Properties

Label 504.3.g.c.379.9
Level $504$
Weight $3$
Character 504.379
Analytic conductor $13.733$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(379,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.9
Character \(\chi\) \(=\) 504.379
Dual form 504.3.g.c.379.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.550248 - 1.92282i) q^{2} +(-3.39445 + 2.11605i) q^{4} +2.10762i q^{5} -2.64575i q^{7} +(5.93658 + 5.36256i) q^{8} +(4.05258 - 1.15972i) q^{10} -5.49014 q^{11} -0.893817i q^{13} +(-5.08730 + 1.45582i) q^{14} +(7.04463 - 14.3657i) q^{16} -10.0306 q^{17} +25.3915 q^{19} +(-4.45985 - 7.15423i) q^{20} +(3.02094 + 10.5565i) q^{22} -15.9278i q^{23} +20.5579 q^{25} +(-1.71865 + 0.491821i) q^{26} +(5.59855 + 8.98088i) q^{28} -28.8363i q^{29} -41.5598i q^{31} +(-31.4989 - 5.64084i) q^{32} +(5.51933 + 19.2871i) q^{34} +5.57625 q^{35} -37.1910i q^{37} +(-13.9716 - 48.8233i) q^{38} +(-11.3023 + 12.5121i) q^{40} -70.6399 q^{41} +6.60609 q^{43} +(18.6360 - 11.6174i) q^{44} +(-30.6262 + 8.76424i) q^{46} -44.9902i q^{47} -7.00000 q^{49} +(-11.3120 - 39.5291i) q^{50} +(1.89136 + 3.03402i) q^{52} -27.8456i q^{53} -11.5711i q^{55} +(14.1880 - 15.7067i) q^{56} +(-55.4469 + 15.8671i) q^{58} +38.7342 q^{59} +7.21121i q^{61} +(-79.9120 + 22.8682i) q^{62} +(6.48592 + 63.6705i) q^{64} +1.88383 q^{65} -10.9281 q^{67} +(34.0485 - 21.2253i) q^{68} +(-3.06832 - 10.7221i) q^{70} +72.4872i q^{71} +26.0986 q^{73} +(-71.5114 + 20.4643i) q^{74} +(-86.1903 + 53.7298i) q^{76} +14.5255i q^{77} -96.8805i q^{79} +(30.2775 + 14.8474i) q^{80} +(38.8695 + 135.828i) q^{82} -26.3015 q^{83} -21.1408i q^{85} +(-3.63499 - 12.7023i) q^{86} +(-32.5926 - 29.4412i) q^{88} -41.8658 q^{89} -2.36482 q^{91} +(33.7041 + 54.0662i) q^{92} +(-86.5079 + 24.7558i) q^{94} +53.5158i q^{95} +74.6737 q^{97} +(3.85174 + 13.4597i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 12 q^{10} + 66 q^{16} - 64 q^{19} - 144 q^{22} - 168 q^{25} - 14 q^{28} + 12 q^{34} + 196 q^{40} + 224 q^{43} - 84 q^{46} - 168 q^{49} - 364 q^{52} + 348 q^{58} + 214 q^{64} - 32 q^{67}+ \cdots - 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.550248 1.92282i −0.275124 0.961409i
\(3\) 0 0
\(4\) −3.39445 + 2.11605i −0.848613 + 0.529014i
\(5\) 2.10762i 0.421525i 0.977537 + 0.210762i \(0.0675946\pi\)
−0.977537 + 0.210762i \(0.932405\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 5.93658 + 5.36256i 0.742072 + 0.670320i
\(9\) 0 0
\(10\) 4.05258 1.15972i 0.405258 0.115972i
\(11\) −5.49014 −0.499103 −0.249552 0.968361i \(-0.580283\pi\)
−0.249552 + 0.968361i \(0.580283\pi\)
\(12\) 0 0
\(13\) 0.893817i 0.0687551i −0.999409 0.0343776i \(-0.989055\pi\)
0.999409 0.0343776i \(-0.0109449\pi\)
\(14\) −5.08730 + 1.45582i −0.363378 + 0.103987i
\(15\) 0 0
\(16\) 7.04463 14.3657i 0.440289 0.897856i
\(17\) −10.0306 −0.590037 −0.295018 0.955492i \(-0.595326\pi\)
−0.295018 + 0.955492i \(0.595326\pi\)
\(18\) 0 0
\(19\) 25.3915 1.33640 0.668198 0.743984i \(-0.267066\pi\)
0.668198 + 0.743984i \(0.267066\pi\)
\(20\) −4.45985 7.15423i −0.222992 0.357712i
\(21\) 0 0
\(22\) 3.02094 + 10.5565i 0.137315 + 0.479842i
\(23\) 15.9278i 0.692513i −0.938140 0.346256i \(-0.887453\pi\)
0.938140 0.346256i \(-0.112547\pi\)
\(24\) 0 0
\(25\) 20.5579 0.822317
\(26\) −1.71865 + 0.491821i −0.0661018 + 0.0189162i
\(27\) 0 0
\(28\) 5.59855 + 8.98088i 0.199948 + 0.320746i
\(29\) 28.8363i 0.994354i −0.867649 0.497177i \(-0.834370\pi\)
0.867649 0.497177i \(-0.165630\pi\)
\(30\) 0 0
\(31\) 41.5598i 1.34064i −0.742072 0.670320i \(-0.766157\pi\)
0.742072 0.670320i \(-0.233843\pi\)
\(32\) −31.4989 5.64084i −0.984341 0.176276i
\(33\) 0 0
\(34\) 5.51933 + 19.2871i 0.162333 + 0.567266i
\(35\) 5.57625 0.159321
\(36\) 0 0
\(37\) 37.1910i 1.00516i −0.864530 0.502580i \(-0.832384\pi\)
0.864530 0.502580i \(-0.167616\pi\)
\(38\) −13.9716 48.8233i −0.367675 1.28482i
\(39\) 0 0
\(40\) −11.3023 + 12.5121i −0.282556 + 0.312802i
\(41\) −70.6399 −1.72292 −0.861462 0.507822i \(-0.830451\pi\)
−0.861462 + 0.507822i \(0.830451\pi\)
\(42\) 0 0
\(43\) 6.60609 0.153630 0.0768150 0.997045i \(-0.475525\pi\)
0.0768150 + 0.997045i \(0.475525\pi\)
\(44\) 18.6360 11.6174i 0.423546 0.264032i
\(45\) 0 0
\(46\) −30.6262 + 8.76424i −0.665788 + 0.190527i
\(47\) 44.9902i 0.957238i −0.878023 0.478619i \(-0.841138\pi\)
0.878023 0.478619i \(-0.158862\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) −11.3120 39.5291i −0.226239 0.790583i
\(51\) 0 0
\(52\) 1.89136 + 3.03402i 0.0363724 + 0.0583465i
\(53\) 27.8456i 0.525388i −0.964879 0.262694i \(-0.915389\pi\)
0.964879 0.262694i \(-0.0846110\pi\)
\(54\) 0 0
\(55\) 11.5711i 0.210384i
\(56\) 14.1880 15.7067i 0.253357 0.280477i
\(57\) 0 0
\(58\) −55.4469 + 15.8671i −0.955981 + 0.273571i
\(59\) 38.7342 0.656512 0.328256 0.944589i \(-0.393539\pi\)
0.328256 + 0.944589i \(0.393539\pi\)
\(60\) 0 0
\(61\) 7.21121i 0.118216i 0.998252 + 0.0591082i \(0.0188257\pi\)
−0.998252 + 0.0591082i \(0.981174\pi\)
\(62\) −79.9120 + 22.8682i −1.28890 + 0.368842i
\(63\) 0 0
\(64\) 6.48592 + 63.6705i 0.101342 + 0.994852i
\(65\) 1.88383 0.0289820
\(66\) 0 0
\(67\) −10.9281 −0.163106 −0.0815532 0.996669i \(-0.525988\pi\)
−0.0815532 + 0.996669i \(0.525988\pi\)
\(68\) 34.0485 21.2253i 0.500713 0.312137i
\(69\) 0 0
\(70\) −3.06832 10.7221i −0.0438332 0.153173i
\(71\) 72.4872i 1.02095i 0.859893 + 0.510474i \(0.170530\pi\)
−0.859893 + 0.510474i \(0.829470\pi\)
\(72\) 0 0
\(73\) 26.0986 0.357515 0.178757 0.983893i \(-0.442792\pi\)
0.178757 + 0.983893i \(0.442792\pi\)
