Properties

Label 504.3.e.c.251.37
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.37
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.c.251.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64277 - 1.14075i) q^{2} +(1.39736 - 3.74798i) q^{4} +3.51431i q^{5} +(6.42922 + 2.76859i) q^{7} +(-1.97998 - 7.75111i) q^{8} +(4.00896 + 5.77318i) q^{10} -5.26675i q^{11} +9.36128 q^{13} +(13.7200 - 2.78601i) q^{14} +(-12.0948 - 10.4746i) q^{16} +12.3664 q^{17} +8.84770i q^{19} +(13.1716 + 4.91076i) q^{20} +(-6.00806 - 8.65204i) q^{22} -4.29743 q^{23} +12.6496 q^{25} +(15.3784 - 10.6789i) q^{26} +(19.3606 - 20.2279i) q^{28} +18.6786 q^{29} +52.1525 q^{31} +(-31.8178 - 3.41016i) q^{32} +(20.3151 - 14.1070i) q^{34} +(-9.72968 + 22.5943i) q^{35} -45.4695i q^{37} +(10.0930 + 14.5347i) q^{38} +(27.2398 - 6.95827i) q^{40} -42.0916 q^{41} -23.2557 q^{43} +(-19.7397 - 7.35956i) q^{44} +(-7.05967 + 4.90230i) q^{46} -28.5041i q^{47} +(33.6698 + 35.5998i) q^{49} +(20.7804 - 14.4301i) q^{50} +(13.0811 - 35.0859i) q^{52} -18.1585 q^{53} +18.5090 q^{55} +(8.72990 - 55.3154i) q^{56} +(30.6845 - 21.3076i) q^{58} -76.3857 q^{59} -3.84787 q^{61} +(85.6744 - 59.4932i) q^{62} +(-56.1593 + 30.6942i) q^{64} +32.8984i q^{65} +4.55636 q^{67} +(17.2803 - 46.3491i) q^{68} +(9.79088 + 48.2163i) q^{70} -40.3858 q^{71} +123.009i q^{73} +(-51.8695 - 74.6958i) q^{74} +(33.1610 + 12.3634i) q^{76} +(14.5815 - 33.8611i) q^{77} -107.545i q^{79} +(36.8109 - 42.5047i) q^{80} +(-69.1466 + 48.0161i) q^{82} -92.3016 q^{83} +43.4593i q^{85} +(-38.2036 + 26.5290i) q^{86} +(-40.8231 + 10.4281i) q^{88} -1.80053 q^{89} +(60.1857 + 25.9176i) q^{91} +(-6.00506 + 16.1067i) q^{92} +(-32.5161 - 46.8255i) q^{94} -31.0935 q^{95} +122.204i q^{97} +(95.9222 + 20.0732i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 144 q^{22} - 336 q^{25} - 232 q^{28} - 384 q^{43} + 736 q^{46} + 368 q^{49} - 432 q^{58} + 480 q^{64} - 896 q^{67} + 264 q^{70} - 48 q^{88} - 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.64277 1.14075i 0.821383 0.570377i
\(3\) 0 0
\(4\) 1.39736 3.74798i 0.349341 0.936996i
\(5\) 3.51431i 0.702861i 0.936214 + 0.351431i \(0.114305\pi\)
−0.936214 + 0.351431i \(0.885695\pi\)
\(6\) 0 0
\(7\) 6.42922 + 2.76859i 0.918460 + 0.395513i
\(8\) −1.97998 7.75111i −0.247498 0.968888i
\(9\) 0 0
\(10\) 4.00896 + 5.77318i 0.400896 + 0.577318i
\(11\) 5.26675i 0.478795i −0.970922 0.239398i \(-0.923050\pi\)
0.970922 0.239398i \(-0.0769499\pi\)
\(12\) 0 0
\(13\) 9.36128 0.720098 0.360049 0.932933i \(-0.382760\pi\)
0.360049 + 0.932933i \(0.382760\pi\)
\(14\) 13.7200 2.78601i 0.979999 0.199000i
\(15\) 0 0
\(16\) −12.0948 10.4746i −0.755922 0.654661i
