725421 −0.362710 0.931902i \(-0.618149\pi\)
−0.362710 + 0.931902i \(0.618149\pi\)
\(338\) −36.2384 6.00569i −0.107214 0.0177683i
\(339\) 0 0
\(340\) −21.0263 + 61.6942i −0.0618421 + 0.181454i
\(341\) 83.9148i 0.246085i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 220.464 + 118.360i 0.640885 + 0.344069i
\(345\) 0 0
\(346\) −6.29734 + 37.9982i −0.0182004 + 0.109822i
\(347\) −453.748 −1.30763 −0.653816 0.756654i \(-0.726833\pi\)
−0.653816 + 0.756654i \(0.726833\pi\)
\(348\) 0 0
\(349\) 523.107i 1.49888i 0.662075 + 0.749438i \(0.269676\pi\)
−0.662075 + 0.749438i \(0.730324\pi\)
\(350\) 7.09440 42.8077i 0.0202697 0.122308i
\(351\) 0 0
\(352\) 76.8881 + 82.5958i 0.218432 + 0.234647i
\(353\) −145.415 −0.411941 −0.205971 0.978558i \(-0.566035\pi\)
−0.205971 + 0.978558i \(0.566035\pi\)
\(354\) 0 0
\(355\) 318.945 0.898436
\(356\) −242.865 82.7718i −0.682204 0.232505i
\(357\) 0 0
\(358\) 242.656 + 40.2147i 0.677811 + 0.112332i
\(359\) 325.591i 0.906938i 0.891272 + 0.453469i \(0.149814\pi\)
−0.891272 + 0.453469i \(0.850186\pi\)
\(360\) 0 0
\(361\) −321.037 −0.889298
\(362\) −105.210 + 634.838i −0.290635 + 1.75370i
\(363\) 0 0
\(364\) −122.944 41.9012i −0.337759 0.115113i
\(365\) 488.846i 1.33931i
\(366\) 0 0
\(367\) 232.973i 0.634805i 0.948291 + 0.317403i \(0.102811\pi\)
−0.948291 + 0.317403i \(0.897189\pi\)
\(368\) −389.506 + 505.059i −1.05844 + 1.37244i
\(369\) 0 0
\(370\) 79.4498 + 13.1670i 0.214729 + 0.0355864i
\(371\) −67.7027 −0.182487
\(372\) 0 0
\(373\) 463.330i 1.24217i 0.783743 + 0.621086i \(0.213308\pi\)
−0.783743 + 0.621086i \(0.786692\pi\)
\(374\) −27.6612 4.58421i −0.0739605 0.0122573i
\(375\) 0 0
\(376\) 329.623 613.978i 0.876658 1.63292i
\(377\) −10.2166 −0.0270998
\(378\) 0 0
\(379\) −633.928 −1.67263 −0.836316 0.548248i \(-0.815295\pi\)
−0.836316 + 0.548248i \(0.815295\pi\)
\(380\) −33.4348 + 98.1025i −0.0879862 + 0.258164i
\(381\) 0 0
\(382\) −57.8358 + 348.982i −0.151403 + 0.913566i
\(383\) 100.562i 0.262565i 0.991345 + 0.131282i \(0.0419095\pi\)
−0.991345 + 0.131282i \(0.958091\pi\)
\(384\) 0 0
\(385\) −38.2411 −0.0993275
\(386\) 601.183 + 99.6323i 1.55747 + 0.258115i
\(387\) 0 0
\(388\) −307.221 104.705i −0.791807 0.269860i
\(389\) 410.986i 1.05652i −0.849083 0.528260i \(-0.822845\pi\)
0.849083 0.528260i \(-0.177155\pi\)
\(390\) 0 0
\(391\) 158.477i 0.405311i
\(392\) 49.3392 + 26.4885i 0.125865 + 0.0675727i
\(393\) 0 0
\(394\) 126.969 766.133i 0.322256 1.94450i
\(395\) 584.692 1.48023
\(396\) 0 0
\(397\) 369.869i 0.931659i −0.884874 0.465830i \(-0.845756\pi\)
0.884874 0.465830i \(-0.154244\pi\)
\(398\) −40.1015 + 241.973i −0.100757 + 0.607972i
\(399\) 0 0
\(400\) 103.896 + 80.1255i 0.259740 + 0.200314i
\(401\) −344.696 −0.859590 −0.429795 0.902926i \(-0.641414\pi\)
−0.429795 + 0.902926i \(0.641414\pi\)
\(402\) 0 0
\(403\) 292.059 0.724711
\(404\) −32.1054 + 94.2019i −0.0794688 + 0.233173i
\(405\) 0 0
\(406\) 4.34552 + 0.720169i 0.0107032 + 0.00177382i
\(407\) 34.6437i 0.0851197i
\(408\) 0 0
\(409\) 327.650 0.801099 0.400550 0.916275i \(-0.368819\pi\)
0.400550 + 0.916275i \(0.368819\pi\)
\(410\) −63.2408 + 381.596i −0.154246 + 0.930722i
\(411\) 0 0
\(412\) −64.2214 + 188.435i −0.155877 + 0.457366i
\(413\) 71.2656i 0.172556i
\(414\) 0 0
\(415\) 370.874i 0.893673i
\(416\) 287.468 267.603i 0.691028 0.643275i
\(417\) 0 0
\(418\) −43.9852 7.28954i −0.105228 0.0174391i
\(419\) 780.119 1.86186 0.930929 0.365199i \(-0.118999\pi\)