\(74\) −71.5114 + 20.4643i −0.966370 + 0.276544i
\(75\) 0 0
\(76\) −86.1903 + 53.7298i −1.13408 + 0.706971i
\(77\) 14.5255i 0.188643i
\(78\) 0 0
\(79\) 96.8805i 1.22634i −0.789953 0.613168i \(-0.789895\pi\)
0.789953 0.613168i \(-0.210105\pi\)
\(80\) 30.2775 + 14.8474i 0.378469 + 0.185593i
\(81\) 0 0
\(82\) 38.8695 + 135.828i 0.474018 + 1.65643i
\(83\) −26.3015 −0.316886 −0.158443 0.987368i \(-0.550647\pi\)
−0.158443 + 0.987368i \(0.550647\pi\)
\(84\) 0 0
\(85\) 21.1408i 0.248715i
\(86\) −3.63499 12.7023i −0.0422674 0.147701i
\(87\) 0 0
\(88\) −32.5926 29.4412i −0.370371 0.334559i
\(89\) −41.8658 −0.470402 −0.235201 0.971947i \(-0.575575\pi\)
−0.235201 + 0.971947i \(0.575575\pi\)
\(90\) 0 0
\(91\) −2.36482 −0.0259870
\(92\) 33.7041 + 54.0662i 0.366349 + 0.587676i
\(93\) 0 0
\(94\) −86.5079 + 24.7558i −0.920297 + 0.263359i
\(95\) 53.5158i 0.563324i
\(96\) 0 0
\(97\) 74.6737 0.769832 0.384916 0.922952i \(-0.374230\pi\)
0.384916 + 0.922952i \(0.374230\pi\)
\(98\) 3.85174 + 13.4597i 0.0393035 + 0.137344i
\(99\) 0 0
\(100\) −69.7829 + 43.5017i −0.697829 + 0.435017i
\(101\) 82.1506i 0.813372i −0.913568 0.406686i \(-0.866684\pi\)
0.913568 0.406686i \(-0.133316\pi\)
\(102\) 0 0
\(103\) 63.9274i 0.620654i 0.950630 + 0.310327i \(0.100439\pi\)
−0.950630 + 0.310327i \(0.899561\pi\)
\(104\) 4.79314 5.30621i 0.0460879 0.0510213i
\(105\) 0 0
\(106\) −53.5420 + 15.3220i −0.505113 + 0.144547i
\(107\) 176.996 1.65417 0.827086 0.562075i \(-0.189997\pi\)
0.827086 + 0.562075i \(0.189997\pi\)
\(108\) 0 0
\(109\) 165.522i 1.51855i −0.650771 0.759274i \(-0.725554\pi\)
0.650771 0.759274i \(-0.274446\pi\)
\(110\) −22.2492 + 6.36700i −0.202265 + 0.0578818i
\(111\) 0 0
\(112\) −38.0081 18.6383i −0.339358 0.166414i
\(113\) −100.006 −0.885010 −0.442505 0.896766i \(-0.645910\pi\)
−0.442505 + 0.896766i \(0.645910\pi\)
\(114\) 0 0
\(115\) 33.5698 0.291911
\(116\) 61.0191 + 97.8834i 0.526027 + 0.843822i
\(117\) 0 0
\(118\) −21.3134 74.4788i −0.180622 0.631176i
\(119\) 26.5385i 0.223013i
\(120\) 0 0
\(121\) −90.8584 −0.750896
\(122\) 13.8658 3.96795i 0.113654 0.0325242i
\(123\) 0 0
\(124\) 87.9429 + 141.073i 0.709217 + 1.13768i
\(125\) 96.0190i 0.768152i
\(126\) 0 0
\(127\) 16.1063i 0.126821i −0.997988 0.0634104i \(-0.979802\pi\)
0.997988 0.0634104i \(-0.0201977\pi\)
\(128\) 118.858 47.5058i 0.928577 0.371139i
\(129\) 0 0
\(130\) −1.03657 3.62226i −0.00797365 0.0278635i
\(131\) 206.703 1.57789 0.788943 0.614467i \(-0.210629\pi\)
0.788943 + 0.614467i \(0.210629\pi\)
\(132\) 0 0
\(133\) 67.1796i 0.505110i
\(134\) 6.01318 + 21.0128i 0.0448745 + 0.156812i
\(135\) 0 0
\(136\) −59.5476 53.7898i −0.437850 0.395513i
\(137\) −174.265 −1.27201 −0.636005 0.771685i \(-0.719414\pi\)
−0.636005 + 0.771685i \(0.719414\pi\)
\(138\) 0 0
\(139\) 186.676 1.34299 0.671496 0.741008i \(-0.265652\pi\)
0.671496 + 0.741008i \(0.265652\pi\)
\(140\) −18.9283 + 11.7996i −0.135202 + 0.0842832i
\(141\) 0 0
\(142\) 139.380 39.8860i 0.981547 0.280887i
\(143\) 4.90718i 0.0343159i
\(144\) 0 0
\(145\) 60.7760 0.419145
\(146\) −14.3607 50.1828i −0.0983609 0.343718i
\(147\) 0 0
\(148\) 78.6981 + 126.243i 0.531744 + 0.852993i
\(149\) 138.373i 0.928678i −0.885658 0.464339i \(-0.846292\pi\)
0.885658 0.464339i \(-0.153708\pi\)
\(150\) 0 0
\(151\) 79.0738i 0.523668i −0.965113 0.261834i \(-0.915673\pi\)
0.965113 0.261834i \(-0.0843272\pi\)
\(152\) 150.739 + 136.164i 0.991702 + 0.895813i
\(153\) 0 0
\(154\) 27.9300 7.99265i 0.181363 0.0519003i
\(155\) 87.5925 0.565113
\(156\) 0 0
\(157\) 10.4342i 0.0664596i 0.999448 + 0.0332298i \(0.0105793\pi\)
−0.999448 + 0.0332298i \(0.989421\pi\)
\(158\) −186.284 + 53.3083i −1.17901 + 0.337394i
\(159\) 0 0
\(160\) 11.8888 66.3878i 0.0743048 0.414924i
\(161\) −42.1410 −0.261745
\(162\) 0 0
\(163\) −46.5311 −0.285467 −0.142734 0.989761i \(-0.545589\pi\)
−0.142734 + 0.989761i \(0.545589\pi\)
\(164\) 239.784 149.478i 1.46210 0.911450i
\(165\) 0 0
\(166\) 14.4724 + 50.5730i 0.0871829 + 0.304657i
\(167\) 128.113i 0.767147i 0.923510 + 0.383573i \(0.125307\pi\)
−0.923510 + 0.383573i \(0.874693\pi\)
\(168\) 0 0
\(169\) 168.201 0.995273
\(170\) −40.6499 + 11.6327i −0.239117 + 0.0684275i
\(171\) 0 0
\(172\) −22.4241 + 13.9789i −0.130373 + 0.0812724i
\(173\) 18.9967i 0.109808i −0.998492 0.0549038i \(-0.982515\pi\)
0.998492 0.0549038i \(-0.0174852\pi\)
\(174\) 0 0
\(175\) 54.3911i 0.310807i
\(176\) −38.6760 + 78.8696i −0.219750 + 0.448123i
\(177\) 0 0
\(178\) 23.0366 + 80.5003i 0.129419 + 0.452249i
\(179\) 142.472 0.795933 0.397966 0.917400i \(-0.369716\pi\)
0.397966 + 0.917400i \(0.369716\pi\)
\(180\) 0 0
\(181\) 60.5041i 0.334277i 0.985933 + 0.167138i \(0.0534526\pi\)
−0.985933 + 0.167138i \(0.946547\pi\)
\(182\) 1.30124 + 4.54711i 0.00714965 + 0.0249841i
\(183\) 0 0
\(184\) 85.4137 94.5566i 0.464205 0.513895i
\(185\) 78.3845 0.423700
\(186\) 0 0
\(187\) 55.0695 0.294489
\(188\) 95.2016 + 152.717i 0.506392 + 0.812325i
\(189\) 0 0
\(190\) 102.901 29.4470i 0.541584 0.154984i
\(191\) 104.346i 0.546316i 0.961969 + 0.273158i \(0.0880681\pi\)
−0.961969 + 0.273158i \(0.911932\pi\)
\(192\) 0 0
\(193\) −5.66026 −0.0293278 −0.0146639 0.999892i \(-0.504668\pi\)
−0.0146639 + 0.999892i \(0.504668\pi\)
\(194\) −41.0891 143.584i −0.211799 0.740123i
\(195\) 0 0
\(196\) 23.7612 14.8124i 0.121230 0.0755734i
\(197\) 335.617i 1.70364i 0.523836 + 0.851819i \(0.324501\pi\)
−0.523836 + 0.851819i \(0.675499\pi\)
\(198\) 0 0
\(199\) 91.4717i 0.459657i −0.973231 0.229829i \(-0.926183\pi\)
