Properties

Label 504.3.g.c.379.12
Level $504$
Weight $3$
Character 504.379
Analytic conductor $13.733$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(379,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.379"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.12
Character \(\chi\) \(=\) 504.379
Dual form 504.3.g.c.379.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.434362 + 1.95226i) q^{2} +(-3.62266 - 1.69598i) q^{4} +6.98187i q^{5} -2.64575i q^{7} +(4.88454 - 6.33572i) q^{8} +(-13.6304 - 3.03266i) q^{10} -10.2933 q^{11} -24.6510i q^{13} +(5.16520 + 1.14921i) q^{14} +(10.2473 + 12.2879i) q^{16} +3.19343 q^{17} -23.7405 q^{19} +(11.8411 - 25.2929i) q^{20} +(4.47101 - 20.0952i) q^{22} -4.46806i q^{23} -23.7465 q^{25} +(48.1253 + 10.7075i) q^{26} +(-4.48713 + 9.58466i) q^{28} -26.7443i q^{29} +30.9233i q^{31} +(-28.4402 + 14.6681i) q^{32} +(-1.38710 + 6.23441i) q^{34} +18.4723 q^{35} -39.9783i q^{37} +(10.3120 - 46.3477i) q^{38} +(44.2351 + 34.1032i) q^{40} +27.9614 q^{41} +36.0826 q^{43} +(37.2891 + 17.4572i) q^{44} +(8.72283 + 1.94076i) q^{46} -22.1841i q^{47} -7.00000 q^{49} +(10.3146 - 46.3594i) q^{50} +(-41.8075 + 89.3022i) q^{52} -90.1138i q^{53} -71.8664i q^{55} +(-16.7627 - 12.9233i) q^{56} +(52.2119 + 11.6167i) q^{58} +59.4672 q^{59} -85.5528i q^{61} +(-60.3705 - 13.4319i) q^{62} +(-16.2826 - 61.8941i) q^{64} +172.110 q^{65} -14.9028 q^{67} +(-11.5687 - 5.41598i) q^{68} +(-8.02365 + 36.0628i) q^{70} +91.2862i q^{71} -89.8637 q^{73} +(78.0481 + 17.3650i) q^{74} +(86.0037 + 40.2633i) q^{76} +27.2335i q^{77} -2.20766i q^{79} +(-85.7924 + 71.5455i) q^{80} +(-12.1453 + 54.5879i) q^{82} -141.857 q^{83} +22.2961i q^{85} +(-15.6729 + 70.4427i) q^{86} +(-50.2779 + 65.2154i) q^{88} -26.1571 q^{89} -65.2204 q^{91} +(-7.57773 + 16.1863i) q^{92} +(43.3092 + 9.63592i) q^{94} -165.753i q^{95} +121.525 q^{97} +(3.04053 - 13.6658i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 12 q^{10} + 66 q^{16} - 64 q^{19} - 144 q^{22} - 168 q^{25} - 14 q^{28} + 12 q^{34} + 196 q^{40} + 224 q^{43} - 84 q^{46} - 168 q^{49} - 364 q^{52} + 348 q^{58} + 214 q^{64} - 32 q^{67}+ \cdots - 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.434362 + 1.95226i −0.217181 + 0.976131i
\(3\) 0 0
\(4\) −3.62266 1.69598i −0.905665 0.423994i
\(5\) 6.98187i 1.39637i 0.715916 + 0.698187i \(0.246010\pi\)
−0.715916 + 0.698187i \(0.753990\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 4.88454 6.33572i 0.610567 0.791965i
\(9\) 0 0
\(10\) −13.6304 3.03266i −1.36304 0.303266i
\(11\) −10.2933 −0.935753 −0.467877 0.883794i \(-0.654981\pi\)
−0.467877 + 0.883794i \(0.654981\pi\)
\(12\) 0 0
\(13\) 24.6510i 1.89623i −0.317925 0.948116i \(-0.602986\pi\)
0.317925 0.948116i \(-0.397014\pi\)
\(14\) 5.16520 + 1.14921i 0.368943 + 0.0820866i
\(15\) 0 0
\(16\) 10.2473 + 12.2879i 0.640458 + 0.767993i
\(17\) 3.19343 0.187849 0.0939244 0.995579i \(-0.470059\pi\)
0.0939244 + 0.995579i \(0.470059\pi\)
\(18\) 0 0
\(19\) −23.7405 −1.24950 −0.624750 0.780825i \(-0.714799\pi\)
−0.624750 + 0.780825i \(0.714799\pi\)
\(20\) 11.8411 25.2929i 0.592054 1.26465i
\(21\) 0 0
\(22\) 4.47101 20.0952i 0.203228 0.913418i
\(23\) 4.46806i 0.194264i −0.995272 0.0971318i \(-0.969033\pi\)
0.995272 0.0971318i \(-0.0309668\pi\)
\(24\) 0 0
\(25\) −23.7465 −0.949859
\(26\) 48.1253 + 10.7075i 1.85097 + 0.411825i
\(27\) 0 0
\(28\) −4.48713 + 9.58466i −0.160255 + 0.342309i
\(29\) 26.7443i 0.922217i −0.887344 0.461109i \(-0.847452\pi\)
0.887344 0.461109i \(-0.152548\pi\)
\(30\) 0 0
\(31\) 30.9233i 0.997527i 0.866738 + 0.498763i \(0.166212\pi\)
−0.866738 + 0.498763i \(0.833788\pi\)
\(32\) −28.4402 + 14.6681i −0.888757 + 0.458378i
\(33\) 0 0
\(34\) −1.38710 + 6.23441i −0.0407972 + 0.183365i
\(35\) 18.4723 0.527780
\(36\) 0 0
\(37\) 39.9783i 1.08049i −0.841506 0.540247i \(-0.818331\pi\)
0.841506 0.540247i \(-0.181669\pi\)
\(38\) 10.3120 46.3477i 0.271367 1.21968i
\(39\) 0 0
\(40\) 44.2351 + 34.1032i 1.10588 + 0.852580i
\(41\) 27.9614 0.681984 0.340992 0.940066i \(-0.389237\pi\)
0.340992 + 0.940066i \(0.389237\pi\)
\(42\) 0 0
\(43\) 36.0826 0.839130 0.419565 0.907725i \(-0.362183\pi\)
0.419565 + 0.907725i \(0.362183\pi\)
\(44\) 37.2891 + 17.4572i 0.847479 + 0.396754i
\(45\) 0 0
\(46\) 8.72283 + 1.94076i 0.189627 + 0.0421903i
\(47\) 22.1841i 0.472002i −0.971753 0.236001i \(-0.924163\pi\)
0.971753 0.236001i \(-0.0758369\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 10.3146 46.3594i 0.206291 0.927188i
\(51\) 0 0
\(52\) −41.8075 + 89.3022i −0.803991 + 1.71735i
\(53\) 90.1138i 1.70026i −0.526572 0.850130i \(-0.676523\pi\)
0.526572 0.850130i \(-0.323477\pi\)
\(54\) 0 0
\(55\) 71.8664i 1.30666i
\(56\) −16.7627 12.9233i −0.299335 0.230773i
\(57\) 0 0
\(58\) 52.2119 + 11.6167i 0.900205 + 0.200288i
\(59\) 59.4672 1.00792 0.503959 0.863728i \(-0.331876\pi\)
0.503959 + 0.863728i \(0.331876\pi\)
\(60\) 0 0
\(61\) 85.5528i 1.40250i −0.712913 0.701252i \(-0.752625\pi\)
0.712913 0.701252i \(-0.247375\pi\)
\(62\) −60.3705 13.4319i −0.973717 0.216644i
\(63\) 0 0
\(64\) −16.2826 61.8941i −0.254416 0.967095i
\(65\) 172.110 2.64785
\(66\) 0 0
\(67\) −14.9028 −0.222429 −0.111215 0.993796i \(-0.535474\pi\)
−0.111215 + 0.993796i \(0.535474\pi\)
\(68\) −11.5687 5.41598i −0.170128 0.0796468i
\(69\) 0 0
\(70\) −8.02365 + 36.0628i −0.114624 + 0.515182i
\(71\) 91.2862i 1.28572i 0.765983 + 0.642860i \(0.222252\pi\)
−0.765983 + 0.642860i \(0.777748\pi\)
\(72\) 0 0
\(73\) −89.8637 −1.23101 −0.615505 0.788133i \(-0.711048\pi\)