0.930929 + 0.365199i \(0.118999\pi\)
\(420\) 0 0
\(421\) 682.087i 1.62016i 0.586320 + 0.810079i \(0.300576\pi\)
−0.586320 + 0.810079i \(0.699424\pi\)
\(422\) 560.667 + 92.9177i 1.32859 + 0.220184i
\(423\) 0 0
\(424\) 96.8315 180.365i 0.228376 0.425388i
\(425\) −32.6003 −0.0767067
\(426\) 0 0
\(427\) −154.767 −0.362452
\(428\) 639.211 + 217.853i 1.49348 + 0.509001i
\(429\) 0 0
\(430\) 41.9214 252.954i 0.0974915 0.588266i
\(431\) 222.883i 0.517131i −0.965994 0.258565i \(-0.916750\pi\)
0.965994 0.258565i \(-0.0832497\pi\)
\(432\) 0 0
\(433\) 827.262 1.91054 0.955268 0.295743i \(-0.0955671\pi\)
0.955268 + 0.295743i \(0.0955671\pi\)
\(434\) −124.224 20.5872i −0.286230 0.0474360i
\(435\) 0 0
\(436\) −30.9081 + 90.6888i −0.0708901 + 0.208002i
\(437\) 252.000i 0.576659i
\(438\) 0 0
\(439\) 624.321i 1.42214i −0.703120 0.711072i \(-0.748210\pi\)
0.703120 0.711072i \(-0.251790\pi\)
\(440\) 54.6941 101.877i 0.124305 0.231538i
\(441\) 0 0
\(442\) −15.9550 + 96.2726i −0.0360972 + 0.217811i
\(443\) −331.608 −0.748550 −0.374275 0.927318i \(-0.622108\pi\)
−0.374275 + 0.927318i \(0.622108\pi\)
\(444\) 0 0
\(445\) 262.917i 0.590824i
\(446\) 100.549 606.717i 0.225447 1.36035i
\(447\) 0 0
\(448\) −141.134 + 93.5580i −0.315032 + 0.208835i
\(449\) −14.2571 −0.0317530 −0.0158765 0.999874i \(-0.505054\pi\)
−0.0158765 + 0.999874i \(0.505054\pi\)
\(450\) 0 0
\(451\) −166.393 −0.368943
\(452\) −649.006 221.191i −1.43585 0.489360i
\(453\) 0 0
\(454\) −448.230 74.2838i −0.987290 0.163621i
\(455\) 133.095i 0.292516i
\(456\) 0 0
\(457\) −188.688 −0.412885 −0.206443 0.978459i \(-0.566189\pi\)
−0.206443 + 0.978459i \(0.566189\pi\)
\(458\) −105.762 + 638.173i −0.230922 + 1.39339i
\(459\) 0 0
\(460\) 618.613 + 210.832i 1.34481 + 0.458331i
\(461\) 197.385i 0.428168i 0.976815 + 0.214084i \(0.0686766\pi\)
−0.976815 + 0.214084i \(0.931323\pi\)
\(462\) 0 0
\(463\) 112.628i 0.243257i 0.992576 + 0.121629i \(0.0388117\pi\)
−0.992576 + 0.121629i \(0.961188\pi\)
\(464\) −8.13373 + 10.5467i −0.0175296 + 0.0227300i
\(465\) 0 0
\(466\) −424.536 70.3571i −0.911022 0.150981i
\(467\) −449.374 −0.962256 −0.481128 0.876650i \(-0.659773\pi\)
−0.481128 + 0.876650i \(0.659773\pi\)
\(468\) 0 0
\(469\) 264.088i 0.563088i
\(470\) −704.460 116.748i −1.49885 0.248400i
\(471\) 0 0
\(472\) 189.856 + 101.927i 0.402238 + 0.215948i
\(473\) 110.300 0.233191
\(474\) 0 0
\(475\) −51.8391 −0.109135
\(476\) 13.5725 39.8238i 0.0285137 0.0836633i
\(477\) 0 0
\(478\) −112.324 + 677.763i −0.234987 + 1.41792i
\(479\) 455.307i 0.950536i −0.879841 0.475268i \(-0.842351\pi\)
0.879841 0.475268i \(-0.157649\pi\)
\(480\) 0 0
\(481\) 120.575 0.250675
\(482\) −592.300 98.1601i −1.22884 0.203652i
\(483\) 0 0
\(484\) −411.042 140.089i −0.849260 0.289440i
\(485\) 332.587i 0.685746i
\(486\) 0 0
\(487\) 966.691i 1.98499i −0.122278 0.992496i \(-0.539020\pi\)
0.122278 0.992496i \(-0.460980\pi\)
\(488\) 221.354 412.309i 0.453595 0.844896i
\(489\) 0 0
\(490\) 9.38187 56.6104i 0.0191467 0.115531i
\(491\) −119.359 −0.243093 −0.121547 0.992586i \(-0.538785\pi\)
−0.121547 + 0.992586i \(0.538785\pi\)
\(492\) 0 0
\(493\) 3.30934i 0.00671266i
\(494\) −25.3706 + 153.087i −0.0513576 + 0.309893i
\(495\) 0 0
\(496\) 232.516 301.496i 0.468782 0.607854i
\(497\) −205.879 −0.414244
\(498\) 0 0
\(499\) 668.069 1.33882 0.669408 0.742895i \(-0.266548\pi\)
0.669408 + 0.742895i \(0.266548\pi\)
\(500\) 175.594 515.217i 0.351187 1.03043i