0.973231 0.229829i \(-0.0738165\pi\)
\(200\) 122.044 + 110.243i 0.610219 + 0.551215i
\(201\) 0 0
\(202\) −157.961 + 45.2032i −0.781983 + 0.223778i
\(203\) −76.2936 −0.375831
\(204\) 0 0
\(205\) 148.882i 0.726255i
\(206\) 122.921 35.1759i 0.596702 0.170757i
\(207\) 0 0
\(208\) −12.8403 6.29661i −0.0617322 0.0302722i
\(209\) −139.403 −0.667000
\(210\) 0 0
\(211\) −280.360 −1.32872 −0.664359 0.747413i \(-0.731296\pi\)
−0.664359 + 0.747413i \(0.731296\pi\)
\(212\) 58.9227 + 94.5205i 0.277937 + 0.445851i
\(213\) 0 0
\(214\) −97.3920 340.332i −0.455103 1.59034i
\(215\) 13.9232i 0.0647589i
\(216\) 0 0
\(217\) −109.957 −0.506714
\(218\) −318.268 + 91.0780i −1.45994 + 0.417789i
\(219\) 0 0
\(220\) 24.4852 + 39.2777i 0.111296 + 0.178535i
\(221\) 8.96554i 0.0405680i
\(222\) 0 0
\(223\) 352.302i 1.57983i 0.613215 + 0.789916i \(0.289876\pi\)
−0.613215 + 0.789916i \(0.710124\pi\)
\(224\) −14.9243 + 83.3383i −0.0666261 + 0.372046i
\(225\) 0 0
\(226\) 55.0282 + 192.293i 0.243488 + 0.850856i
\(227\) 427.232 1.88208 0.941041 0.338294i \(-0.109850\pi\)
0.941041 + 0.338294i \(0.109850\pi\)
\(228\) 0 0
\(229\) 244.440i 1.06742i 0.845667 + 0.533711i \(0.179203\pi\)
−0.845667 + 0.533711i \(0.820797\pi\)
\(230\) −18.4717 64.5486i −0.0803119 0.280646i
\(231\) 0 0
\(232\) 154.636 171.189i 0.666536 0.737883i
\(233\) −65.9296 −0.282960 −0.141480 0.989941i \(-0.545186\pi\)
−0.141480 + 0.989941i \(0.545186\pi\)
\(234\) 0 0
\(235\) 94.8224 0.403499
\(236\) −131.481 + 81.9637i −0.557125 + 0.347304i
\(237\) 0 0
\(238\) 51.0287 14.6028i 0.214407 0.0613562i
\(239\) 117.973i 0.493613i −0.969065 0.246806i \(-0.920619\pi\)
0.969065 0.246806i \(-0.0793811\pi\)
\(240\) 0 0
\(241\) −30.8746 −0.128110 −0.0640552 0.997946i \(-0.520403\pi\)
−0.0640552 + 0.997946i \(0.520403\pi\)
\(242\) 49.9947 + 174.704i 0.206590 + 0.721918i
\(243\) 0 0
\(244\) −15.2593 24.4781i −0.0625381 0.100320i
\(245\) 14.7534i 0.0602178i
\(246\) 0 0
\(247\) 22.6954i 0.0918841i
\(248\) 222.867 246.723i 0.898657 0.994852i
\(249\) 0 0
\(250\) 184.627 52.8343i 0.738508 0.211337i
\(251\) 292.824 1.16663 0.583314 0.812247i \(-0.301756\pi\)
0.583314 + 0.812247i \(0.301756\pi\)
\(252\) 0 0
\(253\) 87.4458i 0.345635i
\(254\) −30.9694 + 8.86244i −0.121927 + 0.0348915i
\(255\) 0 0
\(256\) −156.746 202.402i −0.612291 0.790633i
\(257\) −64.9208 −0.252610 −0.126305 0.991991i \(-0.540312\pi\)
−0.126305 + 0.991991i \(0.540312\pi\)
\(258\) 0 0
\(259\) −98.3980 −0.379915
\(260\) −6.39457 + 3.98628i −0.0245945 + 0.0153319i
\(261\) 0 0
\(262\) −113.738 397.452i −0.434114 1.51699i
\(263\) 163.348i 0.621093i 0.950558 + 0.310547i \(0.100512\pi\)
−0.950558 + 0.310547i \(0.899488\pi\)
\(264\) 0 0
\(265\) 58.6880 0.221464
\(266\) −129.174 + 36.9655i −0.485617 + 0.138968i
\(267\) 0 0
\(268\) 37.0950 23.1245i 0.138414 0.0862855i
\(269\) 337.337i 1.25404i −0.779003 0.627020i \(-0.784275\pi\)
0.779003 0.627020i \(-0.215725\pi\)
\(270\) 0 0
\(271\) 50.7068i 0.187110i 0.995614 + 0.0935550i \(0.0298231\pi\)
−0.995614 + 0.0935550i \(0.970177\pi\)
\(272\) −70.6620 + 144.097i −0.259787 + 0.529768i
\(273\) 0 0
\(274\) 95.8893 + 335.081i 0.349961 + 1.22292i
\(275\) −112.866 −0.410421
\(276\) 0 0
\(277\) 507.625i 1.83258i 0.400514 + 0.916291i \(0.368832\pi\)
−0.400514 + 0.916291i \(0.631168\pi\)
\(278\) −102.718 358.944i −0.369490 1.29116i
\(279\) 0 0
\(280\) 33.1038 + 29.9030i 0.118228 + 0.106796i
\(281\) −517.785 −1.84265 −0.921325 0.388793i \(-0.872892\pi\)
−0.921325 + 0.388793i \(0.872892\pi\)
\(282\) 0 0
\(283\) −213.035 −0.752774 −0.376387 0.926463i \(-0.622834\pi\)
−0.376387 + 0.926463i \(0.622834\pi\)
\(284\) −153.387 246.055i −0.540095 0.866389i
\(285\) 0 0
\(286\) 9.43560 2.70017i 0.0329916 0.00944114i
\(287\) 186.896i 0.651204i
\(288\) 0 0
\(289\) −188.387 −0.651857
\(290\) −33.4419 116.861i −0.115317 0.402970i
\(291\) 0 0
\(292\) −88.5904 + 55.2260i −0.303392 + 0.189130i
\(293\) 183.590i 0.626586i −0.949656 0.313293i \(-0.898568\pi\)
0.949656 0.313293i \(-0.101432\pi\)
\(294\) 0 0
\(295\) 81.6371i 0.276736i
\(296\) 199.439 220.787i 0.673779 0.745902i
\(297\) 0 0
\(298\) −266.066 + 76.1395i −0.892839 + 0.255502i
\(299\) −14.2365 −0.0476138
\(300\) 0 0
\(301\) 17.4781i 0.0580667i
\(302\) −152.044 + 43.5102i −0.503459 + 0.144074i
\(303\) 0 0
\(304\) 178.874 364.767i 0.588401 1.19989i
\(305\) −15.1985 −0.0498312
\(306\) 0 0
\(307\) 289.386 0.942626 0.471313 0.881966i \(-0.343780\pi\)
0.471313 + 0.881966i \(0.343780\pi\)
\(308\) −30.7368 49.3063i −0.0997949 0.160085i
\(309\) 0 0
\(310\) −48.1976 168.424i −0.155476 0.543304i
\(311\) 361.881i 1.16361i −0.813330 0.581803i \(-0.802348\pi\)
0.813330 0.581803i \(-0.197652\pi\)
\(312\) 0 0
\(313\) −511.351 −1.63371 −0.816854 0.576845i \(-0.804284\pi\)
−0.816854 + 0.576845i \(0.804284\pi\)
\(314\) 20.0630 5.74137i 0.0638948 0.0182846i
\(315\) 0 0
\(316\) 205.004 + 328.856i 0.648748 + 1.04068i
\(317\) 380.742i 1.20108i −0.799596 0.600539i \(-0.794953\pi\)
0.799596 0.600539i \(-0.205047\pi\)
\(318\) 0 0
\(319\) 158.315i 0.496286i
\(320\) −134.193 + 13.6699i −0.419355 + 0.0427184i
\(321\) 0 0
\(322\) 23.1880 + 81.0294i 0.0720124 + 0.251644i
\(323\) −254.693 −0.788522
\(324\) 0 0
\(325\) 18.3750i 0.0565385i
\(326\) 25.6037 + 89.4709i 0.0785389 + 0.274451i
\(327\) 0 0
\(328\) −419.359 378.811i −1.27853 1.15491i
\(329\) −119.033 −0.361802
\(330\) 0 0
\(331\) −353.452 −1.06783 −0.533915 0.845538i \(-0.679280\pi\)
−0.533915 + 0.845538i \(0.679280\pi\)
\(332\) 89.2792 55.6554i 0.268913 0.167637i
\(333\) 0 0