−0.615505 + 0.788133i \(0.711048\pi\)
\(74\) 78.0481 + 17.3650i 1.05470 + 0.234663i
\(75\) 0 0
\(76\) 86.0037 + 40.2633i 1.13163 + 0.529780i
\(77\) 27.2335i 0.353682i
\(78\) 0 0
\(79\) 2.20766i 0.0279451i −0.999902 0.0139725i \(-0.995552\pi\)
0.999902 0.0139725i \(-0.00444774\pi\)
\(80\) −85.7924 + 71.5455i −1.07241 + 0.894319i
\(81\) 0 0
\(82\) −12.1453 + 54.5879i −0.148114 + 0.665706i
\(83\) −141.857 −1.70913 −0.854563 0.519348i \(-0.826175\pi\)
−0.854563 + 0.519348i \(0.826175\pi\)
\(84\) 0 0
\(85\) 22.2961i 0.262307i
\(86\) −15.6729 + 70.4427i −0.182243 + 0.819101i
\(87\) 0 0
\(88\) −50.2779 + 65.2154i −0.571340 + 0.741084i
\(89\) −26.1571 −0.293900 −0.146950 0.989144i \(-0.546946\pi\)
−0.146950 + 0.989144i \(0.546946\pi\)
\(90\) 0 0
\(91\) −65.2204 −0.716708
\(92\) −7.57773 + 16.1863i −0.0823666 + 0.175938i
\(93\) 0 0
\(94\) 43.3092 + 9.63592i 0.460736 + 0.102510i
\(95\) 165.753i 1.74477i
\(96\) 0 0
\(97\) 121.525 1.25284 0.626418 0.779487i \(-0.284520\pi\)
0.626418 + 0.779487i \(0.284520\pi\)
\(98\) 3.04053 13.6658i 0.0310258 0.139447i
\(99\) 0 0
\(100\) 86.0254 + 40.2735i 0.860254 + 0.402735i
\(101\) 130.469i 1.29177i 0.763433 + 0.645887i \(0.223512\pi\)
−0.763433 + 0.645887i \(0.776488\pi\)
\(102\) 0 0
\(103\) 78.8527i 0.765561i −0.923839 0.382780i \(-0.874967\pi\)
0.923839 0.382780i \(-0.125033\pi\)
\(104\) −156.182 120.409i −1.50175 1.15778i
\(105\) 0 0
\(106\) 175.926 + 39.1420i 1.65968 + 0.369264i
\(107\) −202.725 −1.89462 −0.947312 0.320313i \(-0.896212\pi\)
−0.947312 + 0.320313i \(0.896212\pi\)
\(108\) 0 0
\(109\) 60.6394i 0.556325i 0.960534 + 0.278162i \(0.0897253\pi\)
−0.960534 + 0.278162i \(0.910275\pi\)
\(110\) 140.302 + 31.2160i 1.27547 + 0.283782i
\(111\) 0 0
\(112\) 32.5107 27.1119i 0.290274 0.242070i
\(113\) 134.568 1.19087 0.595433 0.803405i \(-0.296981\pi\)
0.595433 + 0.803405i \(0.296981\pi\)
\(114\) 0 0
\(115\) 31.1954 0.271265
\(116\) −45.3577 + 96.8855i −0.391014 + 0.835220i
\(117\) 0 0
\(118\) −25.8303 + 116.096i −0.218900 + 0.983861i
\(119\) 8.44902i 0.0710002i
\(120\) 0 0
\(121\) −15.0482 −0.124366
\(122\) 167.022 + 37.1609i 1.36903 + 0.304597i
\(123\) 0 0
\(124\) 52.4452 112.025i 0.422945 0.903425i
\(125\) 8.75187i 0.0700149i
\(126\) 0 0
\(127\) 234.380i 1.84551i −0.385381 0.922757i \(-0.625930\pi\)
0.385381 0.922757i \(-0.374070\pi\)
\(128\) 127.906 4.90357i 0.999266 0.0383091i
\(129\) 0 0
\(130\) −74.7580 + 336.004i −0.575062 + 2.58465i
\(131\) −9.52941 −0.0727436 −0.0363718 0.999338i \(-0.511580\pi\)
−0.0363718 + 0.999338i \(0.511580\pi\)
\(132\) 0 0
\(133\) 62.8114i 0.472266i
\(134\) 6.47319 29.0941i 0.0483074 0.217120i
\(135\) 0 0
\(136\) 15.5984 20.2327i 0.114694 0.148770i
\(137\) −150.790 −1.10066 −0.550330 0.834947i \(-0.685498\pi\)
−0.550330 + 0.834947i \(0.685498\pi\)
\(138\) 0 0
\(139\) −29.9967 −0.215804 −0.107902 0.994162i \(-0.534413\pi\)
−0.107902 + 0.994162i \(0.534413\pi\)
\(140\) −66.9188 31.3286i −0.477992 0.223775i
\(141\) 0 0
\(142\) −178.215 39.6512i −1.25503 0.279234i
\(143\) 253.740i 1.77441i
\(144\) 0 0
\(145\) 186.725 1.28776
\(146\) 39.0333 175.438i 0.267352 1.20163i
\(147\) 0 0
\(148\) −67.8022 + 144.828i −0.458123 + 0.978566i
\(149\) 6.87752i 0.0461578i 0.999734 + 0.0230789i \(0.00734690\pi\)
−0.999734 + 0.0230789i \(0.992653\pi\)
\(150\) 0 0
\(151\) 91.6177i 0.606740i −0.952873 0.303370i \(-0.901888\pi\)
0.952873 0.303370i \(-0.0981117\pi\)
\(152\) −115.961 + 150.413i −0.762903 + 0.989559i
\(153\) 0 0
\(154\) −53.1669 11.8292i −0.345240 0.0768128i
\(155\) −215.903 −1.39292
\(156\) 0 0
\(157\) 162.359i 1.03413i −0.855946 0.517066i \(-0.827024\pi\)
0.855946 0.517066i \(-0.172976\pi\)
\(158\) 4.30994 + 0.958924i 0.0272781 + 0.00606914i
\(159\) 0 0
\(160\) −102.411 198.566i −0.640067 1.24104i
\(161\) −11.8214 −0.0734247
\(162\) 0 0
\(163\) −293.979 −1.80355 −0.901776 0.432203i \(-0.857736\pi\)
−0.901776 + 0.432203i \(0.857736\pi\)
\(164\) −101.295 47.4218i −0.617649 0.289157i
\(165\) 0 0
\(166\) 61.6174 276.943i 0.371189 1.66833i
\(167\) 126.717i 0.758787i 0.925235 + 0.379393i \(0.123867\pi\)
−0.925235 + 0.379393i \(0.876133\pi\)
\(168\) 0 0
\(169\) −438.672 −2.59569
\(170\) −43.5279 9.68457i −0.256046 0.0569681i
\(171\) 0 0
\(172\) −130.715 61.1952i −0.759971 0.355786i
\(173\) 188.667i 1.09056i −0.838254 0.545281i \(-0.816423\pi\)
0.838254 0.545281i \(-0.183577\pi\)
\(174\) 0 0
\(175\) 62.8273i 0.359013i
\(176\) −105.479 126.483i −0.599311 0.718652i
\(177\) 0 0
\(178\) 11.3616 51.0655i 0.0638294 0.286885i
\(179\) −333.961 −1.86570 −0.932852 0.360259i \(-0.882688\pi\)
−0.932852 + 0.360259i \(0.882688\pi\)
\(180\) 0 0
\(181\) 37.7402i 0.208509i −0.994551 0.104255i \(-0.966754\pi\)
0.994551 0.104255i \(-0.0332457\pi\)
\(182\) 28.3293 127.327i 0.155655 0.699601i
\(183\) 0 0
\(184\) −28.3084 21.8244i −0.153850 0.118611i
\(185\) 279.123 1.50877
\(186\) 0 0
\(187\) −32.8709 −0.175780
\(188\) −37.6237 + 80.3655i −0.200126 + 0.427476i
\(189\) 0 0
\(190\) 323.593 + 71.9967i 1.70312 + 0.378930i
\(191\) 161.558i 0.845853i 0.906164 + 0.422927i \(0.138997\pi\)
−0.906164 + 0.422927i \(0.861003\pi\)
\(192\) 0 0
\(193\) −40.4535 −0.209604 −0.104802 0.994493i \(-0.533421\pi\)
−0.104802 + 0.994493i \(0.533421\pi\)
\(194\) −52.7858 + 237.249i −0.272092 + 1.22293i
\(195\) 0 0
\(196\) 25.3586 + 11.8718i 0.129381 + 0.0605706i
\(197\) 38.7796i 0.196851i −0.995144 0.0984253i \(-0.968619\pi\)
0.995144 0.0984253i \(-0.0313806\pi\)
\(198\) 0 0