\(501\) 0 0
\(502\) −347.641 57.6136i −0.692513 0.114768i
\(503\) 195.247i 0.388166i 0.980985 + 0.194083i \(0.0621731\pi\)
−0.980985 + 0.194083i \(0.937827\pi\)
\(504\) 0 0
\(505\) 101.980 0.201940
\(506\) −45.9663 + 277.361i −0.0908424 + 0.548145i
\(507\) 0 0
\(508\) −81.5523 + 239.286i −0.160536 + 0.471036i
\(509\) 996.859i 1.95847i −0.202737 0.979233i \(-0.564984\pi\)
0.202737 0.979233i \(-0.435016\pi\)
\(510\) 0 0
\(511\) 315.551i 0.617517i
\(512\) −47.3882 509.802i −0.0925550 0.995708i
\(513\) 0 0
\(514\) −143.880 23.8448i −0.279922 0.0463907i
\(515\) 203.993 0.396103
\(516\) 0 0
\(517\) 307.177i 0.594152i
\(518\) −51.2850 8.49931i −0.0990058 0.0164079i
\(519\) 0 0
\(520\) −354.574 190.358i −0.681873 0.366074i
\(521\) −2.00334 −0.00384517 −0.00192259 0.999998i \(-0.500612\pi\)
−0.00192259 + 0.999998i \(0.500612\pi\)
\(522\) 0 0
\(523\) −508.847 −0.972938 −0.486469 0.873698i \(-0.661715\pi\)
−0.486469 + 0.873698i \(0.661715\pi\)
\(524\) −480.436 163.740i −0.916863 0.312481i
\(525\) 0 0
\(526\) 24.2601 146.386i 0.0461219 0.278300i
\(527\) 94.6029i 0.179512i
\(528\) 0 0
\(529\) −1060.06 −2.00389
\(530\) −206.945 34.2964i −0.390462 0.0647102i
\(531\) 0 0
\(532\) 21.5822 63.3253i 0.0405681 0.119033i
\(533\) 579.118i 1.08652i
\(534\) 0 0
\(535\) 691.987i 1.29343i
\(536\) −703.549 377.711i −1.31259 0.704684i
\(537\) 0 0
\(538\) −11.2636 + 67.9649i −0.0209361 + 0.126329i
\(539\) 24.6847 0.0457972
\(540\) 0 0
\(541\) 311.490i 0.575766i −0.957666 0.287883i \(-0.907049\pi\)
0.957666 0.287883i \(-0.0929515\pi\)
\(542\) 110.221 665.077i 0.203360 1.22708i
\(543\) 0 0
\(544\) 86.6811 + 93.1158i 0.159340 + 0.171169i
\(545\) 98.1764 0.180140
\(546\) 0 0
\(547\) −417.585 −0.763410 −0.381705 0.924284i \(-0.624663\pi\)
−0.381705 + 0.924284i \(0.624663\pi\)
\(548\) 550.039 + 187.461i 1.00372 + 0.342083i
\(549\) 0 0
\(550\) 57.0562 + 9.45576i 0.103739 + 0.0171923i
\(551\) 5.26231i 0.00955048i
\(552\) 0 0
\(553\) −377.420 −0.682495
\(554\) −20.6512 + 124.610i −0.0372766 + 0.224927i
\(555\) 0 0
\(556\) −306.691 104.525i −0.551603 0.187994i
\(557\) 605.617i 1.08728i 0.839317 + 0.543642i \(0.182955\pi\)
−0.839317 + 0.543642i \(0.817045\pi\)
\(558\) 0 0
\(559\) 383.889i 0.686742i
\(560\) 137.395 + 105.961i 0.245349 + 0.189215i
\(561\) 0 0
\(562\) 126.782 + 21.0112i 0.225591 + 0.0373865i
\(563\) 382.574 0.679528 0.339764 0.940511i \(-0.389653\pi\)
0.339764 + 0.940511i \(0.389653\pi\)
\(564\) 0 0
\(565\) 702.591i 1.24352i
\(566\) −332.188 55.0525i −0.586905 0.0972660i
\(567\) 0 0
\(568\) 294.458 548.477i 0.518412 0.965628i
\(569\) −766.912 −1.34782 −0.673912 0.738812i \(-0.735387\pi\)
−0.673912 + 0.738812i \(0.735387\pi\)
\(570\) 0 0
\(571\) 379.036 0.663810 0.331905 0.943313i \(-0.392309\pi\)
0.331905 + 0.943313i \(0.392309\pi\)
\(572\) 55.8479 163.866i 0.0976362 0.286479i
\(573\) 0 0
\(574\) 40.8220 246.321i 0.0711185 0.429131i
\(575\) 326.886i 0.568498i
\(576\) 0 0
\(577\) 37.2041 0.0644784 0.0322392 0.999480i \(-0.489736\pi\)
0.0322392 + 0.999480i \(0.489736\pi\)
\(578\) 539.038 + 89.3332i 0.932592 + 0.154556i
\(579\) 0 0
\(580\) 12.9180 + 4.40264i 0.0222724 + 0.00759076i
\(581\) 239.400i 0.412048i
\(582\) 0 0
\(583\) 90.2375i 0.154781i
\(584\) −840.650 451.316i −1.43947 0.772801i
\(585\) 0 0
\(586\) −35.8739 + 216.464i −0.0612183 + 0.369392i
\(587\) 701.870 1.19569 0.597845 0.801612i \(-0.296024\pi\)
0.597845 + 0.801612i \(0.296024\pi\)