\(334\) 246.339 70.4942i 0.737541 0.211061i
\(335\) 23.0324i 0.0687534i
\(336\) 0 0
\(337\) −549.243 −1.62980 −0.814901 0.579600i \(-0.803209\pi\)
−0.814901 + 0.579600i \(0.803209\pi\)
\(338\) −92.5524 323.420i −0.273824 0.956864i
\(339\) 0 0
\(340\) 44.7350 + 71.7614i 0.131574 + 0.211063i
\(341\) 228.169i 0.669118i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 39.2176 + 35.4256i 0.114005 + 0.102981i
\(345\) 0 0
\(346\) −36.5272 + 10.4529i −0.105570 + 0.0302107i
\(347\) −493.380 −1.42184 −0.710922 0.703271i \(-0.751722\pi\)
−0.710922 + 0.703271i \(0.751722\pi\)
\(348\) 0 0
\(349\) 467.641i 1.33994i 0.742386 + 0.669972i \(0.233694\pi\)
−0.742386 + 0.669972i \(0.766306\pi\)
\(350\) −104.584 + 29.9286i −0.298812 + 0.0855104i
\(351\) 0 0
\(352\) 172.933 + 30.9690i 0.491288 + 0.0879800i
\(353\) 226.374 0.641285 0.320643 0.947200i \(-0.396101\pi\)
0.320643 + 0.947200i \(0.396101\pi\)
\(354\) 0 0
\(355\) −152.776 −0.430354
\(356\) 142.112 88.5903i 0.399190 0.248849i
\(357\) 0 0
\(358\) −78.3950 273.948i −0.218980 0.765217i
\(359\) 118.269i 0.329440i −0.986340 0.164720i \(-0.947328\pi\)
0.986340 0.164720i \(-0.0526720\pi\)
\(360\) 0 0
\(361\) 283.729 0.785953
\(362\) 116.338 33.2923i 0.321376 0.0919676i
\(363\) 0 0
\(364\) 8.02726 5.00408i 0.0220529 0.0137475i
\(365\) 55.0060i 0.150701i
\(366\) 0 0
\(367\) 476.591i 1.29861i 0.760527 + 0.649306i \(0.224941\pi\)
−0.760527 + 0.649306i \(0.775059\pi\)
\(368\) −228.814 112.205i −0.621777 0.304906i
\(369\) 0 0
\(370\) −43.1310 150.719i −0.116570 0.407349i
\(371\) −73.6725 −0.198578
\(372\) 0 0
\(373\) 201.210i 0.539437i 0.962939 + 0.269718i \(0.0869306\pi\)
−0.962939 + 0.269718i \(0.913069\pi\)
\(374\) −30.3019 105.889i −0.0810211 0.283124i
\(375\) 0 0
\(376\) 241.262 267.088i 0.641655 0.710339i
\(377\) −25.7743 −0.0683670
\(378\) 0 0
\(379\) −193.997 −0.511865 −0.255933 0.966695i \(-0.582383\pi\)
−0.255933 + 0.966695i \(0.582383\pi\)
\(380\) −113.242 181.657i −0.298006 0.478044i
\(381\) 0 0
\(382\) 200.639 57.4164i 0.525233 0.150305i
\(383\) 733.165i 1.91427i −0.289642 0.957135i \(-0.593536\pi\)
0.289642 0.957135i \(-0.406464\pi\)
\(384\) 0 0
\(385\) −30.6144 −0.0795178
\(386\) 3.11455 + 10.8837i 0.00806878 + 0.0281960i
\(387\) 0 0
\(388\) −253.476 + 158.014i −0.653290 + 0.407251i
\(389\) 116.310i 0.298997i −0.988762 0.149498i \(-0.952234\pi\)
0.988762 0.149498i \(-0.0477659\pi\)
\(390\) 0 0
\(391\) 159.766i 0.408608i
\(392\) −41.5560 37.5379i −0.106010 0.0957600i
\(393\) 0 0
\(394\) 645.330 184.673i 1.63789 0.468712i
\(395\) 204.188 0.516931
\(396\) 0 0
\(397\) 610.269i 1.53720i −0.639729 0.768601i \(-0.720953\pi\)
0.639729 0.768601i \(-0.279047\pi\)
\(398\) −175.883 + 50.3322i −0.441918 + 0.126463i
\(399\) 0 0
\(400\) 144.823 295.329i 0.362057 0.738322i
\(401\) 194.061 0.483943 0.241971 0.970283i \(-0.422206\pi\)
0.241971 + 0.970283i \(0.422206\pi\)
\(402\) 0 0
\(403\) −37.1469 −0.0921759
\(404\) 173.835 + 278.856i 0.430285 + 0.690239i
\(405\) 0 0
\(406\) 41.9804 + 146.699i 0.103400 + 0.361327i
\(407\) 204.183i 0.501679i
\(408\) 0 0
\(409\) 491.557 1.20185 0.600926 0.799305i \(-0.294799\pi\)
0.600926 + 0.799305i \(0.294799\pi\)
\(410\) −286.274 + 81.9223i −0.698228 + 0.199810i
\(411\) 0 0
\(412\) −135.274 216.999i −0.328335 0.526696i
\(413\) 102.481i 0.248138i
\(414\) 0 0
\(415\) 55.4337i 0.133575i
\(416\) −5.04187 + 28.1542i −0.0121199 + 0.0676785i
\(417\) 0 0
\(418\) 76.7062 + 268.046i 0.183508 + 0.641259i
\(419\) −408.661 −0.975325 −0.487663 0.873032i \(-0.662150\pi\)
−0.487663 + 0.873032i \(0.662150\pi\)
\(420\) 0 0
\(421\) 6.98694i 0.0165961i −0.999966 0.00829803i \(-0.997359\pi\)
0.999966 0.00829803i \(-0.00264138\pi\)
\(422\) 154.267 + 539.080i 0.365563 + 1.27744i
\(423\) 0 0
\(424\) 149.324 165.307i 0.352178 0.389876i
\(425\) −206.209 −0.485197
\(426\) 0 0
\(427\) 19.0791 0.0446816
\(428\) −600.806 + 374.534i −1.40375 + 0.875080i
\(429\) 0 0
\(430\) 26.7717 7.66120i 0.0622598 0.0178167i
\(431\) 736.266i 1.70827i 0.520048 + 0.854137i \(0.325914\pi\)
−0.520048 + 0.854137i \(0.674086\pi\)
\(432\) 0 0
\(433\) 780.394 1.80230 0.901148 0.433511i \(-0.142725\pi\)
0.901148 + 0.433511i \(0.142725\pi\)
\(434\) 60.5036 + 211.427i 0.139409 + 0.487159i
\(435\) 0 0
\(436\) 350.253 + 561.856i 0.803332 + 1.28866i
\(437\) 404.431i 0.925471i
\(438\) 0 0
\(439\) 125.408i 0.285667i −0.989747 0.142834i \(-0.954379\pi\)
0.989747 0.142834i \(-0.0456214\pi\)
\(440\) 62.0509 68.6930i 0.141025 0.156120i
\(441\) 0 0
\(442\) 17.2391 4.93327i 0.0390025 0.0111612i
\(443\) 166.914 0.376780 0.188390 0.982094i \(-0.439673\pi\)
0.188390 + 0.982094i \(0.439673\pi\)
\(444\) 0 0
\(445\) 88.2374i 0.198286i
\(446\) 677.413 193.854i 1.51886 0.434650i
\(447\) 0 0
\(448\) 168.456 17.1601i 0.376019 0.0383039i
\(449\) 218.160 0.485881 0.242940 0.970041i \(-0.421888\pi\)
0.242940 + 0.970041i \(0.421888\pi\)
\(450\) 0 0
\(451\) 387.823 0.859917
\(452\) 339.466 211.618i 0.751031 0.468182i
\(453\) 0 0
\(454\) −235.084 821.490i −0.517806 1.80945i
\(455\) 4.98414i 0.0109542i
\(456\) 0 0
\(457\) −616.901 −1.34989 −0.674946 0.737867i \(-0.735833\pi\)
−0.674946 + 0.737867i \(0.735833\pi\)
\(458\) 470.013 134.503i 1.02623 0.293674i
\(459\) 0 0
\(460\) −113.951 + 71.0355i −0.247720 + 0.154425i
\(461\) 616.614i 1.33756i 0.743462 + 0.668778i \(0.233182\pi\)
−0.743462 + 0.668778i \(0.766818\pi\)
\(462\) 0 0
\(463\) 596.526i 1.28839i −0.764860 0.644197i \(-0.777192\pi\)
0.764860 0.644197i \(-0.222808\pi\)
\(464\) −414.253 203.141i −0.892787 0.437804i
