Newspace parameters
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.7330053238\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
379.1 | −1.99926 | − | 0.0543236i | 0 | 3.99410 | + | 0.217214i | 9.01528i | 0 | − | 2.64575i | −7.97345 | − | 0.651241i | 0 | 0.489742 | − | 18.0239i | |||||||||
379.2 | −1.99926 | + | 0.0543236i | 0 | 3.99410 | − | 0.217214i | − | 9.01528i | 0 | 2.64575i | −7.97345 | + | 0.651241i | 0 | 0.489742 | + | 18.0239i | |||||||||
379.3 | −1.90930 | − | 0.595458i | 0 | 3.29086 | + | 2.27382i | 2.67381i | 0 | 2.64575i | −4.92928 | − | 6.30097i | 0 | 1.59214 | − | 5.10512i | ||||||||||
379.4 | −1.90930 | + | 0.595458i | 0 | 3.29086 | − | 2.27382i | − | 2.67381i | 0 | − | 2.64575i | −4.92928 | + | 6.30097i | 0 | 1.59214 | + | 5.10512i | ||||||||
379.5 | −1.60008 | − | 1.19989i | 0 | 1.12051 | + | 3.83985i | − | 1.24577i | 0 | − | 2.64575i | 2.81450 | − | 7.48856i | 0 | −1.49479 | + | 1.99333i | ||||||||
379.6 | −1.60008 | + | 1.19989i | 0 | 1.12051 | − | 3.83985i | 1.24577i | 0 | 2.64575i | 2.81450 | + | 7.48856i | 0 | −1.49479 | − | 1.99333i | ||||||||||
379.7 | −1.02753 | − | 1.71586i | 0 | −1.88836 | + | 3.52620i | 6.98819i | 0 | 2.64575i | 7.99082 | − | 0.383129i | 0 | 11.9908 | − | 7.18059i | ||||||||||
379.8 | −1.02753 | + | 1.71586i | 0 | −1.88836 | − | 3.52620i | − | 6.98819i | 0 | − | 2.64575i | 7.99082 | + | 0.383129i | 0 | 11.9908 | + | 7.18059i | ||||||||
379.9 | −0.550248 | − | 1.92282i | 0 | −3.39445 | + | 2.11605i | 2.10762i | 0 | − | 2.64575i | 5.93658 | + | 5.36256i | 0 | 4.05258 | − | 1.15972i | |||||||||
379.10 | −0.550248 | + | 1.92282i | 0 | −3.39445 | − | 2.11605i | − | 2.10762i | 0 | 2.64575i | 5.93658 | − | 5.36256i | 0 | 4.05258 | + | 1.15972i | |||||||||
379.11 | −0.434362 | − | 1.95226i | 0 | −3.62266 | + | 1.69598i | − | 6.98187i | 0 | 2.64575i | 4.88454 | + | 6.33572i | 0 | −13.6304 | + | 3.03266i | |||||||||
379.12 | −0.434362 | + | 1.95226i | 0 | −3.62266 | − | 1.69598i | 6.98187i | 0 | − | 2.64575i | 4.88454 | − | 6.33572i | 0 | −13.6304 | − | 3.03266i | |||||||||
379.13 | 0.434362 | − | 1.95226i | 0 | −3.62266 | − | 1.69598i | − | 6.98187i | 0 | − | 2.64575i | −4.88454 | + | 6.33572i | 0 | −13.6304 | − | 3.03266i | ||||||||
379.14 | 0.434362 | + | 1.95226i | 0 | −3.62266 | + | 1.69598i | 6.98187i | 0 | 2.64575i | −4.88454 | − | 6.33572i | 0 | −13.6304 | + | 3.03266i | ||||||||||
379.15 | 0.550248 | − | 1.92282i | 0 | −3.39445 | − | 2.11605i | 2.10762i | 0 | 2.64575i | −5.93658 | + | 5.36256i | 0 | 4.05258 | + | 1.15972i | ||||||||||
379.16 | 0.550248 | + | 1.92282i | 0 | −3.39445 | + | 2.11605i | − | 2.10762i | 0 | − | 2.64575i | −5.93658 | − | 5.36256i | 0 | 4.05258 | − | 1.15972i | ||||||||
379.17 | 1.02753 | − | 1.71586i | 0 | −1.88836 | − | 3.52620i | 6.98819i | 0 | − | 2.64575i | −7.99082 | − | 0.383129i | 0 | 11.9908 | + | 7.18059i | |||||||||
379.18 | 1.02753 | + | 1.71586i | 0 | −1.88836 | + | 3.52620i | − | 6.98819i | 0 | 2.64575i | −7.99082 | + | 0.383129i | 0 | 11.9908 | − | 7.18059i | |||||||||
379.19 | 1.60008 | − | 1.19989i | 0 | 1.12051 | − | 3.83985i | − | 1.24577i | 0 | 2.64575i | −2.81450 | − | 7.48856i | 0 | −1.49479 | − | 1.99333i | |||||||||
379.20 | 1.60008 | + | 1.19989i | 0 | 1.12051 | + | 3.83985i | 1.24577i | 0 | − | 2.64575i | −2.81450 | + | 7.48856i | 0 | −1.49479 | + | 1.99333i | |||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.3.g.c | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 504.3.g.c | ✓ | 24 |
4.b | odd | 2 | 1 | 2016.3.g.c | 24 | ||
8.b | even | 2 | 1 | 2016.3.g.c | 24 | ||
8.d | odd | 2 | 1 | inner | 504.3.g.c | ✓ | 24 |
12.b | even | 2 | 1 | 2016.3.g.c | 24 | ||
24.f | even | 2 | 1 | inner | 504.3.g.c | ✓ | 24 |
24.h | odd | 2 | 1 | 2016.3.g.c | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.3.g.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
504.3.g.c | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
504.3.g.c | ✓ | 24 | 8.d | odd | 2 | 1 | inner |
504.3.g.c | ✓ | 24 | 24.f | even | 2 | 1 | inner |
2016.3.g.c | 24 | 4.b | odd | 2 | 1 | ||
2016.3.g.c | 24 | 8.b | even | 2 | 1 | ||
2016.3.g.c | 24 | 12.b | even | 2 | 1 | ||
2016.3.g.c | 24 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{12} + 192T_{5}^{10} + 12712T_{5}^{8} + 337952T_{5}^{6} + 3064720T_{5}^{4} + 10133120T_{5}^{2} + 9535744 \)
acting on \(S_{3}^{\mathrm{new}}(504, [\chi])\).