\(199\) 66.2660i 0.332995i −0.986042 0.166497i \(-0.946754\pi\)
0.986042 0.166497i \(-0.0532458\pi\)
\(200\) −115.991 + 150.451i −0.579953 + 0.752255i
\(201\) 0 0
\(202\) −254.710 56.6708i −1.26094 0.280548i
\(203\) −70.7588 −0.348565
\(204\) 0 0
\(205\) 195.223i 0.952305i
\(206\) 153.941 + 34.2506i 0.747288 + 0.166265i
\(207\) 0 0
\(208\) 302.909 252.607i 1.45629 1.21446i
\(209\) 244.368 1.16922
\(210\) 0 0
\(211\) 327.671 1.55294 0.776472 0.630151i \(-0.217007\pi\)
0.776472 + 0.630151i \(0.217007\pi\)
\(212\) −152.831 + 326.452i −0.720900 + 1.53987i
\(213\) 0 0
\(214\) 88.0558 395.772i 0.411476 1.84940i
\(215\) 251.924i 1.17174i
\(216\) 0 0
\(217\) 81.8155 0.377030
\(218\) −118.384 26.3394i −0.543046 0.120823i
\(219\) 0 0
\(220\) −121.884 + 260.347i −0.554017 + 1.18340i
\(221\) 78.7213i 0.356205i
\(222\) 0 0
\(223\) 42.2322i 0.189382i 0.995507 + 0.0946911i \(0.0301863\pi\)
−0.995507 + 0.0946911i \(0.969814\pi\)
\(224\) 38.8081 + 75.2458i 0.173251 + 0.335919i
\(225\) 0 0
\(226\) −58.4511 + 262.712i −0.258633 + 1.16244i
\(227\) −39.0565 −0.172055 −0.0860275 0.996293i \(-0.527417\pi\)
−0.0860275 + 0.996293i \(0.527417\pi\)
\(228\) 0 0
\(229\) 88.1788i 0.385060i −0.981291 0.192530i \(-0.938331\pi\)
0.981291 0.192530i \(-0.0616693\pi\)
\(230\) −13.5501 + 60.9017i −0.0589135 + 0.264790i
\(231\) 0 0
\(232\) −169.444 130.633i −0.730363 0.563075i
\(233\) −14.4269 −0.0619180 −0.0309590 0.999521i \(-0.509856\pi\)
−0.0309590 + 0.999521i \(0.509856\pi\)
\(234\) 0 0
\(235\) 154.886 0.659091
\(236\) −215.429 100.855i −0.912836 0.427351i
\(237\) 0 0
\(238\) 16.4947 + 3.66993i 0.0693055 + 0.0154199i
\(239\) 396.571i 1.65929i −0.558289 0.829646i \(-0.688542\pi\)
0.558289 0.829646i \(-0.311458\pi\)
\(240\) 0 0
\(241\) −40.8615 −0.169550 −0.0847748 0.996400i \(-0.527017\pi\)
−0.0847748 + 0.996400i \(0.527017\pi\)
\(242\) 6.53637 29.3781i 0.0270098 0.121397i
\(243\) 0 0
\(244\) −145.095 + 309.929i −0.594654 + 1.27020i
\(245\) 48.8731i 0.199482i
\(246\) 0 0
\(247\) 585.227i 2.36934i
\(248\) 195.922 + 151.046i 0.790006 + 0.609057i
\(249\) 0 0
\(250\) −17.0859 3.80147i −0.0683438 0.0152059i
\(251\) 53.2343 0.212089 0.106044 0.994361i \(-0.466181\pi\)
0.106044 + 0.994361i \(0.466181\pi\)
\(252\) 0 0
\(253\) 45.9911i 0.181783i
\(254\) 457.572 + 101.806i 1.80147 + 0.400810i
\(255\) 0 0
\(256\) −45.9844 + 251.836i −0.179627 + 0.983735i
\(257\) 327.553 1.27452 0.637262 0.770647i \(-0.280067\pi\)
0.637262 + 0.770647i \(0.280067\pi\)
\(258\) 0 0
\(259\) −105.773 −0.408389
\(260\) −623.496 291.895i −2.39806 1.12267i
\(261\) 0 0
\(262\) 4.13921 18.6039i 0.0157985 0.0710073i
\(263\) 230.794i 0.877542i −0.898599 0.438771i \(-0.855414\pi\)
0.898599 0.438771i \(-0.144586\pi\)
\(264\) 0 0
\(265\) 629.163 2.37420
\(266\) −122.624 27.2829i −0.460994 0.102567i
\(267\) 0 0
\(268\) 53.9876 + 25.2747i 0.201446 + 0.0943086i
\(269\) 383.152i 1.42436i 0.701998 + 0.712179i \(0.252292\pi\)
−0.701998 + 0.712179i \(0.747708\pi\)
\(270\) 0 0
\(271\) 187.455i 0.691715i 0.938287 + 0.345858i \(0.112412\pi\)
−0.938287 + 0.345858i \(0.887588\pi\)
\(272\) 32.7241 + 39.2405i 0.120309 + 0.144267i
\(273\) 0 0
\(274\) 65.4976 294.383i 0.239042 1.07439i
\(275\) 244.429 0.888834
\(276\) 0 0
\(277\) 5.90998i 0.0213357i −0.999943 0.0106678i \(-0.996604\pi\)
0.999943 0.0106678i \(-0.00339574\pi\)
\(278\) 13.0294 58.5615i 0.0468685 0.210653i
\(279\) 0 0
\(280\) 90.2285 117.035i 0.322245 0.417983i
\(281\) −327.587 −1.16579 −0.582896 0.812547i \(-0.698080\pi\)
−0.582896 + 0.812547i \(0.698080\pi\)
\(282\) 0 0
\(283\) 532.270 1.88081 0.940406 0.340055i \(-0.110446\pi\)
0.940406 + 0.340055i \(0.110446\pi\)
\(284\) 154.819 330.699i 0.545138 1.16443i
\(285\) 0 0
\(286\) −495.367 110.215i −1.73205 0.385367i
\(287\) 73.9788i 0.257766i
\(288\) 0 0
\(289\) −278.802 −0.964713
\(290\) −81.1062 + 364.537i −0.279677 + 1.25702i
\(291\) 0 0
\(292\) 325.546 + 152.407i 1.11488 + 0.521941i
\(293\) 272.256i 0.929201i −0.885520 0.464601i \(-0.846198\pi\)
0.885520 0.464601i \(-0.153802\pi\)
\(294\) 0 0
\(295\) 415.192i 1.40743i
\(296\) −253.291 195.275i −0.855714 0.659714i
\(297\) 0 0
\(298\) −13.4267 2.98733i −0.0450561 0.0100246i
\(299\) −110.142 −0.368369
\(300\) 0 0
\(301\) 95.4656i 0.317161i
\(302\) 178.862 + 39.7952i 0.592258 + 0.131772i
\(303\) 0 0
\(304\) −243.277 291.720i −0.800252 0.959607i
\(305\) 597.318 1.95842
\(306\) 0 0
\(307\) 223.209 0.727067 0.363533 0.931581i \(-0.381570\pi\)
0.363533 + 0.931581i \(0.381570\pi\)
\(308\) 46.1873 98.6576i 0.149959 0.320317i
\(309\) 0 0
\(310\) 93.7798 421.499i 0.302516 1.35967i
\(311\) 20.4156i 0.0656451i 0.999461 + 0.0328226i \(0.0104496\pi\)
−0.999461 + 0.0328226i \(0.989550\pi\)
\(312\) 0 0
\(313\) 332.605 1.06264 0.531318 0.847172i \(-0.321697\pi\)
0.531318 + 0.847172i \(0.321697\pi\)
\(314\) 316.967 + 70.5224i 1.00945 + 0.224594i
\(315\) 0 0
\(316\) −3.74414 + 7.99761i −0.0118486 + 0.0253089i
\(317\) 327.477i 1.03305i 0.856272 + 0.516525i \(0.172775\pi\)
−0.856272 + 0.516525i \(0.827225\pi\)
\(318\) 0 0
\(319\) 275.287i 0.862968i
\(320\) 432.136 113.683i 1.35043 0.355260i
\(321\) 0 0
\(322\) 5.13476 23.0784i 0.0159464 0.0716722i
\(323\) −75.8136 −0.234717
\(324\) 0 0
\(325\) 585.375i 1.80115i
\(326\) 127.693 573.924i 0.391697 1.76050i
\(327\) 0 0
\(328\) 136.578 177.155i 0.416397 0.540108i
\(329\) −58.6936 −0.178400
\(330\) 0 0
\(331\) −320.023 −0.966836 −0.483418 0.875390i \(-0.660605\pi\)
−0.483418 + 0.875390i \(0.660605\pi\)
\(332\) 513.901 + 240.587i 1.54790 + 0.724659i