\(465\) 0 0
\(466\) 36.2777 + 126.771i 0.0778490 + 0.272040i
\(467\) 175.892 0.376642 0.188321 0.982107i \(-0.439695\pi\)
0.188321 + 0.982107i \(0.439695\pi\)
\(468\) 0 0
\(469\) 28.9131i 0.0616484i
\(470\) −52.1758 182.326i −0.111012 0.387928i
\(471\) 0 0
\(472\) 229.949 + 207.714i 0.487179 + 0.440073i
\(473\) −36.2684 −0.0766773
\(474\) 0 0
\(475\) 521.997 1.09894
\(476\) −56.1570 90.0838i −0.117977 0.189252i
\(477\) 0 0
\(478\) −226.841 + 64.9147i −0.474563 + 0.135805i
\(479\) 37.6277i 0.0785548i 0.999228 + 0.0392774i \(0.0125056\pi\)
−0.999228 + 0.0392774i \(0.987494\pi\)
\(480\) 0 0
\(481\) −33.2419 −0.0691100
\(482\) 16.9887 + 59.3662i 0.0352463 + 0.123166i
\(483\) 0 0
\(484\) 308.415 192.261i 0.637220 0.397234i
\(485\) 157.384i 0.324503i
\(486\) 0 0
\(487\) 347.406i 0.713359i 0.934227 + 0.356680i \(0.116091\pi\)
−0.934227 + 0.356680i \(0.883909\pi\)
\(488\) −38.6705 + 42.8099i −0.0792429 + 0.0877252i
\(489\) 0 0
\(490\) −28.3680 + 8.11802i −0.0578939 + 0.0165674i
\(491\) −202.572 −0.412569 −0.206285 0.978492i \(-0.566137\pi\)
−0.206285 + 0.978492i \(0.566137\pi\)
\(492\) 0 0
\(493\) 289.246i 0.586705i
\(494\) −43.6390 + 12.4881i −0.0883381 + 0.0252795i
\(495\) 0 0
\(496\) −597.036 292.774i −1.20370 0.590269i
\(497\) 191.783 0.385882
\(498\) 0 0
\(499\) −46.0411 −0.0922666 −0.0461333 0.998935i \(-0.514690\pi\)
−0.0461333 + 0.998935i \(0.514690\pi\)
\(500\) −203.181 325.932i −0.406363 0.651864i
\(501\) 0 0
\(502\) −161.126 563.046i −0.320968 1.12161i
\(503\) 515.894i 1.02563i −0.858498 0.512817i \(-0.828602\pi\)
0.858498 0.512817i \(-0.171398\pi\)
\(504\) 0 0
\(505\) 173.143 0.342857
\(506\) 168.142 48.1169i 0.332297 0.0950927i
\(507\) 0 0
\(508\) 34.0817 + 54.6719i 0.0670900 + 0.107622i
\(509\) 914.701i 1.79706i 0.438916 + 0.898528i \(0.355362\pi\)
−0.438916 + 0.898528i \(0.644638\pi\)
\(510\) 0 0
\(511\) 69.0503i 0.135128i
\(512\) −302.933 + 412.766i −0.591665 + 0.806184i
\(513\) 0 0
\(514\) 35.7226 + 124.831i 0.0694992 + 0.242862i
\(515\) −134.735 −0.261621
\(516\) 0 0
\(517\) 247.002i 0.477760i
\(518\) 54.1433 + 189.201i 0.104524 + 0.365254i
\(519\) 0 0
\(520\) 11.1835 + 10.1021i 0.0215067 + 0.0194272i
\(521\) 822.793 1.57926 0.789629 0.613585i \(-0.210273\pi\)
0.789629 + 0.613585i \(0.210273\pi\)
\(522\) 0 0
\(523\) −476.617 −0.911314 −0.455657 0.890155i \(-0.650596\pi\)
−0.455657 + 0.890155i \(0.650596\pi\)
\(524\) −701.644 + 437.395i −1.33901 + 0.834723i
\(525\) 0 0
\(526\) 314.088 89.8817i 0.597125 0.170878i
\(527\) 416.871i 0.791026i
\(528\) 0 0
\(529\) 275.305 0.520426
\(530\) −32.2930 112.846i −0.0609301 0.212918i
\(531\) 0 0
\(532\) 142.156 + 228.038i 0.267210 + 0.428643i
\(533\) 63.1391i 0.118460i
\(534\) 0 0
\(535\) 373.042i 0.697275i
\(536\) −64.8757 58.6027i −0.121037 0.109333i
\(537\) 0 0
\(538\) −648.637 + 185.619i −1.20564 + 0.345017i
\(539\) 38.4310 0.0713005
\(540\) 0 0
\(541\) 804.561i 1.48717i −0.668639 0.743587i \(-0.733123\pi\)
0.668639 0.743587i \(-0.266877\pi\)
\(542\) 97.4999 27.9013i 0.179889 0.0514785i
\(543\) 0 0
\(544\) 315.954 + 56.5811i 0.580797 + 0.104009i
\(545\) 348.857 0.640105
\(546\) 0 0
\(547\) −506.906 −0.926702 −0.463351 0.886175i \(-0.653353\pi\)
−0.463351 + 0.886175i \(0.653353\pi\)
\(548\) 591.536 368.755i 1.07945 0.672911i
\(549\) 0 0
\(550\) 62.1042 + 217.020i 0.112917 + 0.394582i
\(551\) 732.197i 1.32885i
\(552\) 0 0
\(553\) −256.322 −0.463511
\(554\) 976.070 279.320i 1.76186 0.504187i
\(555\) 0 0
\(556\) −633.663 + 395.016i −1.13968 + 0.710461i
\(557\) 95.4411i 0.171349i −0.996323 0.0856743i \(-0.972696\pi\)
0.996323 0.0856743i \(-0.0273044\pi\)
\(558\) 0 0
\(559\) 5.90464i 0.0105629i
\(560\) 39.2826 80.1067i 0.0701475 0.143048i
\(561\) 0 0
\(562\) 284.910 + 995.605i 0.506958 + 1.77154i
\(563\) −774.904 −1.37638 −0.688192 0.725529i \(-0.741595\pi\)
−0.688192 + 0.725529i \(0.741595\pi\)
\(564\) 0 0
\(565\) 210.775i 0.373053i
\(566\) 117.222 + 409.627i 0.207106 + 0.723723i
\(567\) 0 0
\(568\) −388.717 + 430.326i −0.684361 + 0.757616i
\(569\) 878.255 1.54351 0.771753 0.635923i \(-0.219380\pi\)
0.771753 + 0.635923i \(0.219380\pi\)
\(570\) 0 0
\(571\) 805.611 1.41088 0.705439 0.708771i \(-0.250750\pi\)
0.705439 + 0.708771i \(0.250750\pi\)
\(572\) −10.3838 16.6572i −0.0181536 0.0291209i
\(573\) 0 0
\(574\) 359.366 102.839i 0.626073 0.179162i
\(575\) 327.442i 0.569465i
\(576\) 0 0
\(577\) −176.390 −0.305701 −0.152851 0.988249i \(-0.548845\pi\)
−0.152851 + 0.988249i \(0.548845\pi\)
\(578\) 103.659 + 362.233i 0.179342 + 0.626701i
\(579\) 0 0
\(580\) −206.301 + 128.605i −0.355692 + 0.221733i
\(581\) 69.5872i 0.119771i
\(582\) 0 0
\(583\) 152.876i 0.262223i
\(584\) 154.936 + 139.955i 0.265302 + 0.239649i
\(585\) 0 0
\(586\) −353.010 + 101.020i −0.602405 + 0.172389i
\(587\) −453.137 −0.771954 −0.385977 0.922508i \(-0.626136\pi\)
−0.385977 + 0.922508i \(0.626136\pi\)
\(588\) 0 0
\(589\) 1055.27i 1.79163i
\(590\) 156.973 44.9207i 0.266056 0.0761368i
\(591\) 0 0
\(592\) −534.274 261.996i −0.902490 0.442562i
\(593\) 182.436 0.307649 0.153824 0.988098i \(-0.450841\pi\)
0.153824 + 0.988098i \(0.450841\pi\)
\(594\) 0 0
\(595\) −55.9332 −0.0940054
\(596\) 292.805 + 469.701i 0.491283 + 0.788088i
\(597\) 0 0
\(598\) 7.83363 + 27.3742i 0.0130997 + 0.0457763i
\(599\) 362.698i 0.605505i 0.953069 + 0.302753i \(0.0979056\pi\)
−0.953069 + 0.302753i \(0.902094\pi\)
\(600\) 0 0
\(601\) 221.633 0.368774 0.184387 0.982854i \(-0.440970\pi\)
0.184387 + 0.982854i \(0.440970\pi\)