\(17\) 12.3664 0.727435 0.363718 0.931509i \(-0.381507\pi\)
0.363718 + 0.931509i \(0.381507\pi\)
\(18\) 0 0
\(19\) 8.84770i 0.465669i 0.972516 + 0.232834i \(0.0748000\pi\)
−0.972516 + 0.232834i \(0.925200\pi\)
\(20\) 13.1716 + 4.91076i 0.658578 + 0.245538i
\(21\) 0 0
\(22\) −6.00806 8.65204i −0.273094 0.393274i
\(23\) −4.29743 −0.186845 −0.0934223 0.995627i \(-0.529781\pi\)
−0.0934223 + 0.995627i \(0.529781\pi\)
\(24\) 0 0
\(25\) 12.6496 0.505986
\(26\) 15.3784 10.6789i 0.591477 0.410727i
\(27\) 0 0
\(28\) 19.3606 20.2279i 0.691450 0.722425i
\(29\) 18.6786 0.644088 0.322044 0.946725i \(-0.395630\pi\)
0.322044 + 0.946725i \(0.395630\pi\)
\(30\) 0 0
\(31\) 52.1525 1.68234 0.841170 0.540771i \(-0.181867\pi\)
0.841170 + 0.540771i \(0.181867\pi\)
\(32\) −31.8178 3.41016i −0.994305 0.106567i
\(33\) 0 0
\(34\) 20.3151 14.1070i 0.597503 0.414912i
\(35\) −9.72968 + 22.5943i −0.277991 + 0.645550i
\(36\) 0 0
\(37\) 45.4695i 1.22891i −0.788954 0.614453i \(-0.789377\pi\)
0.788954 0.614453i \(-0.210623\pi\)
\(38\) 10.0930 + 14.5347i 0.265607 + 0.382492i
\(39\) 0 0
\(40\) 27.2398 6.95827i 0.680994 0.173957i
\(41\) −42.0916 −1.02662 −0.513312 0.858202i \(-0.671582\pi\)
−0.513312 + 0.858202i \(0.671582\pi\)
\(42\) 0 0
\(43\) −23.2557 −0.540830 −0.270415 0.962744i \(-0.587161\pi\)
−0.270415 + 0.962744i \(0.587161\pi\)
\(44\) −19.7397 7.35956i −0.448629 0.167263i
\(45\) 0 0
\(46\) −7.05967 + 4.90230i −0.153471 + 0.106572i
\(47\) 28.5041i 0.606469i −0.952916 0.303235i \(-0.901933\pi\)
0.952916 0.303235i \(-0.0980666\pi\)
\(48\) 0 0
\(49\) 33.6698 + 35.5998i 0.687139 + 0.726526i
\(50\) 20.7804 14.4301i 0.415608 0.288603i
\(51\) 0 0
\(52\) 13.0811 35.0859i 0.251560 0.674729i
\(53\) −18.1585 −0.342614 −0.171307 0.985218i \(-0.554799\pi\)
−0.171307 + 0.985218i \(0.554799\pi\)
\(54\) 0 0
\(55\) 18.5090 0.336527
\(56\) 8.72990 55.3154i 0.155891 0.987774i
\(57\) 0 0
\(58\) 30.6845 21.3076i 0.529043 0.367373i
\(59\) −76.3857 −1.29467 −0.647336 0.762205i \(-0.724117\pi\)
−0.647336 + 0.762205i \(0.724117\pi\)
\(60\) 0 0
\(61\) −3.84787 −0.0630799 −0.0315400 0.999502i \(-0.510041\pi\)
−0.0315400 + 0.999502i \(0.510041\pi\)
\(62\) 85.6744 59.4932i 1.38185 0.959568i
\(63\) 0 0
\(64\) −56.1593 + 30.6942i −0.877489 + 0.479596i
\(65\) 32.8984i 0.506129i
\(66\) 0 0
\(67\) 4.55636 0.0680054 0.0340027 0.999422i \(-0.489175\pi\)
0.0340027 + 0.999422i \(0.489175\pi\)
\(68\) 17.2803 46.3491i 0.254123 0.681604i
\(69\) 0 0
\(70\) 9.79088 + 48.2163i 0.139870 + 0.688804i
\(71\) −40.3858 −0.568814 −0.284407 0.958704i \(-0.591797\pi\)
−0.284407 + 0.958704i \(0.591797\pi\)
\(72\) 0 0
\(73\) 123.009i 1.68505i 0.538656 + 0.842526i \(0.318932\pi\)
−0.538656 + 0.842526i \(0.681068\pi\)