\(333\) 0 0
\(334\) −247.386 55.0412i −0.740676 0.164794i
\(335\) 104.049i 0.310594i
\(336\) 0 0
\(337\) −223.478 −0.663141 −0.331570 0.943431i \(-0.607578\pi\)
−0.331570 + 0.943431i \(0.607578\pi\)
\(338\) 190.542 856.404i 0.563735 2.53374i
\(339\) 0 0
\(340\) 37.8137 80.7712i 0.111217 0.237562i
\(341\) 318.303i 0.933439i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 176.247 228.609i 0.512345 0.664562i
\(345\) 0 0
\(346\) 368.328 + 81.9497i 1.06453 + 0.236849i
\(347\) −56.6497 −0.163256 −0.0816278 0.996663i \(-0.526012\pi\)
−0.0816278 + 0.996663i \(0.526012\pi\)
\(348\) 0 0
\(349\) 466.731i 1.33734i −0.743560 0.668669i \(-0.766864\pi\)
0.743560 0.668669i \(-0.233136\pi\)
\(350\) −122.655 27.2898i −0.350444 0.0779708i
\(351\) 0 0
\(352\) 292.744 150.983i 0.831658 0.428929i
\(353\) 594.614 1.68446 0.842230 0.539118i \(-0.181242\pi\)
0.842230 + 0.539118i \(0.181242\pi\)
\(354\) 0 0
\(355\) −637.348 −1.79535
\(356\) 94.7582 + 44.3618i 0.266175 + 0.124612i
\(357\) 0 0
\(358\) 145.060 651.980i 0.405195 1.82117i
\(359\) 453.751i 1.26393i −0.774997 0.631965i \(-0.782248\pi\)
0.774997 0.631965i \(-0.217752\pi\)
\(360\) 0 0
\(361\) 202.611 0.561248
\(362\) 73.6787 + 16.3929i 0.203532 + 0.0452842i
\(363\) 0 0
\(364\) 236.272 + 110.612i 0.649098 + 0.303880i
\(365\) 627.416i 1.71895i
\(366\) 0 0
\(367\) 213.287i 0.581165i 0.956850 + 0.290582i \(0.0938490\pi\)
−0.956850 + 0.290582i \(0.906151\pi\)
\(368\) 54.9031 45.7857i 0.149193 0.124418i
\(369\) 0 0
\(370\) −121.240 + 544.922i −0.327677 + 1.47276i
\(371\) −238.419 −0.642638
\(372\) 0 0
\(373\) 266.533i 0.714566i 0.933996 + 0.357283i \(0.116297\pi\)
−0.933996 + 0.357283i \(0.883703\pi\)
\(374\) 14.2779 64.1726i 0.0381761 0.171585i
\(375\) 0 0
\(376\) −140.552 108.359i −0.373809 0.288189i
\(377\) −659.274 −1.74874
\(378\) 0 0
\(379\) 79.5559 0.209910 0.104955 0.994477i \(-0.466530\pi\)
0.104955 + 0.994477i \(0.466530\pi\)
\(380\) −281.113 + 600.467i −0.739771 + 1.58018i
\(381\) 0 0
\(382\) −315.404 70.1746i −0.825664 0.183703i
\(383\) 628.831i 1.64186i 0.571032 + 0.820928i \(0.306543\pi\)
−0.571032 + 0.820928i \(0.693457\pi\)
\(384\) 0 0
\(385\) −190.141 −0.493872
\(386\) 17.5715 78.9759i 0.0455219 0.204601i
\(387\) 0 0
\(388\) −440.244 206.104i −1.13465 0.531195i
\(389\) 389.345i 1.00089i 0.865769 + 0.500443i \(0.166830\pi\)
−0.865769 + 0.500443i \(0.833170\pi\)
\(390\) 0 0
\(391\) 14.2684i 0.0364922i
\(392\) −34.1917 + 44.3500i −0.0872238 + 0.113138i
\(393\) 0 0
\(394\) 75.7079 + 16.8444i 0.192152 + 0.0427522i
\(395\) 15.4136 0.0390218
\(396\) 0 0
\(397\) 288.463i 0.726608i 0.931671 + 0.363304i \(0.118351\pi\)
−0.931671 + 0.363304i \(0.881649\pi\)
\(398\) 129.369 + 28.7834i 0.325047 + 0.0723201i
\(399\) 0 0
\(400\) −243.338 291.794i −0.608345 0.729485i
\(401\) −326.512 −0.814246 −0.407123 0.913373i \(-0.633468\pi\)
−0.407123 + 0.913373i \(0.633468\pi\)
\(402\) 0 0
\(403\) 762.292 1.89154
\(404\) 221.273 472.645i 0.547704 1.16991i
\(405\) 0 0
\(406\) 30.7349 138.140i 0.0757017 0.340246i
\(407\) 411.508i 1.01108i
\(408\) 0 0
\(409\) 48.4391 0.118433 0.0592166 0.998245i \(-0.481140\pi\)
0.0592166 + 0.998245i \(0.481140\pi\)
\(410\) −381.126 84.7972i −0.929575 0.206822i
\(411\) 0 0
\(412\) −133.732 + 285.657i −0.324593 + 0.693341i
\(413\) 157.335i 0.380957i
\(414\) 0 0
\(415\) 990.430i 2.38658i
\(416\) 361.583 + 701.081i 0.869191 + 1.68529i
\(417\) 0 0
\(418\) −106.144 + 477.070i −0.253933 + 1.14132i
\(419\) 389.884 0.930512 0.465256 0.885176i \(-0.345962\pi\)
0.465256 + 0.885176i \(0.345962\pi\)
\(420\) 0 0
\(421\) 704.810i 1.67413i 0.547101 + 0.837066i \(0.315731\pi\)
−0.547101 + 0.837066i \(0.684269\pi\)
\(422\) −142.328 + 639.701i −0.337270 + 1.51588i
\(423\) 0 0
\(424\) −570.936 440.164i −1.34655 1.03812i
\(425\) −75.8327 −0.178430
\(426\) 0 0
\(427\) −226.351 −0.530097
\(428\) 734.403 + 343.816i 1.71589 + 0.803309i
\(429\) 0 0
\(430\) −491.822 109.426i −1.14377 0.254479i
\(431\) 255.485i 0.592772i 0.955068 + 0.296386i \(0.0957815\pi\)
−0.955068 + 0.296386i \(0.904219\pi\)
\(432\) 0 0
\(433\) 347.438 0.802397 0.401199 0.915991i \(-0.368594\pi\)
0.401199 + 0.915991i \(0.368594\pi\)
\(434\) −35.5375 + 159.725i −0.0818836 + 0.368031i
\(435\) 0 0
\(436\) 102.843 219.676i 0.235878 0.503844i
\(437\) 106.074i 0.242732i
\(438\) 0 0
\(439\) 28.2038i 0.0642456i 0.999484 + 0.0321228i \(0.0102268\pi\)
−0.999484 + 0.0321228i \(0.989773\pi\)
\(440\) −455.325 351.034i −1.03483 0.797804i
\(441\) 0 0
\(442\) 153.685 + 34.1935i 0.347703 + 0.0773608i
\(443\) 742.964 1.67712 0.838560 0.544809i \(-0.183398\pi\)
0.838560 + 0.544809i \(0.183398\pi\)
\(444\) 0 0
\(445\) 182.625i 0.410394i
\(446\) −82.4484 18.3441i −0.184862 0.0411302i
\(447\) 0 0
\(448\) −163.756 + 43.0798i −0.365527 + 0.0961602i
\(449\) −210.406 −0.468609 −0.234305 0.972163i \(-0.575281\pi\)
−0.234305 + 0.972163i \(0.575281\pi\)
\(450\) 0 0
\(451\) −287.814 −0.638169
\(452\) −487.493 228.224i −1.07853 0.504920i
\(453\) 0 0
\(454\) 16.9646 76.2485i 0.0373670 0.167948i
\(455\) 455.361i 1.00079i
\(456\) 0 0
\(457\) 481.714 1.05408 0.527040 0.849841i \(-0.323302\pi\)
0.527040 + 0.849841i \(0.323302\pi\)
\(458\) 172.148 + 38.3015i 0.375869 + 0.0836277i
\(459\) 0 0
\(460\) −113.010 52.9067i −0.245675 0.115015i
\(461\) 338.772i 0.734862i −0.930051 0.367431i \(-0.880237\pi\)
0.930051 0.367431i \(-0.119763\pi\)
\(462\) 0 0
\(463\) 399.738i 0.863366i 0.902025 + 0.431683i \(0.142080\pi\)
−0.902025 + 0.431683i \(0.857920\pi\)