\(602\) −33.6072 + 9.61729i −0.0558258 + 0.0159756i
\(603\) 0 0
\(604\) 167.324 + 268.412i 0.277027 + 0.444391i
\(605\) 191.495i 0.316521i
\(606\) 0 0
\(607\) 895.470i 1.47524i −0.675217 0.737619i \(-0.735950\pi\)
0.675217 0.737619i \(-0.264050\pi\)
\(608\) −799.805 143.229i −1.31547 0.235575i
\(609\) 0 0
\(610\) 8.36295 + 29.2240i 0.0137098 + 0.0479081i
\(611\) −40.2130 −0.0658150
\(612\) 0 0
\(613\) 570.870i 0.931273i 0.884976 + 0.465637i \(0.154175\pi\)
−0.884976 + 0.465637i \(0.845825\pi\)
\(614\) −159.234 556.436i −0.259339 0.906248i
\(615\) 0 0
\(616\) −77.8940 + 86.2320i −0.126451 + 0.139987i
\(617\) 767.498 1.24392 0.621960 0.783049i \(-0.286337\pi\)
0.621960 + 0.783049i \(0.286337\pi\)
\(618\) 0 0
\(619\) 152.660 0.246624 0.123312 0.992368i \(-0.460648\pi\)
0.123312 + 0.992368i \(0.460648\pi\)
\(620\) −297.329 + 185.350i −0.479562 + 0.298952i
\(621\) 0 0
\(622\) −695.831 + 199.125i −1.11870 + 0.320136i
\(623\) 110.767i 0.177795i
\(624\) 0 0
\(625\) 311.576 0.498522
\(626\) 281.370 + 983.234i 0.449472 + 1.57066i
\(627\) 0 0
\(628\) −22.0792 35.4182i −0.0351580 0.0563985i
\(629\) 373.048i 0.593082i
\(630\) 0 0
\(631\) 734.766i 1.16445i −0.813029 0.582224i \(-0.802183\pi\)
0.813029 0.582224i \(-0.197817\pi\)
\(632\) 519.527 575.139i 0.822037 0.910029i
\(633\) 0 0
\(634\) −732.097 + 209.502i −1.15473 + 0.330446i
\(635\) 33.9459 0.0534581
\(636\) 0 0
\(637\) 6.25672i 0.00982216i
\(638\) 304.411 87.1126i 0.477133 0.136540i
\(639\) 0 0
\(640\) 100.124 + 250.508i 0.156444 + 0.391418i
\(641\) 333.294 0.519960 0.259980 0.965614i \(-0.416284\pi\)
0.259980 + 0.965614i \(0.416284\pi\)
\(642\) 0 0
\(643\) 537.952 0.836628 0.418314 0.908302i \(-0.362621\pi\)
0.418314 + 0.908302i \(0.362621\pi\)
\(644\) 143.046 89.1726i 0.222121 0.138467i
\(645\) 0 0
\(646\) 140.144 + 489.728i 0.216942 + 0.758092i
\(647\) 906.776i 1.40151i 0.713403 + 0.700754i \(0.247153\pi\)
−0.713403 + 0.700754i \(0.752847\pi\)
\(648\) 0 0
\(649\) −212.656 −0.327667
\(650\) −35.3318 + 10.1108i −0.0543566 + 0.0155551i
\(651\) 0 0
\(652\) 157.948 98.4624i 0.242251 0.151016i
\(653\) 586.718i 0.898495i −0.893407 0.449248i \(-0.851692\pi\)
0.893407 0.449248i \(-0.148308\pi\)
\(654\) 0 0
\(655\) 435.652i 0.665118i
\(656\) −497.632 + 1014.79i −0.758585 + 1.54694i
\(657\) 0 0
\(658\) 65.4976 + 228.878i 0.0995404 + 0.347839i
\(659\) 162.399 0.246433 0.123216 0.992380i \(-0.460679\pi\)
0.123216 + 0.992380i \(0.460679\pi\)
\(660\) 0 0
\(661\) 477.664i 0.722638i 0.932442 + 0.361319i \(0.117674\pi\)
−0.932442 + 0.361319i \(0.882326\pi\)
\(662\) 194.486 + 679.623i 0.293786 + 1.02662i
\(663\) 0 0
\(664\) −156.141 141.043i −0.235152 0.212415i
\(665\) 141.589 0.212916
\(666\) 0 0
\(667\) −459.298 −0.688603
\(668\) −271.095 434.875i −0.405831 0.651011i
\(669\) 0 0
\(670\) −44.2871 + 12.6735i −0.0661001 + 0.0189157i
\(671\) 39.5905i 0.0590022i
\(672\) 0 0
\(673\) −1088.73 −1.61773 −0.808864 0.587995i \(-0.799917\pi\)
−0.808864 + 0.587995i \(0.799917\pi\)
\(674\) 302.220 + 1056.09i 0.448398 + 1.56691i
\(675\) 0 0
\(676\) −570.951 + 355.923i −0.844602 + 0.526513i
\(677\) 1170.23i 1.72855i 0.503024 + 0.864273i \(0.332221\pi\)
−0.503024 + 0.864273i \(0.667779\pi\)
\(678\) 0 0
\(679\) 197.568i 0.290969i
\(680\) 113.369 125.504i 0.166719 0.184565i
\(681\) 0 0
\(682\) 438.728 125.550i 0.643296 0.184090i
\(683\) −633.855 −0.928045 −0.464022 0.885823i \(-0.653594\pi\)
−0.464022 + 0.885823i \(0.653594\pi\)
\(684\) 0 0
\(685\) 367.286i 0.536184i
\(686\) 35.6111 10.1907i 0.0519112 0.0148553i
\(687\) 0 0
\(688\) 46.5375 94.9011i 0.0676417 0.137938i
\(689\) −24.8888 −0.0361231
\(690\) 0 0
\(691\) −510.637 −0.738983 −0.369492 0.929234i \(-0.620468\pi\)
−0.369492 + 0.929234i \(0.620468\pi\)
\(692\) 40.1981 + 64.4834i 0.0580897 + 0.0931842i
\(693\) 0 0
\(694\) 271.481 + 948.679i 0.391183 + 1.36697i
\(695\) 393.443i 0.566104i
\(696\) 0 0
\(697\) 708.562 1.01659
\(698\) 899.187 257.318i 1.28823 0.368651i
\(699\) 0 0
\(700\) 115.095 + 184.628i 0.164421 + 0.263755i
\(701\) 1057.09i 1.50797i 0.656892 + 0.753985i \(0.271871\pi\)
−0.656892 + 0.753985i \(0.728129\pi\)
\(702\) 0 0
\(703\) 944.335i 1.34329i
\(704\) −35.6086 349.560i −0.0505804 0.496534i
\(705\) 0 0
\(706\) −124.562 435.275i −0.176433 0.616537i
\(707\) −217.350 −0.307426
\(708\) 0 0
\(709\) 352.280i 0.496869i 0.968649 + 0.248435i \(0.0799161\pi\)
−0.968649 + 0.248435i \(0.920084\pi\)
\(710\) 84.0646 + 293.760i 0.118401 + 0.413747i
\(711\) 0 0
\(712\) −248.540 224.508i −0.349073 0.315320i
\(713\) −661.957 −0.928410
\(714\) 0 0
\(715\) −10.3425 −0.0144650
\(716\) −483.614 + 301.478i −0.675439 + 0.421059i
\(717\) 0 0
\(718\) −227.409 + 65.0773i −0.316726 + 0.0906368i
\(719\) 541.932i 0.753730i −0.926268 0.376865i \(-0.877002\pi\)
0.926268 0.376865i \(-0.122998\pi\)
\(720\) 0 0
\(721\) 169.136 0.234585
\(722\) −156.121 545.559i −0.216235 0.755622i
\(723\) 0 0
\(724\) −128.030 205.378i −0.176837 0.283672i
\(725\) 592.814i 0.817674i
\(726\) 0 0
\(727\) 324.113i 0.445823i 0.974839 + 0.222911i \(0.0715561\pi\)
−0.974839 + 0.222911i \(0.928444\pi\)
\(728\) −14.0389 12.6815i −0.0192842 0.0174196i
\(729\) 0 0
\(730\) 105.766 30.2669i 0.144886 0.0414616i
\(731\) −66.2632 −0.0906474
\(732\) 0 0
\(733\) 908.429i 1.23933i −0.784866 0.619665i \(-0.787268\pi\)
0.784866 0.619665i \(-0.212732\pi\)
\(734\) 916.397 262.243i 1.24850 0.357280i
\(735\) 0 0
\(736\) −89.8461 + 501.708i −0.122074 + 0.681669i
\(737\) 59.9969 0.0814069
\(738\) 0 0
\(739\) 953.149 1.28978 0.644891 0.764274i \(-0.276903\pi\)