\(588\) 0 0
\(589\) 150.432i 0.255402i
\(590\) 36.1013 217.836i 0.0611886 0.369213i
\(591\) 0 0
\(592\) 95.9928 124.471i 0.162150 0.210254i
\(593\) 933.086 1.57350 0.786750 0.617272i \(-0.211762\pi\)
0.786750 + 0.617272i \(0.211762\pi\)
\(594\) 0 0
\(595\) −43.1118 −0.0724568
\(596\) 186.241 546.458i 0.312485 0.916877i
\(597\) 0 0
\(598\) 965.333 + 159.982i 1.61427 + 0.267528i
\(599\) 85.2304i 0.142288i 0.997466 + 0.0711439i \(0.0226649\pi\)
−0.997466 + 0.0711439i \(0.977335\pi\)
\(600\) 0 0
\(601\) 928.450 1.54484 0.772421 0.635111i \(-0.219046\pi\)
0.772421 + 0.635111i \(0.219046\pi\)
\(602\) −27.0603 + 163.282i −0.0449507 + 0.271233i
\(603\) 0 0
\(604\) −130.031 + 381.529i −0.215282 + 0.631670i
\(605\) 444.979i 0.735503i
\(606\) 0 0
\(607\) 186.121i 0.306624i −0.988178 0.153312i \(-0.951006\pi\)
0.988178 0.153312i \(-0.0489940\pi\)
\(608\) 137.835 + 148.067i 0.226703 + 0.243532i
\(609\) 0 0
\(610\) −473.071 78.4007i −0.775527 0.128526i
\(611\) −1069.10 −1.74976
\(612\) 0 0
\(613\) 208.018i 0.339345i 0.985501 + 0.169672i \(0.0542709\pi\)
−0.985501 + 0.169672i \(0.945729\pi\)
\(614\) 610.564 + 101.187i 0.994405 + 0.164800i
\(615\) 0 0
\(616\) −35.3052 + 65.7617i −0.0573136 + 0.106756i
\(617\) 26.3994 0.0427867 0.0213934 0.999771i \(-0.493190\pi\)
0.0213934 + 0.999771i \(0.493190\pi\)
\(618\) 0 0
\(619\) 301.410 0.486930 0.243465 0.969910i \(-0.421716\pi\)
0.243465 + 0.969910i \(0.421716\pi\)
\(620\) −369.282 125.857i −0.595616 0.202995i
\(621\) 0 0
\(622\) −37.6983 + 227.472i −0.0606082 + 0.365711i
\(623\) 169.713i 0.272413i
\(624\) 0 0
\(625\) −352.750 −0.564400
\(626\) −425.308 70.4850i −0.679406 0.112596i
\(627\) 0 0
\(628\) 354.329 1039.65i 0.564217 1.65550i
\(629\) 39.0562i 0.0620926i
\(630\) 0 0
\(631\) 124.227i 0.196873i −0.995143 0.0984364i \(-0.968616\pi\)
0.995143 0.0984364i \(-0.0313841\pi\)
\(632\) 539.802 1005.47i 0.854118 1.59094i
\(633\) 0 0
\(634\) −58.0231 + 350.112i −0.0915190 + 0.552228i
\(635\) 259.043 0.407941
\(636\) 0 0
\(637\) 85.9130i 0.134871i
\(638\) −0.959876 + 5.79191i −0.00150451 + 0.00907823i
\(639\) 0 0
\(640\) −478.795 + 214.481i −0.748118 + 0.335127i
\(641\) 849.868 1.32585 0.662924 0.748687i \(-0.269315\pi\)
0.662924 + 0.748687i \(0.269315\pi\)
\(642\) 0 0
\(643\) −192.307 −0.299078 −0.149539 0.988756i \(-0.547779\pi\)
−0.149539 + 0.988756i \(0.547779\pi\)
\(644\) −399.316 136.093i −0.620056 0.211324i
\(645\) 0 0
\(646\) −49.5875 8.21799i −0.0767609 0.0127214i
\(647\) 455.619i 0.704203i 0.935962 + 0.352101i \(0.114533\pi\)
−0.935962 + 0.352101i \(0.885467\pi\)
\(648\) 0 0
\(649\) 94.9862 0.146358
\(650\) 32.9100 198.579i 0.0506307 0.305507i
\(651\) 0 0
\(652\) −421.362 143.607i −0.646261 0.220255i
\(653\) 664.401i 1.01746i 0.860926 + 0.508729i \(0.169885\pi\)
−0.860926 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) 520.103i 0.794051i
\(656\) 597.830 + 461.052i 0.911326 + 0.702823i
\(657\) 0 0
\(658\) 454.731 + 75.3611i 0.691080 + 0.114531i
\(659\) −782.869 −1.18797 −0.593983 0.804478i \(-0.702445\pi\)
−0.593983 + 0.804478i \(0.702445\pi\)
\(660\) 0 0
\(661\) 134.657i 0.203718i 0.994799 + 0.101859i \(0.0324790\pi\)
−0.994799 + 0.101859i \(0.967521\pi\)
\(662\) −444.279 73.6290i −0.671116 0.111222i
\(663\) 0 0
\(664\) −637.778 342.401i −0.960509 0.515664i
\(665\) −68.5538 −0.103088
\(666\) 0 0
\(667\) −33.1830 −0.0497497
\(668\) −187.467 + 550.056i −0.280640 + 0.823438i