\(464\) 328.631 274.058i 0.708256 0.590641i
\(465\) 0 0
\(466\) 6.26649 28.1651i 0.0134474 0.0604401i
\(467\) −36.9575 −0.0791381 −0.0395690 0.999217i \(-0.512599\pi\)
−0.0395690 + 0.999217i \(0.512599\pi\)
\(468\) 0 0
\(469\) 39.4290i 0.0840703i
\(470\) −67.2767 + 302.379i −0.143142 + 0.643360i
\(471\) 0 0
\(472\) 290.470 376.767i 0.615401 0.798236i
\(473\) −371.409 −0.785219
\(474\) 0 0
\(475\) 563.753 1.18685
\(476\) −14.3293 + 30.6079i −0.0301036 + 0.0643024i
\(477\) 0 0
\(478\) 774.211 + 172.255i 1.61969 + 0.360367i
\(479\) 357.037i 0.745380i −0.927956 0.372690i \(-0.878435\pi\)
0.927956 0.372690i \(-0.121565\pi\)
\(480\) 0 0
\(481\) −985.506 −2.04887
\(482\) 17.7486 79.7723i 0.0368229 0.165503i
\(483\) 0 0
\(484\) 54.5146 + 25.5214i 0.112634 + 0.0527302i
\(485\) 848.472i 1.74943i
\(486\) 0 0
\(487\) 511.946i 1.05122i −0.850725 0.525612i \(-0.823837\pi\)
0.850725 0.525612i \(-0.176163\pi\)
\(488\) −542.038 417.886i −1.11073 0.856323i
\(489\) 0 0
\(490\) 95.4131 + 21.2286i 0.194721 + 0.0433237i
\(491\) 280.026 0.570317 0.285158 0.958480i \(-0.407954\pi\)
0.285158 + 0.958480i \(0.407954\pi\)
\(492\) 0 0
\(493\) 85.4060i 0.173237i
\(494\) −1142.52 254.200i −2.31279 0.514575i
\(495\) 0 0
\(496\) −379.983 + 316.882i −0.766094 + 0.638874i
\(497\) 241.520 0.485957
\(498\) 0 0
\(499\) 29.8727 0.0598651 0.0299326 0.999552i \(-0.490471\pi\)
0.0299326 + 0.999552i \(0.490471\pi\)
\(500\) 14.8430 31.7050i 0.0296859 0.0634101i
\(501\) 0 0
\(502\) −23.1229 + 103.927i −0.0460616 + 0.207027i
\(503\) 756.842i 1.50466i −0.658789 0.752328i \(-0.728931\pi\)
0.658789 0.752328i \(-0.271069\pi\)
\(504\) 0 0
\(505\) −910.919 −1.80380
\(506\) −89.7866 19.9768i −0.177444 0.0394797i
\(507\) 0 0
\(508\) −397.504 + 849.081i −0.782487 + 1.67142i
\(509\) 261.461i 0.513676i 0.966454 + 0.256838i \(0.0826808\pi\)
−0.966454 + 0.256838i \(0.917319\pi\)
\(510\) 0 0
\(511\) 237.757i 0.465278i
\(512\) −471.676 199.162i −0.921243 0.388988i
\(513\) 0 0
\(514\) −142.276 + 639.469i −0.276802 + 1.24410i
\(515\) 550.539 1.06901
\(516\) 0 0
\(517\) 228.347i 0.441678i
\(518\) 45.9436 206.496i 0.0886942 0.398641i
\(519\) 0 0
\(520\) 840.678 1090.44i 1.61669 2.09700i
\(521\) −178.719 −0.343030 −0.171515 0.985182i \(-0.554866\pi\)
−0.171515 + 0.985182i \(0.554866\pi\)
\(522\) 0 0
\(523\) −432.390 −0.826749 −0.413375 0.910561i \(-0.635650\pi\)
−0.413375 + 0.910561i \(0.635650\pi\)
\(524\) 34.5218 + 16.1617i 0.0658813 + 0.0308428i
\(525\) 0 0
\(526\) 450.570 + 100.248i 0.856597 + 0.190585i
\(527\) 98.7515i 0.187384i
\(528\) 0 0
\(529\) 509.036 0.962262
\(530\) −273.284 + 1228.29i −0.515631 + 2.31753i
\(531\) 0 0
\(532\) 106.527 227.544i 0.200238 0.427715i
\(533\) 689.276i 1.29320i
\(534\) 0 0
\(535\) 1415.40i 2.64560i
\(536\) −72.7930 + 94.4197i −0.135808 + 0.176156i
\(537\) 0 0
\(538\) −748.014 166.427i −1.39036 0.309343i
\(539\) 72.0530 0.133679
\(540\) 0 0
\(541\) 591.883i 1.09405i −0.837115 0.547027i \(-0.815760\pi\)
0.837115 0.547027i \(-0.184240\pi\)
\(542\) −365.961 81.4232i −0.675205 0.150227i
\(543\) 0 0
\(544\) −90.8219 + 46.8415i −0.166952 + 0.0861057i
\(545\) −423.376 −0.776837
\(546\) 0 0
\(547\) −685.589 −1.25336 −0.626681 0.779276i \(-0.715587\pi\)
−0.626681 + 0.779276i \(0.715587\pi\)
\(548\) 546.263 + 255.737i 0.996830 + 0.466673i
\(549\) 0 0
\(550\) −106.171 + 477.190i −0.193038 + 0.867619i
\(551\) 634.922i 1.15231i
\(552\) 0 0
\(553\) −5.84092 −0.0105623
\(554\) 11.5378 + 2.56707i 0.0208264 + 0.00463369i
\(555\) 0 0
\(556\) 108.668 + 50.8738i 0.195446 + 0.0914996i
\(557\) 747.072i 1.34124i 0.741800 + 0.670621i \(0.233972\pi\)
−0.741800 + 0.670621i \(0.766028\pi\)
\(558\) 0 0
\(559\) 889.473i 1.59119i
\(560\) 189.292 + 226.985i 0.338021 + 0.405331i
\(561\) 0 0
\(562\) 142.291 639.537i 0.253188 1.13797i
\(563\) 396.402 0.704089 0.352044 0.935983i \(-0.385487\pi\)
0.352044 + 0.935983i \(0.385487\pi\)
\(564\) 0 0
\(565\) 939.535i 1.66289i
\(566\) −231.197 + 1039.13i −0.408476 + 1.83592i
\(567\) 0 0
\(568\) 578.363 + 445.890i 1.01825 + 0.785018i
\(569\) 553.486 0.972735 0.486368 0.873754i \(-0.338322\pi\)
0.486368 + 0.873754i \(0.338322\pi\)
\(570\) 0 0
\(571\) −377.714 −0.661495 −0.330748 0.943719i \(-0.607301\pi\)
−0.330748 + 0.943719i \(0.607301\pi\)
\(572\) 430.337 919.214i 0.752337 1.60702i
\(573\) 0 0
\(574\) 144.426 + 32.1336i 0.251613 + 0.0559818i
\(575\) 106.101i 0.184523i
\(576\) 0 0
\(577\) 537.850 0.932149 0.466075 0.884745i \(-0.345668\pi\)
0.466075 + 0.884745i \(0.345668\pi\)
\(578\) 121.101 544.295i 0.209517 0.941686i
\(579\) 0 0
\(580\) −676.442 316.681i −1.16628 0.546002i
\(581\) 375.320i 0.645989i
\(582\) 0 0
\(583\) 927.568i 1.59103i
\(584\) −438.942 + 569.351i −0.751614 + 0.974916i
\(585\) 0 0
\(586\) 531.515 + 118.258i 0.907023 + 0.201805i
\(587\) −1090.47 −1.85770 −0.928848 0.370462i \(-0.879199\pi\)
−0.928848 + 0.370462i \(0.879199\pi\)
\(588\) 0 0
\(589\) 734.135i 1.24641i
\(590\) −810.564 180.343i −1.37384 0.305667i
\(591\) 0 0
\(592\) 491.249 409.671i 0.829812 0.692012i
\(593\) −818.098 −1.37959 −0.689796 0.724004i \(-0.742300\pi\)
−0.689796 + 0.724004i \(0.742300\pi\)
\(594\) 0 0
\(595\) 58.9899 0.0991428
\(596\) 11.6641 24.9149i 0.0195706 0.0418035i
\(597\) 0 0
\(598\) 47.8416 215.027i 0.0800026 0.359576i
\(599\) 599.646i 1.00108i −0.865714 0.500540i \(-0.833135\pi\)
0.865714 0.500540i \(-0.166865\pi\)
\(600\) 0 0
\(601\) 764.930 1.27276 0.636381 0.771375i \(-0.280431\pi\)
0.636381 + 0.771375i \(0.280431\pi\)