0.644891 + 0.764274i \(0.276903\pi\)
\(740\) −266.073 + 165.866i −0.359558 + 0.224143i
\(741\) 0 0
\(742\) 40.5382 + 141.659i 0.0546336 + 0.190915i
\(743\) 947.872i 1.27574i −0.770146 0.637868i \(-0.779817\pi\)
0.770146 0.637868i \(-0.220183\pi\)
\(744\) 0 0
\(745\) 291.638 0.391461
\(746\) 386.890 110.715i 0.518619 0.148412i
\(747\) 0 0
\(748\) −186.931 + 116.530i −0.249907 + 0.155789i
\(749\) 468.289i 0.625219i
\(750\) 0 0
\(751\) 635.979i 0.846843i −0.905933 0.423421i \(-0.860829\pi\)
0.905933 0.423421i \(-0.139171\pi\)
\(752\) −646.315 316.939i −0.859461 0.421462i
\(753\) 0 0
\(754\) 14.1823 + 49.5594i 0.0188094 + 0.0657286i
\(755\) 166.658 0.220739
\(756\) 0 0
\(757\) 162.283i 0.214376i 0.994239 + 0.107188i \(0.0341847\pi\)
−0.994239 + 0.107188i \(0.965815\pi\)
\(758\) 106.747 + 373.021i 0.140827 + 0.492112i
\(759\) 0 0
\(760\) −286.981 + 317.701i −0.377607 + 0.418027i
\(761\) 925.684 1.21640 0.608202 0.793782i \(-0.291891\pi\)
0.608202 + 0.793782i \(0.291891\pi\)
\(762\) 0 0
\(763\) −437.929 −0.573957
\(764\) −220.802 354.199i −0.289008 0.463611i
\(765\) 0 0
\(766\) −1409.74 + 403.423i −1.84040 + 0.526662i
\(767\) 34.6213i 0.0451386i
\(768\) 0 0
\(769\) 1006.84 1.30929 0.654644 0.755938i \(-0.272819\pi\)
0.654644 + 0.755938i \(0.272819\pi\)
\(770\) 16.8455 + 58.8658i 0.0218773 + 0.0764491i
\(771\) 0 0
\(772\) 19.2135 11.9774i 0.0248880 0.0155148i
\(773\) 287.674i 0.372153i −0.982535 0.186077i \(-0.940423\pi\)
0.982535 0.186077i \(-0.0595773\pi\)
\(774\) 0 0
\(775\) 854.384i 1.10243i
\(776\) 443.306 + 400.442i 0.571271 + 0.516034i
\(777\) 0 0
\(778\) −223.642 + 63.9992i −0.287458 + 0.0822612i
\(779\) −1793.65 −2.30251
\(780\) 0 0
\(781\) 397.965i 0.509558i
\(782\) 307.200 87.9108i 0.392839 0.112418i
\(783\) 0 0
\(784\) −49.3124 + 100.560i −0.0628985 + 0.128265i
\(785\) −21.9913 −0.0280143
\(786\) 0 0
\(787\) 879.367 1.11737 0.558683 0.829381i \(-0.311307\pi\)
0.558683 + 0.829381i \(0.311307\pi\)
\(788\) −710.183 1139.24i −0.901248 1.44573i
\(789\) 0 0
\(790\) −112.354 392.616i −0.142220 0.496982i
\(791\) 264.591i 0.334502i
\(792\) 0 0
\(793\) 6.44550 0.00812799
\(794\) −1173.44 + 335.799i −1.47788 + 0.422921i
\(795\) 0 0
\(796\) 193.559 + 310.497i 0.243165 + 0.390071i
\(797\) 209.433i 0.262777i −0.991331 0.131388i \(-0.958056\pi\)
0.991331 0.131388i \(-0.0419435\pi\)
\(798\) 0 0
\(799\) 451.279i 0.564805i
\(800\) −647.552 115.964i −0.809440 0.144955i
\(801\) 0 0
\(802\) −106.782 373.144i −0.133144 0.465267i
\(803\) −143.285 −0.178437
\(804\) 0 0
\(805\) 88.8173i 0.110332i
\(806\) 20.4400 + 71.4266i 0.0253598 + 0.0886187i
\(807\) 0 0
\(808\) 440.538 487.694i 0.545220 0.603581i
\(809\) 914.728 1.13069 0.565345 0.824855i \(-0.308743\pi\)
0.565345 + 0.824855i \(0.308743\pi\)
\(810\) 0 0
\(811\) 975.019 1.20224 0.601122 0.799158i \(-0.294721\pi\)
0.601122 + 0.799158i \(0.294721\pi\)
\(812\) 258.975 161.441i 0.318935 0.198819i
\(813\) 0 0
\(814\) 392.607 112.352i 0.482319 0.138024i
\(815\) 98.0701i 0.120331i
\(816\) 0 0
\(817\) 167.739 0.205311
\(818\) −270.479 945.175i −0.330658 1.15547i
\(819\) 0 0
\(820\) 315.043 + 505.374i 0.384199 + 0.616310i
\(821\) 925.110i 1.12681i −0.826181 0.563404i \(-0.809491\pi\)
0.826181 0.563404i \(-0.190509\pi\)
\(822\) 0 0
\(823\) 124.493i 0.151267i 0.997136 + 0.0756335i \(0.0240979\pi\)
−0.997136 + 0.0756335i \(0.975902\pi\)
\(824\) −342.814 + 379.510i −0.416037 + 0.460570i
\(825\) 0 0
\(826\) −197.052 + 56.3900i −0.238562 + 0.0682688i
\(827\) 261.133 0.315760 0.157880 0.987458i \(-0.449534\pi\)
0.157880 + 0.987458i \(0.449534\pi\)
\(828\) 0 0
\(829\) 1464.65i 1.76677i −0.468652 0.883383i \(-0.655260\pi\)
0.468652 0.883383i \(-0.344740\pi\)
\(830\) −106.589 + 30.5023i −0.128420 + 0.0367497i
\(831\) 0 0
\(832\) 56.9098 5.79722i 0.0684011 0.00696781i
\(833\) 70.2144 0.0842909
\(834\) 0 0
\(835\) −270.015 −0.323371
\(836\) 473.197 294.984i 0.566025 0.352852i
\(837\) 0 0
\(838\) 224.865 + 785.781i 0.268336 + 0.937686i
\(839\) 57.9285i 0.0690447i −0.999404 0.0345224i \(-0.989009\pi\)
0.999404 0.0345224i \(-0.0109910\pi\)
\(840\) 0 0
\(841\) 9.46906 0.0112593
\(842\) −13.4346 + 3.84455i −0.0159556 + 0.00456598i
\(843\) 0 0
\(844\) 951.668 593.256i 1.12757 0.702910i
\(845\) 354.505i 0.419532i
\(846\) 0 0
\(847\) 240.389i 0.283812i
\(848\) −400.021 196.162i −0.471723 0.231323i
\(849\) 0 0
\(850\) 113.466 + 396.502i 0.133489 + 0.466473i
\(851\) −592.370 −0.696087
\(852\) 0 0
\(853\) 1514.76i 1.77581i 0.460029 + 0.887904i \(0.347839\pi\)
−0.460029 + 0.887904i \(0.652161\pi\)
\(854\) −10.4982 36.6855i −0.0122930 0.0429573i
\(855\) 0 0
\(856\) 1050.75 + 949.154i 1.22752 + 1.10882i
\(857\) −467.005 −0.544930 −0.272465 0.962166i \(-0.587839\pi\)
−0.272465 + 0.962166i \(0.587839\pi\)
\(858\) 0 0
\(859\) 97.2971 0.113268 0.0566339 0.998395i \(-0.481963\pi\)
0.0566339 + 0.998395i \(0.481963\pi\)
\(860\) −29.4622 47.2615i −0.0342583 0.0549553i
\(861\) 0 0
\(862\) 1415.70 405.129i 1.64235 0.469987i
\(863\) 558.738i 0.647436i 0.946154 + 0.323718i \(0.104933\pi\)
−0.946154 + 0.323718i \(0.895067\pi\)
\(864\) 0 0
\(865\) 40.0379 0.0462866
\(866\) −429.411 1500.56i −0.495855 1.73274i
\(867\) 0 0
\(868\) 373.244 232.675i 0.430004 0.268059i
\(869\) 531.887i 0.612068i
\(870\) 0 0
\(871\) 9.76774i 0.0112144i
\(872\) 887.620 982.632i 1.01791 1.12687i
\(873\) 0 0
\(874\) −777.647 + 222.537i −0.889756 + 0.254619i
\(875\) 254.042 0.290334
\(876\) 0 0
\(877\) 49.7086i 0.0566803i 0.999598 + 0.0283401i \(0.00902215\pi\)