\(669\) 0 0
\(670\) −133.780 + 807.231i −0.199672 + 1.20482i
\(671\) 206.281i 0.307423i
\(672\) 0 0
\(673\) 799.458 1.18790 0.593951 0.804501i \(-0.297567\pi\)
0.593951 + 0.804501i \(0.297567\pi\)
\(674\) 482.354 + 79.9392i 0.715659 + 0.118604i
\(675\) 0 0
\(676\) 69.5378 + 23.6995i 0.102866 + 0.0350584i
\(677\) 1095.53i 1.61821i 0.587667 + 0.809103i \(0.300047\pi\)
−0.587667 + 0.809103i \(0.699953\pi\)
\(678\) 0 0
\(679\) 214.685i 0.316179i
\(680\) 61.6604 114.853i 0.0906770 0.168901i
\(681\) 0 0
\(682\) 27.4396 165.571i 0.0402341 0.242773i
\(683\) 435.002 0.636899 0.318450 0.947940i \(-0.396838\pi\)
0.318450 + 0.947940i \(0.396838\pi\)
\(684\) 0 0
\(685\) 595.452i 0.869274i
\(686\) −6.05601 + 36.5421i −0.00882801 + 0.0532684i
\(687\) 0 0
\(688\) −396.293 305.624i −0.576007 0.444222i
\(689\) −314.064 −0.455826
\(690\) 0 0
\(691\) −1149.83 −1.66401 −0.832003 0.554771i \(-0.812806\pi\)
−0.832003 + 0.554771i \(0.812806\pi\)
\(692\) 24.8504 72.9147i 0.0359110 0.105368i
\(693\) 0 0
\(694\) 895.285 + 148.373i 1.29004 + 0.213794i
\(695\) 332.013i 0.477717i
\(696\) 0 0
\(697\) −187.586 −0.269134
\(698\) 171.053 1032.14i 0.245062 1.47871i
\(699\) 0 0
\(700\) −27.9957 + 82.1436i −0.0399939 + 0.117348i
\(701\) 199.358i 0.284390i 0.989839 + 0.142195i \(0.0454161\pi\)
−0.989839 + 0.142195i \(0.954584\pi\)
\(702\) 0 0
\(703\) 62.1049i 0.0883426i
\(704\) −124.699 188.111i −0.177129 0.267203i
\(705\) 0 0
\(706\) 286.917 + 47.5499i 0.406398 + 0.0673511i
\(707\) −65.8280 −0.0931089
\(708\) 0 0
\(709\) 919.307i 1.29663i 0.761374 + 0.648313i \(0.224525\pi\)
−0.761374 + 0.648313i \(0.775475\pi\)
\(710\) −629.306 104.293i −0.886346 0.146892i
\(711\) 0 0
\(712\) 452.127 + 242.731i 0.635010 + 0.340915i
\(713\) 948.591 1.33042
\(714\) 0 0
\(715\) −177.395 −0.248105
\(716\) −465.632 158.694i −0.650324 0.221640i
\(717\) 0 0
\(718\) 106.466 642.419i 0.148282 0.894734i
\(719\) 682.855i 0.949728i −0.880059 0.474864i \(-0.842497\pi\)
0.880059 0.474864i \(-0.157503\pi\)
\(720\) 0 0
\(721\) −131.678 −0.182632
\(722\) 633.434 + 104.977i 0.877332 + 0.145398i
\(723\) 0 0
\(724\) 415.176 1218.19i 0.573448 1.68258i
\(725\) 6.82610i 0.00941531i
\(726\) 0 0
\(727\) 298.077i 0.410010i −0.978761 0.205005i \(-0.934279\pi\)
0.978761 0.205005i \(-0.0657211\pi\)
\(728\) 228.878 + 122.877i 0.314393 + 0.168787i
\(729\) 0 0
\(730\) −159.850 + 964.537i −0.218972 + 1.32128i
\(731\) 124.348 0.170107
\(732\) 0 0
\(733\) 891.569i 1.21633i 0.793811 + 0.608164i \(0.208094\pi\)
−0.793811 + 0.608164i \(0.791906\pi\)
\(734\) 76.1809 459.677i 0.103789 0.626263i
\(735\) 0 0
\(736\) 933.680 869.159i 1.26859 1.18092i
\(737\) −351.989 −0.477598
\(738\) 0 0
\(739\) 390.305 0.528153 0.264077 0.964502i \(-0.414933\pi\)
0.264077 + 0.964502i \(0.414933\pi\)
\(740\) −152.456 51.9592i −0.206021 0.0702151i
\(741\) 0 0
\(742\) 133.583 + 22.1384i 0.180032 + 0.0298361i
\(743\) 805.058i 1.08352i 0.840532 + 0.541762i \(0.182242\pi\)
−0.840532 + 0.541762i \(0.817758\pi\)
\(744\) 0 0
\(745\) −591.576 −0.794062
\(746\) 151.506 914.191i 0.203091 1.22546i
\(747\) 0 0
\(748\) 53.0790 + 18.0901i 0.0709612 + 0.0241846i
\(749\) 446.679i 0.596367i
\(750\) 0 0
\(751\) 548.399i 0.730224i 0.930964 + 0.365112i \(0.118969\pi\)
−0.930964 + 0.365112i \(0.881031\pi\)
\(752\) −851.143 + 1103.65i −1.13184 + 1.46762i
\(753\) 0 0
\(754\) 20.1583 + 3.34077i 0.0267351 + 0.00443073i
\(755\) 413.029 0.547059
\(756\) 0 0