\(602\) 186.374 + 41.4666i 0.309591 + 0.0688814i
\(603\) 0 0
\(604\) −155.381 + 331.900i −0.257254 + 0.549503i
\(605\) 105.065i 0.173661i
\(606\) 0 0
\(607\) 995.165i 1.63948i 0.572735 + 0.819740i \(0.305882\pi\)
−0.572735 + 0.819740i \(0.694118\pi\)
\(608\) 675.185 348.228i 1.11050 0.572743i
\(609\) 0 0
\(610\) −259.452 + 1166.12i −0.425331 + 1.91168i
\(611\) −546.861 −0.895025
\(612\) 0 0
\(613\) 720.164i 1.17482i −0.809290 0.587410i \(-0.800148\pi\)
0.809290 0.587410i \(-0.199852\pi\)
\(614\) −96.9536 + 435.763i −0.157905 + 0.709712i
\(615\) 0 0
\(616\) 172.544 + 133.023i 0.280103 + 0.215946i
\(617\) −840.661 −1.36250 −0.681249 0.732052i \(-0.738563\pi\)
−0.681249 + 0.732052i \(0.738563\pi\)
\(618\) 0 0
\(619\) 156.739 0.253213 0.126606 0.991953i \(-0.459592\pi\)
0.126606 + 0.991953i \(0.459592\pi\)
\(620\) 782.142 + 366.166i 1.26152 + 0.590590i
\(621\) 0 0
\(622\) −39.8567 8.86777i −0.0640783 0.0142569i
\(623\) 69.2051i 0.111084i
\(624\) 0 0
\(625\) −654.767 −1.04763
\(626\) −144.471 + 649.332i −0.230784 + 1.03727i
\(627\) 0 0
\(628\) −275.356 + 588.170i −0.438466 + 0.936577i
\(629\) 127.668i 0.202970i
\(630\) 0 0
\(631\) 383.162i 0.607230i −0.952795 0.303615i \(-0.901806\pi\)
0.952795 0.303615i \(-0.0981937\pi\)
\(632\) −13.9871 10.7834i −0.0221315 0.0170623i
\(633\) 0 0
\(634\) −639.321 142.243i −1.00839 0.224359i
\(635\) 1636.41 2.57703
\(636\) 0 0
\(637\) 172.557i 0.270890i
\(638\) −537.432 119.574i −0.842370 0.187420i
\(639\) 0 0
\(640\) 34.2360 + 893.023i 0.0534938 + 1.39535i
\(641\) −829.167 −1.29355 −0.646776 0.762680i \(-0.723883\pi\)
−0.646776 + 0.762680i \(0.723883\pi\)
\(642\) 0 0
\(643\) 1020.04 1.58637 0.793187 0.608979i \(-0.208420\pi\)
0.793187 + 0.608979i \(0.208420\pi\)
\(644\) 42.8249 + 20.0488i 0.0664982 + 0.0311317i
\(645\) 0 0
\(646\) 32.9305 148.008i 0.0509760 0.229115i
\(647\) 356.439i 0.550910i 0.961314 + 0.275455i \(0.0888286\pi\)
−0.961314 + 0.275455i \(0.911171\pi\)
\(648\) 0 0
\(649\) −612.113 −0.943163
\(650\) −1142.81 254.264i −1.75816 0.391176i
\(651\) 0 0
\(652\) 1064.99 + 498.581i 1.63341 + 0.764695i
\(653\) 239.538i 0.366827i 0.983036 + 0.183414i \(0.0587147\pi\)
−0.983036 + 0.183414i \(0.941285\pi\)
\(654\) 0 0
\(655\) 66.5331i 0.101577i
\(656\) 286.529 + 343.586i 0.436782 + 0.523759i
\(657\) 0 0
\(658\) 25.4943 114.585i 0.0387451 0.174142i
\(659\) 64.0319 0.0971653 0.0485827 0.998819i \(-0.484530\pi\)
0.0485827 + 0.998819i \(0.484530\pi\)
\(660\) 0 0
\(661\) 983.021i 1.48717i −0.668640 0.743586i \(-0.733123\pi\)
0.668640 0.743586i \(-0.266877\pi\)
\(662\) 139.006 624.768i 0.209978 0.943759i
\(663\) 0 0
\(664\) −692.908 + 898.769i −1.04354 + 1.35357i
\(665\) −438.541 −0.659460
\(666\) 0 0
\(667\) −119.495 −0.179153
\(668\) 214.910 459.054i 0.321721 0.687207i
\(669\) 0 0
\(670\) 203.131 + 45.1949i 0.303181 + 0.0674551i
\(671\) 880.620i 1.31240i
\(672\) 0 0
\(673\) 652.090 0.968931 0.484465 0.874810i \(-0.339014\pi\)
0.484465 + 0.874810i \(0.339014\pi\)
\(674\) 97.0704 436.289i 0.144021 0.647312i
\(675\) 0 0
\(676\) 1589.16 + 743.978i 2.35083 + 1.10056i
\(677\) 828.016i 1.22307i −0.791219 0.611534i \(-0.790553\pi\)
0.791219 0.611534i \(-0.209447\pi\)
\(678\) 0 0
\(679\) 321.525i 0.473528i
\(680\) 141.262 + 108.906i 0.207738 + 0.160156i
\(681\) 0 0
\(682\) 621.411 + 138.259i 0.911159 + 0.202725i
\(683\) −143.799 −0.210541 −0.105270 0.994444i \(-0.533571\pi\)
−0.105270 + 0.994444i \(0.533571\pi\)
\(684\) 0 0
\(685\) 1052.80i 1.53693i
\(686\) −36.1564 8.04449i −0.0527061 0.0117267i
\(687\) 0 0
\(688\) 369.750 + 443.379i 0.537428 + 0.644446i
\(689\) −2221.40 −3.22409
\(690\) 0 0
\(691\) 373.712 0.540828 0.270414 0.962744i \(-0.412839\pi\)
0.270414 + 0.962744i \(0.412839\pi\)
\(692\) −319.975 + 683.477i −0.462391 + 0.987683i
\(693\) 0 0
\(694\) 24.6064 110.595i 0.0354560 0.159359i
\(695\) 209.433i 0.301343i
\(696\) 0 0
\(697\) 89.2926 0.128110
\(698\) 911.182 + 202.730i 1.30542 + 0.290444i
\(699\) 0 0
\(700\) 106.554 227.602i 0.152219 0.325146i
\(701\) 518.085i 0.739066i 0.929218 + 0.369533i \(0.120482\pi\)
−0.929218 + 0.369533i \(0.879518\pi\)
\(702\) 0 0
\(703\) 949.104i 1.35008i
\(704\) 167.602 + 637.093i 0.238071 + 0.904962i
\(705\) 0 0
\(706\) −258.278 + 1160.84i −0.365832 + 1.64425i
\(707\) 345.189 0.488245
\(708\) 0 0
\(709\) 733.222i 1.03416i 0.855936 + 0.517082i \(0.172982\pi\)
−0.855936 + 0.517082i \(0.827018\pi\)
\(710\) 276.839 1244.27i 0.389915 1.75249i
\(711\) 0 0
\(712\) −127.765 + 165.724i −0.179445 + 0.232758i
\(713\) 138.167 0.193783
\(714\) 0 0
\(715\) −1771.58 −2.47773
\(716\) 1209.83 + 566.390i 1.68970 + 0.791048i
\(717\) 0 0
\(718\) 885.841 + 197.092i 1.23376 + 0.274501i
\(719\) 885.412i 1.23145i 0.787962 + 0.615724i \(0.211137\pi\)
−0.787962 + 0.615724i \(0.788863\pi\)
\(720\) 0 0
\(721\) −208.625 −0.289355
\(722\) −88.0063 + 395.549i −0.121892 + 0.547852i
\(723\) 0 0
\(724\) −64.0064 + 136.720i −0.0884067 + 0.188840i
\(725\) 635.083i 0.875977i
\(726\) 0 0
\(727\) 813.477i 1.11895i 0.828847 + 0.559476i \(0.188997\pi\)
−0.828847 + 0.559476i \(0.811003\pi\)
\(728\) −318.572 + 413.218i −0.437598 + 0.567608i
\(729\) 0 0
\(730\) 1224.88 + 272.526i 1.67792 + 0.373323i
\(731\) 115.227 0.157630
\(732\) 0 0
\(733\) 564.027i 0.769477i −0.923026 0.384739i \(-0.874292\pi\)
0.923026 0.384739i \(-0.125708\pi\)
\(734\) −416.393 92.6439i −0.567293 0.126218i
\(735\) 0 0
\(736\) 65.5380 + 127.073i 0.0890462 + 0.172653i
\(737\) 153.398 0.208139
\(738\) 0 0
\(739\) 287.625 0.389208 0.194604 0.980882i \(-0.437658\pi\)