−0.999598 + 0.0283401i \(0.990978\pi\)
\(878\) −241.137 + 69.0055i −0.274643 + 0.0785940i
\(879\) 0 0
\(880\) −166.228 81.5144i −0.188895 0.0926300i
\(881\) 713.475 0.809846 0.404923 0.914351i \(-0.367298\pi\)
0.404923 + 0.914351i \(0.367298\pi\)
\(882\) 0 0
\(883\) 405.709 0.459466 0.229733 0.973254i \(-0.426215\pi\)
0.229733 + 0.973254i \(0.426215\pi\)
\(884\) −18.9716 30.4331i −0.0214610 0.0344266i
\(885\) 0 0
\(886\) −91.8440 320.945i −0.103661 0.362240i
\(887\) 1593.01i 1.79595i −0.440045 0.897975i \(-0.645038\pi\)
0.440045 0.897975i \(-0.354962\pi\)
\(888\) 0 0
\(889\) −42.6131 −0.0479338
\(890\) −169.664 + 48.5525i −0.190634 + 0.0545533i
\(891\) 0 0
\(892\) −745.491 1195.87i −0.835752 1.34067i
\(893\) 1142.37i 1.27925i
\(894\) 0 0
\(895\) 300.277i 0.335505i
\(896\) −125.689 314.468i −0.140277 0.350969i
\(897\) 0 0
\(898\) −120.042 419.483i −0.133678 0.467130i
\(899\) −1198.43 −1.33307
\(900\) 0 0
\(901\) 279.308i 0.309998i
\(902\) −213.399 745.712i −0.236584 0.826732i
\(903\) 0 0
\(904\) −593.694 536.289i −0.656741 0.593240i
\(905\) −127.520 −0.140906
\(906\) 0 0
\(907\) −1138.55 −1.25530 −0.627648 0.778497i \(-0.715982\pi\)
−0.627648 + 0.778497i \(0.715982\pi\)
\(908\) −1450.22 + 904.047i −1.59716 + 0.995646i
\(909\) 0 0
\(910\) −9.58360 + 2.74252i −0.0105314 + 0.00301375i
\(911\) 1635.40i 1.79517i −0.440837 0.897587i \(-0.645318\pi\)
0.440837 0.897587i \(-0.354682\pi\)
\(912\) 0 0
\(913\) 144.399 0.158159
\(914\) 339.449 + 1186.19i 0.371388 + 1.29780i
\(915\) 0 0
\(916\) −517.248 829.739i −0.564681 0.905829i
\(917\) 546.885i 0.596384i
\(918\) 0 0
\(919\) 1337.53i 1.45542i −0.685887 0.727708i \(-0.740586\pi\)
0.685887 0.727708i \(-0.259414\pi\)
\(920\) 199.290 + 180.020i 0.216619 + 0.195674i
\(921\) 0 0
\(922\) 1185.64 339.291i 1.28594 0.367994i
\(923\) 64.7903 0.0701953
\(924\) 0 0
\(925\) 764.569i 0.826561i
\(926\) −1147.01 + 328.238i −1.23867 + 0.354468i
\(927\) 0 0
\(928\) −162.661 + 908.311i −0.175281 + 0.978784i
\(929\) −1516.16 −1.63203 −0.816016 0.578029i \(-0.803822\pi\)
−0.816016 + 0.578029i \(0.803822\pi\)
\(930\) 0 0
\(931\) −177.741 −0.190914
\(932\) 223.795 139.511i 0.240123 0.149689i
\(933\) 0 0
\(934\) −96.7843 338.208i −0.103623 0.362107i
\(935\) 116.066i 0.124134i
\(936\) 0 0
\(937\) 1012.59 1.08067 0.540335 0.841450i \(-0.318297\pi\)
0.540335 + 0.841450i \(0.318297\pi\)
\(938\) 55.5946 15.9094i 0.0592693 0.0169610i
\(939\) 0 0
\(940\) −321.870 + 200.649i −0.342415 + 0.213457i
\(941\) 1083.94i 1.15191i 0.817483 + 0.575953i \(0.195369\pi\)
−0.817483 + 0.575953i \(0.804631\pi\)
\(942\) 0 0
\(943\) 1125.14i 1.19315i
\(944\) 272.868 556.444i 0.289055 0.589453i
\(945\) 0 0
\(946\) 19.9566 + 69.7374i 0.0210958 + 0.0737182i
\(947\) 756.965 0.799329 0.399665 0.916661i \(-0.369127\pi\)
0.399665 + 0.916661i \(0.369127\pi\)
\(948\) 0 0
\(949\) 23.3273i 0.0245810i
\(950\) −287.228 1003.70i −0.302345 1.05653i
\(951\) 0 0
\(952\) −142.314 + 157.548i −0.149490 + 0.165492i
\(953\) −1345.87 −1.41225 −0.706123 0.708089i \(-0.749557\pi\)
−0.706123 + 0.708089i \(0.749557\pi\)
\(954\) 0 0
\(955\) −219.923 −0.230286
\(956\) 249.638 + 400.455i 0.261128 + 0.418886i
\(957\) 0 0
\(958\) 72.3513 20.7046i 0.0755232 0.0216123i
\(959\) 461.063i 0.480775i
\(960\) 0 0
\(961\) −766.220 −0.797315
\(962\) 18.2913 + 63.9181i 0.0190138 + 0.0664429i
\(963\) 0 0
\(964\) 104.802 65.3323i 0.108716 0.0677721i
\(965\) 11.9297i 0.0123624i
\(966\) 0 0
\(967\) 280.335i 0.289902i 0.989439 + 0.144951i \(0.0463024\pi\)
−0.989439 + 0.144951i \(0.953698\pi\)
\(968\) −539.388 487.234i −0.557219 0.503340i
\(969\) 0 0
\(970\) 302.621 86.6003i 0.311980 0.0892787i
\(971\) 145.041 0.149372 0.0746862 0.997207i \(-0.476204\pi\)
0.0746862 + 0.997207i \(0.476204\pi\)
\(972\) 0 0
\(973\) 493.898i 0.507603i
\(974\) 667.998 191.160i 0.685830 0.196262i
\(975\) 0 0
\(976\) 103.594 + 50.8003i 0.106141 + 0.0520495i
\(977\) 1083.72 1.10923 0.554617 0.832105i \(-0.312865\pi\)
0.554617 + 0.832105i \(0.312865\pi\)
\(978\) 0 0
\(979\) 229.849 0.234779
\(980\) 31.2189 + 50.0796i 0.0318560 + 0.0511017i
\(981\) 0 0
\(982\) 111.465 + 389.508i 0.113508 + 0.396648i
\(983\) 946.192i 0.962556i 0.876568 + 0.481278i \(0.159827\pi\)
−0.876568 + 0.481278i \(0.840173\pi\)
\(984\) 0 0
\(985\) −707.354 −0.718126
\(986\) 556.167 159.157i 0.564064 0.161417i
\(987\) 0 0
\(988\) 48.0246 + 77.0383i 0.0486079 + 0.0779740i
\(989\) 105.221i 0.106391i
\(990\) 0 0
\(991\) 736.299i 0.742986i −0.928436 0.371493i \(-0.878846\pi\)
0.928436 0.371493i \(-0.121154\pi\)
\(992\) −234.432 + 1309.09i −0.236323 + 1.31965i
\(993\) 0 0
\(994\) −105.528 368.764i −0.106165 0.370990i
\(995\) 192.788 0.193757
\(996\) 0 0
\(997\) 1821.57i 1.82705i 0.406783 + 0.913525i \(0.366651\pi\)
−0.406783 + 0.913525i \(0.633349\pi\)
\(998\) 25.3340 + 88.5285i 0.0253848 + 0.0887059i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.g.c.379.9 24
3.2 odd 2 inner 504.3.g.c.379.16 yes 24
4.3 odd 2 2016.3.g.c.1135.14 24
8.3 odd 2 inner 504.3.g.c.379.10 yes 24
8.5 even 2 2016.3.g.c.1135.13 24
12.11 even 2 2016.3.g.c.1135.11 24
24.5 odd 2 2016.3.g.c.1135.12 24
24.11 even 2 inner 504.3.g.c.379.15 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.g.c.379.9 24 1.1 even 1 trivial
504.3.g.c.379.10 yes 24 8.3 odd 2 inner
504.3.g.c.379.15 yes 24 24.11 even 2 inner
504.3.g.c.379.16 yes 24 3.2 odd 2 inner
2016.3.g.c.1135.11 24 12.11 even 2
2016.3.g.c.1135.12 24 24.5 odd 2
2016.3.g.c.1135.13 24 8.5 even 2
2016.3.g.c.1135.14 24 4.3 odd 2