\(757\) 928.292i 1.22628i −0.789975 0.613138i \(-0.789907\pi\)
0.789975 0.613138i \(-0.210093\pi\)
\(758\) 1250.79 + 207.290i 1.65013 + 0.273470i
\(759\) 0 0
\(760\) 98.0487 182.632i 0.129011 0.240305i
\(761\) 1213.56 1.59469 0.797344 0.603526i \(-0.206238\pi\)
0.797344 + 0.603526i \(0.206238\pi\)
\(762\) 0 0
\(763\) −63.3731 −0.0830578
\(764\) 228.230 669.660i 0.298730 0.876519i
\(765\) 0 0
\(766\) 32.8833 198.418i 0.0429285 0.259032i
\(767\) 330.592i 0.431019i
\(768\) 0 0
\(769\) 843.497 1.09688 0.548438 0.836191i \(-0.315223\pi\)
0.548438 + 0.836191i \(0.315223\pi\)
\(770\) 75.4530 + 12.5046i 0.0979909 + 0.0162397i
\(771\) 0 0
\(772\) −1153.61 393.167i −1.49431 0.509283i
\(773\) 891.060i 1.15273i 0.817192 + 0.576365i \(0.195529\pi\)
−0.817192 + 0.576365i \(0.804471\pi\)
\(774\) 0 0
\(775\) 195.135i 0.251788i
\(776\) 571.936 + 307.053i 0.737031 + 0.395686i
\(777\) 0 0
\(778\) −134.390 + 810.912i −0.172738 + 1.04230i
\(779\) −298.289 −0.382912
\(780\) 0 0
\(781\) 274.406i 0.351352i
\(782\) −51.8209 + 312.688i −0.0662671 + 0.399857i
\(783\) 0 0
\(784\) −88.6890 68.3978i −0.113124 0.0872421i
\(785\) −1125.49 −1.43374
\(786\) 0 0
\(787\) −265.122 −0.336877 −0.168438 0.985712i \(-0.553872\pi\)
−0.168438 + 0.985712i \(0.553872\pi\)
\(788\) −501.042 + 1470.13i −0.635840 + 1.86565i
\(789\) 0 0
\(790\) −1153.65 191.191i −1.46031 0.242013i
\(791\) 453.524i 0.573355i
\(792\) 0 0
\(793\) −717.943 −0.905350
\(794\) −120.945 + 729.783i −0.152323 + 0.919122i
\(795\) 0 0
\(796\) 158.247 464.321i 0.198803 0.583318i
\(797\) 918.018i 1.15184i −0.817505 0.575921i \(-0.804644\pi\)
0.817505 0.575921i \(-0.195356\pi\)
\(798\) 0 0
\(799\) 346.301i 0.433418i
\(800\) −178.795 192.068i −0.223494 0.240085i
\(801\) 0 0
\(802\) 680.115 + 112.713i 0.848023 + 0.140540i
\(803\) −420.582 −0.523763
\(804\) 0 0
\(805\) 432.285i 0.537000i
\(806\) −576.257 95.5014i −0.714959 0.118488i
\(807\) 0 0
\(808\) 94.1502 175.370i 0.116522 0.217042i
\(809\) −181.129 −0.223893 −0.111947 0.993714i \(-0.535709\pi\)
−0.111947 + 0.993714i \(0.535709\pi\)
\(810\) 0 0
\(811\) 879.121 1.08400 0.541998 0.840380i \(-0.317668\pi\)
0.541998 + 0.840380i \(0.317668\pi\)
\(812\) −8.33859 2.84191i −0.0102692 0.00349990i
\(813\) 0 0
\(814\) 11.3283 68.3551i 0.0139168 0.0839743i
\(815\) 456.152i 0.559696i
\(816\) 0 0
\(817\) 197.731 0.242021
\(818\) −646.481 107.139i −0.790320 0.130977i
\(819\) 0 0
\(820\) 249.559 732.243i 0.304340 0.892979i
\(821\) 1271.70i 1.54896i 0.632598 + 0.774480i \(0.281988\pi\)
−0.632598 + 0.774480i \(0.718012\pi\)
\(822\) 0 0
\(823\) 542.745i 0.659471i 0.944073 + 0.329736i \(0.106960\pi\)
−0.944073 + 0.329736i \(0.893040\pi\)
\(824\) 188.332 350.799i 0.228558 0.425727i
\(825\) 0 0
\(826\) −23.3034 + 140.613i −0.0282124 + 0.170234i
\(827\) −171.607 −0.207506 −0.103753 0.994603i \(-0.533085\pi\)
−0.103753 + 0.994603i \(0.533085\pi\)
\(828\) 0 0
\(829\) 862.620i 1.04056i 0.853997 + 0.520278i \(0.174172\pi\)
−0.853997 + 0.520278i \(0.825828\pi\)
\(830\) −121.274 + 731.767i −0.146113 + 0.881647i
\(831\) 0 0
\(832\) −654.704 + 434.003i −0.786903 + 0.521638i
\(833\) 27.8287 0.0334078
\(834\) 0 0
\(835\) 595.471 0.713139
\(836\) 84.4031 + 28.7658i 0.100961 + 0.0344089i
\(837\) 0 0
\(838\) −1539.24 255.094i −1.83681 0.304408i
\(839\) 992.896i 1.18343i −0.806148 0.591714i \(-0.798452\pi\)
0.806148 0.591714i \(-0.201548\pi\)
\(840\) 0 0
\(841\) 840.307 0.999176