0.194604 + 0.980882i \(0.437658\pi\)
\(740\) −1011.17 473.386i −1.36644 0.639711i
\(741\) 0 0
\(742\) 103.560 465.456i 0.139569 0.627299i
\(743\) 630.568i 0.848679i 0.905503 + 0.424339i \(0.139494\pi\)
−0.905503 + 0.424339i \(0.860506\pi\)
\(744\) 0 0
\(745\) −48.0179 −0.0644536
\(746\) −520.343 115.772i −0.697510 0.155190i
\(747\) 0 0
\(748\) 119.080 + 55.7482i 0.159198 + 0.0745297i
\(749\) 536.359i 0.716100i
\(750\) 0 0
\(751\) 637.535i 0.848914i −0.905448 0.424457i \(-0.860465\pi\)
0.905448 0.424457i \(-0.139535\pi\)
\(752\) 272.596 227.328i 0.362494 0.302298i
\(753\) 0 0
\(754\) 286.363 1287.08i 0.379792 1.70700i
\(755\) 639.663 0.847235
\(756\) 0 0
\(757\) 133.159i 0.175904i −0.996125 0.0879520i \(-0.971968\pi\)
0.996125 0.0879520i \(-0.0280322\pi\)
\(758\) −34.5560 + 155.314i −0.0455884 + 0.204900i
\(759\) 0 0
\(760\) −1050.16 809.626i −1.38179 1.06530i
\(761\) −331.848 −0.436069 −0.218034 0.975941i \(-0.569964\pi\)
−0.218034 + 0.975941i \(0.569964\pi\)
\(762\) 0 0
\(763\) 160.437 0.210271
\(764\) 273.998 585.270i 0.358637 0.766060i
\(765\) 0 0
\(766\) −1227.64 273.140i −1.60267 0.356579i
\(767\) 1465.93i 1.91125i
\(768\) 0 0
\(769\) −256.591 −0.333669 −0.166834 0.985985i \(-0.553355\pi\)
−0.166834 + 0.985985i \(0.553355\pi\)
\(770\) 82.5898 371.204i 0.107259 0.482084i
\(771\) 0 0
\(772\) 146.549 + 68.6082i 0.189831 + 0.0888707i
\(773\) 889.126i 1.15023i 0.818073 + 0.575114i \(0.195042\pi\)
−0.818073 + 0.575114i \(0.804958\pi\)
\(774\) 0 0
\(775\) 734.321i 0.947510i
\(776\) 593.594 769.949i 0.764940 0.992202i
\(777\) 0 0
\(778\) −760.103 169.116i −0.976997 0.217373i
\(779\) −663.816 −0.852139
\(780\) 0 0
\(781\) 939.635i 1.20312i
\(782\) 27.8558 + 6.19766i 0.0356212 + 0.00792540i
\(783\) 0 0
\(784\) −71.7313 86.0152i −0.0914940 0.109713i
\(785\) 1133.57 1.44403
\(786\) 0 0
\(787\) 237.130 0.301309 0.150654 0.988586i \(-0.451862\pi\)
0.150654 + 0.988586i \(0.451862\pi\)
\(788\) −65.7692 + 140.485i −0.0834635 + 0.178281i
\(789\) 0 0
\(790\) −6.69508 + 30.0914i −0.00847478 + 0.0380904i
\(791\) 356.033i 0.450105i
\(792\) 0 0
\(793\) −2108.96 −2.65947
\(794\) −563.156 125.297i −0.709265 0.157805i
\(795\) 0 0
\(796\) −112.386 + 240.059i −0.141188 + 0.301582i
\(797\) 54.0956i 0.0678740i 0.999424 + 0.0339370i \(0.0108046\pi\)
−0.999424 + 0.0339370i \(0.989195\pi\)
\(798\) 0 0
\(799\) 70.8434i 0.0886650i
\(800\) 675.356 348.316i 0.844195 0.435395i
\(801\) 0 0
\(802\) 141.824 637.438i 0.176839 0.794811i
\(803\) 924.993 1.15192
\(804\) 0 0
\(805\) 82.5354i 0.102528i
\(806\) −331.110 + 1488.19i −0.410807 + 1.84639i
\(807\) 0 0
\(808\) 826.616 + 637.281i 1.02304 + 0.788714i
\(809\) 381.017 0.470973 0.235487 0.971878i \(-0.424332\pi\)
0.235487 + 0.971878i \(0.424332\pi\)
\(810\) 0 0
\(811\) 821.965 1.01352 0.506760 0.862087i \(-0.330843\pi\)
0.506760 + 0.862087i \(0.330843\pi\)
\(812\) 256.335 + 120.005i 0.315683 + 0.147790i
\(813\) 0 0
\(814\) −803.372 178.743i −0.986944 0.219586i
\(815\) 2052.52i 2.51843i
\(816\) 0 0
\(817\) −856.618 −1.04849
\(818\) −21.0401 + 94.5659i −0.0257214 + 0.115606i
\(819\) 0 0
\(820\) 331.093 707.225i 0.403772 0.862469i
\(821\) 118.925i 0.144853i −0.997374 0.0724266i \(-0.976926\pi\)
0.997374 0.0724266i \(-0.0230743\pi\)
\(822\) 0 0
\(823\) 1154.09i 1.40229i −0.713018 0.701145i \(-0.752672\pi\)
0.713018 0.701145i \(-0.247328\pi\)
\(824\) −499.589 385.159i −0.606297 0.467426i
\(825\) 0 0
\(826\) 307.160 + 68.3404i 0.371864 + 0.0827366i
\(827\) 1111.06 1.34348 0.671741 0.740786i \(-0.265547\pi\)
0.671741 + 0.740786i \(0.265547\pi\)
\(828\) 0 0
\(829\) 1108.39i 1.33702i −0.743704 0.668509i \(-0.766933\pi\)
0.743704 0.668509i \(-0.233067\pi\)
\(830\) 1933.58 + 430.205i 2.32961 + 0.518319i
\(831\) 0 0
\(832\) −1525.75 + 401.383i −1.83384 + 0.482432i
\(833\) −22.3540 −0.0268355
\(834\) 0 0
\(835\) −884.724 −1.05955
\(836\) −885.261 414.442i −1.05892 0.495744i
\(837\) 0 0
\(838\) −169.351 + 761.157i −0.202089 + 0.908301i
\(839\) 374.127i 0.445920i 0.974828 + 0.222960i \(0.0715719\pi\)
−0.974828 + 0.222960i \(0.928428\pi\)
\(840\) 0 0
\(841\) 125.743 0.149516
\(842\) −1375.97 306.142i −1.63417 0.363590i
\(843\) 0 0
\(844\) −1187.04 555.723i −1.40645 0.658439i
\(845\) 3062.75i 3.62456i
\(846\) 0 0
\(847\) 39.8139i 0.0470058i
\(848\) 1107.31 923.426i 1.30579 1.08895i
\(849\) 0 0
\(850\) 32.9388 148.045i 0.0387516 0.174171i
\(851\) −178.626 −0.209901
\(852\) 0 0
\(853\) 559.108i 0.655461i 0.944771 + 0.327730i \(0.106284\pi\)
−0.944771 + 0.327730i \(0.893716\pi\)
\(854\) 98.3184 441.897i 0.115127 0.517444i
\(855\) 0 0
\(856\) −990.216 + 1284.41i −1.15679 + 1.50048i
\(857\) 1449.03 1.69081 0.845406 0.534124i \(-0.179358\pi\)
0.845406 + 0.534124i \(0.179358\pi\)
\(858\) 0 0
\(859\) 324.702 0.378000 0.189000 0.981977i \(-0.439475\pi\)
0.189000 + 0.981977i \(0.439475\pi\)
\(860\) 427.257 912.635i 0.496811 1.06120i
\(861\) 0 0
\(862\) −498.773 110.973i −0.578623 0.128739i
\(863\) 1427.85i 1.65452i −0.561816 0.827262i \(-0.689897\pi\)
0.561816 0.827262i \(-0.310103\pi\)
\(864\) 0 0
\(865\) 1317.25 1.52283
\(866\) −150.914 + 678.290i −0.174265 + 0.783245i
\(867\) 0 0
\(868\) −296.390 138.757i −0.341463 0.159858i
\(869\) 22.7241i 0.0261497i
\(870\) 0 0
\(871\) 367.368i 0.421777i
\(872\) 384.194 + 296.195i 0.440590 + 0.339674i
\(873\) 0 0
\(874\) −207.084 46.0745i −0.236939 0.0527168i
\(875\) 23.1553 0.0264632
\(876\) 0 0
\(877\) 676.175i 0.771009i −0.922706 0.385505i \(-0.874027\pi\)