\(842\) 223.038 1345.82i 0.264891 1.59836i
\(843\) 0 0
\(844\) −1075.86 366.669i −1.27472 0.434442i
\(845\) 75.2791i 0.0890877i
\(846\) 0 0
\(847\) 287.235i 0.339120i
\(848\) −250.035 + 324.212i −0.294853 + 0.382326i
\(849\) 0 0
\(850\) 64.3233 + 10.6601i 0.0756745 + 0.0125413i
\(851\) 391.620 0.460188
\(852\) 0 0
\(853\) 790.557i 0.926796i 0.886150 + 0.463398i \(0.153370\pi\)
−0.886150 + 0.463398i \(0.846630\pi\)
\(854\) 305.369 + 50.6078i 0.357574 + 0.0592597i
\(855\) 0 0
\(856\) −1189.98 638.860i −1.39017 0.746332i
\(857\) 592.166 0.690976 0.345488 0.938423i \(-0.387713\pi\)
0.345488 + 0.938423i \(0.387713\pi\)
\(858\) 0 0
\(859\) −1167.30 −1.35890 −0.679451 0.733721i \(-0.737782\pi\)
−0.679451 + 0.733721i \(0.737782\pi\)
\(860\) −165.429 + 485.393i −0.192359 + 0.564410i
\(861\) 0 0
\(862\) −72.8815 + 439.768i −0.0845493 + 0.510172i
\(863\) 1290.28i 1.49511i −0.664200 0.747555i \(-0.731228\pi\)
0.664200 0.747555i \(-0.268772\pi\)
\(864\) 0 0
\(865\) −78.9348 −0.0912541
\(866\) −1632.26 270.510i −1.88483 0.312367i
\(867\) 0 0
\(868\) 238.372 + 81.2408i 0.274623 + 0.0935954i
\(869\) 503.043i 0.578876i
\(870\) 0 0
\(871\) 1225.07i 1.40651i
\(872\) 90.6390 168.830i 0.103944 0.193613i
\(873\) 0 0
\(874\) −82.4025 + 497.218i −0.0942821 + 0.568900i
\(875\) 360.033 0.411466
\(876\) 0 0
\(877\) 795.949i 0.907581i −0.891108 0.453791i \(-0.850071\pi\)
0.891108 0.453791i \(-0.149929\pi\)
\(878\) −204.149 + 1231.84i −0.232516 + 1.40301i
\(879\) 0 0
\(880\) −141.229 + 183.127i −0.160488 + 0.208099i
\(881\) −44.6577 −0.0506898 −0.0253449 0.999679i \(-0.508068\pi\)
−0.0253449 + 0.999679i \(0.508068\pi\)
\(882\) 0 0
\(883\) 1361.40 1.54179 0.770894 0.636963i \(-0.219810\pi\)
0.770894 + 0.636963i \(0.219810\pi\)
\(884\) 62.9611 184.737i 0.0712230 0.208979i
\(885\) 0 0
\(886\) 654.291 + 108.434i 0.738477 + 0.122386i
\(887\) 157.476i 0.177538i −0.996052 0.0887690i \(-0.971707\pi\)
0.996052 0.0887690i \(-0.0282933\pi\)
\(888\) 0 0
\(889\) −167.213 −0.188091
\(890\) 85.9721 518.757i 0.0965979 0.582873i
\(891\) 0 0
\(892\) −396.785 + 1164.23i −0.444827 + 1.30519i
\(893\) 550.668i 0.616649i
\(894\) 0 0
\(895\) 504.077i 0.563214i
\(896\) 309.063 138.448i 0.344937 0.154518i
\(897\) 0 0
\(898\) 28.1305 + 4.66199i 0.0313258 + 0.00519153i
\(899\) 19.8087 0.0220341
\(900\) 0 0
\(901\) 101.731i 0.112909i
\(902\) 328.308 + 54.4096i 0.363978 + 0.0603210i
\(903\) 0 0
\(904\) 1208.22 + 648.650i 1.33652 + 0.717533i
\(905\) −1318.77 −1.45720
\(906\) 0 0
\(907\) 1773.43 1.95527 0.977637 0.210300i \(-0.0674441\pi\)
0.977637 + 0.210300i \(0.0674441\pi\)
\(908\) 860.106 + 293.137i 0.947254 + 0.322838i
\(909\) 0 0
\(910\) 43.5212 262.608i 0.0478255 0.288580i
\(911\) 575.398i 0.631612i −0.948824 0.315806i \(-0.897725\pi\)
0.948824 0.315806i \(-0.102275\pi\)
\(912\) 0 0
\(913\) −319.084 −0.349489
\(914\) 372.299 + 61.7000i 0.407329 + 0.0675054i
\(915\) 0 0
\(916\) 417.357 1224.59i 0.455630 1.33689i
\(917\) 335.728i 0.366115i
\(918\) 0 0
\(919\) 46.2676i 0.0503455i 0.999683 + 0.0251728i \(0.00801359\pi\)
−0.999683 + 0.0251728i \(0.991986\pi\)
\(920\) −1151.64 618.274i −1.25178 0.672037i
\(921\) 0 0
\(922\) 64.5438 389.458i 0.0700041 0.422406i
\(923\) −955.047 −1.03472
\(924\) 0 0
\(925\) 80.5604i 0.0870924i
\(926\) 36.8287 222.225i 0.0397719 0.239984i
\(927\) 0 0
\(928\) 19.4973 18.1499i 0.0210100 0.0195581i
\(929\) 78.7228 0.0847393 0.0423696 0.999102i \(-0.486509\pi\)