0.922706 0.385505i \(-0.125973\pi\)
\(878\) −55.0613 12.2507i −0.0627122 0.0139529i
\(879\) 0 0
\(880\) 883.086 736.439i 1.00351 0.836862i
\(881\) 558.769 0.634244 0.317122 0.948385i \(-0.397283\pi\)
0.317122 + 0.948385i \(0.397283\pi\)
\(882\) 0 0
\(883\) −1192.56 −1.35058 −0.675290 0.737552i \(-0.735981\pi\)
−0.675290 + 0.737552i \(0.735981\pi\)
\(884\) −133.509 + 285.180i −0.151029 + 0.322602i
\(885\) 0 0
\(886\) −322.715 + 1450.46i −0.364238 + 1.63709i
\(887\) 173.161i 0.195221i 0.995225 + 0.0976103i \(0.0311199\pi\)
−0.995225 + 0.0976103i \(0.968880\pi\)
\(888\) 0 0
\(889\) −620.112 −0.697539
\(890\) 356.532 + 79.3254i 0.400598 + 0.0891296i
\(891\) 0 0
\(892\) 71.6248 152.993i 0.0802969 0.171517i
\(893\) 526.661i 0.589766i
\(894\) 0 0
\(895\) 2331.67i 2.60522i
\(896\) −12.9736 338.408i −0.0144795 0.377687i
\(897\) 0 0
\(898\) 91.3921 410.767i 0.101773 0.457424i
\(899\) 827.023 0.919936
\(900\) 0 0
\(901\) 287.772i 0.319392i
\(902\) 125.015 561.889i 0.138598 0.622937i
\(903\) 0 0
\(904\) 657.301 852.583i 0.727103 0.943123i
\(905\) 263.497 0.291157
\(906\) 0 0
\(907\) 813.148 0.896525 0.448262 0.893902i \(-0.352043\pi\)
0.448262 + 0.893902i \(0.352043\pi\)
\(908\) 141.488 + 66.2388i 0.155824 + 0.0729503i
\(909\) 0 0
\(910\) 888.984 + 197.791i 0.976905 + 0.217353i
\(911\) 90.1970i 0.0990088i −0.998774 0.0495044i \(-0.984236\pi\)
0.998774 0.0495044i \(-0.0157642\pi\)
\(912\) 0 0
\(913\) 1460.18 1.59932
\(914\) −209.238 + 940.433i −0.228926 + 1.02892i
\(915\) 0 0
\(916\) −149.549 + 319.442i −0.163263 + 0.348736i
\(917\) 25.2124i 0.0274945i
\(918\) 0 0
\(919\) 1408.38i 1.53251i 0.642536 + 0.766255i \(0.277882\pi\)
−0.642536 + 0.766255i \(0.722118\pi\)
\(920\) 152.375 197.645i 0.165625 0.214832i
\(921\) 0 0
\(922\) 661.371 + 147.149i 0.717322 + 0.159598i
\(923\) 2250.30 2.43802
\(924\) 0 0
\(925\) 949.344i 1.02632i
\(926\) −780.394 173.631i −0.842758 0.187506i
\(927\) 0 0
\(928\) 392.288 + 760.614i 0.422724 + 0.819627i
\(929\) −1438.63 −1.54858 −0.774292 0.632829i \(-0.781894\pi\)
−0.774292 + 0.632829i \(0.781894\pi\)
\(930\) 0 0
\(931\) 166.183 0.178500
\(932\) 52.2637 + 24.4677i 0.0560769 + 0.0262529i
\(933\) 0 0
\(934\) 16.0529 72.1507i 0.0171873 0.0772492i
\(935\) 229.500i 0.245455i
\(936\) 0 0
\(937\) −371.801 −0.396799 −0.198399 0.980121i \(-0.563574\pi\)
−0.198399 + 0.980121i \(0.563574\pi\)
\(938\) −76.9757 17.1264i −0.0820637 0.0182585i
\(939\) 0 0
\(940\) −561.101 262.684i −0.596916 0.279451i
\(941\) 737.684i 0.783936i 0.919979 + 0.391968i \(0.128206\pi\)
−0.919979 + 0.391968i \(0.871794\pi\)
\(942\) 0 0
\(943\) 124.933i 0.132485i
\(944\) 609.380 + 730.726i 0.645529 + 0.774074i
\(945\) 0 0
\(946\) 161.326 725.087i 0.170535 0.766477i
\(947\) −906.635 −0.957376 −0.478688 0.877985i \(-0.658888\pi\)
−0.478688 + 0.877985i \(0.658888\pi\)
\(948\) 0 0
\(949\) 2215.23i 2.33428i
\(950\) −244.873 + 1100.59i −0.257761 + 1.15852i
\(951\) 0 0
\(952\) −53.5306 41.2695i −0.0562296 0.0433504i
\(953\) 480.032 0.503706 0.251853 0.967765i \(-0.418960\pi\)
0.251853 + 0.967765i \(0.418960\pi\)
\(954\) 0 0
\(955\) −1127.98 −1.18113
\(956\) −672.575 + 1436.64i −0.703530 + 1.50276i
\(957\) 0 0
\(958\) 697.030 + 155.083i 0.727589 + 0.161882i
\(959\) 398.954i 0.416011i
\(960\) 0 0
\(961\) 4.74730 0.00493996
\(962\) 428.066 1923.97i 0.444975 1.99996i
\(963\) 0 0
\(964\) 148.027 + 69.3000i 0.153555 + 0.0718880i
\(965\) 282.441i 0.292685i
\(966\) 0 0
\(967\) 1445.24i 1.49456i 0.664509 + 0.747280i \(0.268641\pi\)
−0.664509 + 0.747280i \(0.731359\pi\)
\(968\) −73.5036 + 95.3413i −0.0759335 + 0.0984931i
\(969\) 0 0
\(970\) −1656.44 368.544i −1.70767 0.379942i
\(971\) −1767.08 −1.81986 −0.909928 0.414766i \(-0.863864\pi\)
−0.909928 + 0.414766i \(0.863864\pi\)
\(972\) 0 0
\(973\) 79.3639i 0.0815662i
\(974\) 999.453 + 222.370i 1.02613 + 0.228306i
\(975\) 0 0
\(976\) 1051.26 876.688i 1.07711 0.898246i
\(977\) 225.446 0.230753 0.115376 0.993322i \(-0.463193\pi\)
0.115376 + 0.993322i \(0.463193\pi\)
\(978\) 0 0
\(979\) 269.242 0.275018
\(980\) −82.8876 + 177.051i −0.0845792 + 0.180664i
\(981\) 0 0
\(982\) −121.632 + 546.684i −0.123862 + 0.556704i
\(983\) 198.843i 0.202282i −0.994872 0.101141i \(-0.967751\pi\)
0.994872 0.101141i \(-0.0322493\pi\)
\(984\) 0 0
\(985\) 270.754 0.274877
\(986\) 166.735 + 37.0971i 0.169102 + 0.0376238i
\(987\) 0 0
\(988\) 992.531 2120.08i 1.00459 2.14583i
\(989\) 161.219i 0.163013i
\(990\) 0 0
\(991\) 32.6795i 0.0329763i 0.999864 + 0.0164882i \(0.00524858\pi\)
−0.999864 + 0.0164882i \(0.994751\pi\)
\(992\) −453.586 879.467i −0.457244 0.886559i
\(993\) 0 0
\(994\) −104.907 + 471.511i −0.105540 + 0.474358i
\(995\) 462.661 0.464985
\(996\) 0 0
\(997\) 1241.41i 1.24515i 0.782560 + 0.622575i \(0.213914\pi\)
−0.782560 + 0.622575i \(0.786086\pi\)
\(998\) −12.9755 + 58.3193i −0.0130016 + 0.0584362i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.g.c.379.12 yes 24
3.2 odd 2 inner 504.3.g.c.379.13 yes 24
4.3 odd 2 2016.3.g.c.1135.20 24
8.3 odd 2 inner 504.3.g.c.379.11 24
8.5 even 2 2016.3.g.c.1135.19 24
12.11 even 2 2016.3.g.c.1135.5 24
24.5 odd 2 2016.3.g.c.1135.6 24
24.11 even 2 inner 504.3.g.c.379.14 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.g.c.379.11 24 8.3 odd 2 inner
504.3.g.c.379.12 yes 24 1.1 even 1 trivial
504.3.g.c.379.13 yes 24 3.2 odd 2 inner
504.3.g.c.379.14 yes 24 24.11 even 2 inner
2016.3.g.c.1135.5 24 12.11 even 2
2016.3.g.c.1135.6 24 24.5 odd 2
2016.3.g.c.1135.19 24 8.5 even 2
2016.3.g.c.1135.20 24 4.3 odd 2