0.0423696 + 0.999102i \(0.486509\pi\)
\(930\) 0 0
\(931\) 44.2516 0.0475312
\(932\) 814.641 + 277.642i 0.874078 + 0.297899i
\(933\) 0 0
\(934\) 886.654 + 146.942i 0.949308 + 0.157326i
\(935\) 57.4614i 0.0614561i
\(936\) 0 0
\(937\) −771.207 −0.823060 −0.411530 0.911396i \(-0.635005\pi\)
−0.411530 + 0.911396i \(0.635005\pi\)
\(938\) 86.3552 521.069i 0.0920631 0.555511i
\(939\) 0 0
\(940\) 1351.79 + 460.709i 1.43807 + 0.490116i
\(941\) 1287.41i 1.36813i −0.729420 0.684066i \(-0.760210\pi\)
0.729420 0.684066i \(-0.239790\pi\)
\(942\) 0 0
\(943\) 1880.94i 1.99464i
\(944\) −341.274 263.193i −0.361519 0.278807i
\(945\) 0 0
\(946\) −217.631 36.0673i −0.230054 0.0381261i
\(947\) −117.702 −0.124290 −0.0621448 0.998067i \(-0.519794\pi\)
−0.0621448 + 0.998067i \(0.519794\pi\)
\(948\) 0 0
\(949\) 1463.80i 1.54247i
\(950\) 102.283 + 16.9511i 0.107666 + 0.0178432i
\(951\) 0 0
\(952\) −39.8019 + 74.1376i −0.0418087 + 0.0778757i
\(953\) −128.384 −0.134715 −0.0673577 0.997729i \(-0.521457\pi\)
−0.0673577 + 0.997729i \(0.521457\pi\)
\(954\) 0 0
\(955\) −724.950 −0.759110
\(956\) 443.249 1300.56i 0.463650 1.36042i
\(957\) 0 0
\(958\) −148.883 + 898.361i −0.155410 + 0.937746i
\(959\) 384.366i 0.400798i
\(960\) 0 0
\(961\) 394.737 0.410757
\(962\) −237.904 39.4272i −0.247302 0.0409846i
\(963\) 0 0
\(964\) 1136.56 + 387.357i 1.17901 + 0.401823i
\(965\) 1248.85i 1.29415i
\(966\) 0 0
\(967\) 510.697i 0.528125i 0.964506 + 0.264062i \(0.0850625\pi\)
−0.964506 + 0.264062i \(0.914938\pi\)
\(968\) 765.213 + 410.816i 0.790510 + 0.424397i
\(969\) 0 0
\(970\) 108.754 656.223i 0.112117 0.676518i
\(971\) −427.761 −0.440537 −0.220268 0.975439i \(-0.570693\pi\)
−0.220268 + 0.975439i \(0.570693\pi\)
\(972\) 0 0
\(973\) 214.315i 0.220262i
\(974\) −316.102 + 1907.37i −0.324540 + 1.95828i
\(975\) 0 0
\(976\) −571.574 + 741.141i −0.585630 + 0.759366i
\(977\) −30.5283 −0.0312470 −0.0156235 0.999878i \(-0.504973\pi\)
−0.0156235 + 0.999878i \(0.504973\pi\)
\(978\) 0 0
\(979\) 226.202 0.231054
\(980\) −37.0225 + 108.629i −0.0377780 + 0.110846i
\(981\) 0 0
\(982\) 235.505 + 39.0296i 0.239822 + 0.0397450i
\(983\) 1521.29i 1.54760i −0.633432 0.773799i \(-0.718354\pi\)
0.633432 0.773799i \(-0.281646\pi\)
\(984\) 0 0
\(985\) 1591.51 1.61575
\(986\) −1.08213 + 6.52962i −0.00109750 + 0.00662233i
\(987\) 0 0
\(988\) 100.117 293.758i 0.101333 0.297326i
\(989\) 1246.85i 1.26072i
\(990\) 0 0
\(991\) 826.002i 0.833503i −0.909020 0.416752i \(-0.863168\pi\)
0.909020 0.416752i \(-0.136832\pi\)
\(992\) −557.362 + 518.846i −0.561857 + 0.523030i
\(993\) 0 0
\(994\) 406.218 + 67.3213i 0.408670 + 0.0677277i
\(995\) −502.657 −0.505183
\(996\) 0 0
\(997\) 149.882i 0.150333i −0.997171 0.0751665i \(-0.976051\pi\)
0.997171 0.0751665i \(-0.0239488\pi\)
\(998\) −1318.16 218.454i −1.32080 0.218892i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.g.d.379.1 24
3.2 odd 2 168.3.g.a.43.24 yes 24
4.3 odd 2 2016.3.g.d.1135.6 24
8.3 odd 2 inner 504.3.g.d.379.2 24
8.5 even 2 2016.3.g.d.1135.19 24
12.11 even 2 672.3.g.a.463.23 24
24.5 odd 2 672.3.g.a.463.14 24
24.11 even 2 168.3.g.a.43.23 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.g.a.43.23 24 24.11 even 2
168.3.g.a.43.24 yes 24 3.2 odd 2
504.3.g.d.379.1 24 1.1 even 1 trivial
504.3.g.d.379.2 24 8.3 odd 2 inner
672.3.g.a.463.14 24 24.5 odd 2
672.3.g.a.463.23 24 12.11 even 2
2016.3.g.d.1135.6 24 4.3 odd 2
2016.3.g.d.1135.19 24 8.5 even 2