\(74\) −51.8695 74.6958i −0.700939 1.00940i
\(75\) 0 0
\(76\) 33.1610 + 12.3634i 0.436330 + 0.162677i
\(77\) 14.5815 33.8611i 0.189370 0.439754i
\(78\) 0 0
\(79\) 107.545i 1.36133i −0.732596 0.680663i \(-0.761692\pi\)
0.732596 0.680663i \(-0.238308\pi\)
\(80\) 36.8109 42.5047i 0.460136 0.531309i
\(81\) 0 0
\(82\) −69.1466 + 48.0161i −0.843251 + 0.585562i
\(83\) −92.3016 −1.11207 −0.556034 0.831160i \(-0.687677\pi\)
−0.556034 + 0.831160i \(0.687677\pi\)
\(84\) 0 0
\(85\) 43.4593i 0.511286i
\(86\) −38.2036 + 26.5290i −0.444228 + 0.308477i
\(87\) 0 0
\(88\) −40.8231 + 10.4281i −0.463899 + 0.118501i
\(89\) −1.80053 −0.0202306 −0.0101153 0.999949i \(-0.503220\pi\)
−0.0101153 + 0.999949i \(0.503220\pi\)
\(90\) 0 0
\(91\) 60.1857 + 25.9176i 0.661382 + 0.284808i
\(92\) −6.00506 + 16.1067i −0.0652724 + 0.175073i
\(93\) 0 0
\(94\) −32.5161 46.8255i −0.345916 0.498144i
\(95\) −31.0935 −0.327300
\(96\) 0 0
\(97\) 122.204i 1.25984i 0.776660 + 0.629919i \(0.216912\pi\)
−0.776660 + 0.629919i \(0.783088\pi\)
\(98\) 95.9222 + 20.0732i 0.978798 + 0.204829i
\(99\) 0 0
\(100\) 17.6761 47.4107i 0.176761 0.474107i
\(101\) 85.2602i 0.844160i 0.906559 + 0.422080i \(0.138700\pi\)
−0.906559 + 0.422080i \(0.861300\pi\)
\(102\) 0 0
\(103\) 27.4148 0.266164 0.133082 0.991105i \(-0.457513\pi\)
0.133082 + 0.991105i \(0.457513\pi\)
\(104\) −18.5352 72.5603i −0.178223 0.697695i
\(105\) 0 0
\(106\) −29.8302 + 20.7144i −0.281417 + 0.195419i
\(107\) 116.898i 1.09250i 0.837622 + 0.546250i \(0.183945\pi\)
−0.837622 + 0.546250i \(0.816055\pi\)
\(108\) 0 0
\(109\) 109.910i 1.00835i 0.863602 + 0.504175i \(0.168203\pi\)
−0.863602 + 0.504175i \(0.831797\pi\)
\(110\) 30.4059 21.1142i 0.276417 0.191947i
\(111\) 0 0
\(112\) −48.7600 100.829i −0.435357 0.900258i
\(113\) 91.9016i 0.813288i 0.913587 + 0.406644i \(0.133301\pi\)
−0.913587 + 0.406644i \(0.866699\pi\)
\(114\) 0 0
\(115\) 15.1025i 0.131326i
\(116\) 26.1007 70.0069i 0.225006 0.603508i
\(117\) 0 0
\(118\) −125.484 + 87.1372i −1.06342 + 0.738451i
\(119\) 79.5063 + 34.2375i 0.668120 + 0.287710i
\(120\) 0 0
\(121\) 93.2614 0.770755
\(122\) −6.32116 + 4.38948i −0.0518128 + 0.0359793i
\(123\) 0 0
\(124\) 72.8760 195.467i 0.587710 1.57635i
\(125\) 132.312i 1.05850i
\(126\) 0 0
\(127\) 54.4707i 0.428903i 0.976735 + 0.214452i \(0.0687964\pi\)
−0.976735 + 0.214452i \(0.931204\pi\)
\(128\) −57.2422 + 114.487i −0.447205 + 0.894432i
\(129\) 0 0
\(130\) 37.5290 + 54.0444i 0.288684 + 0.415726i
\(131\) −229.881 −1.75481 −0.877407 0.479746i \(-0.840729\pi\)
−0.877407 + 0.479746i \(0.840729\pi\)
\(132\) 0 0
\(133\) −24.4957 + 56.8838i −0.184178 + 0.427698i
\(134\) 7.48504 5.19769i 0.0558585 0.0387887i
\(135\) 0 0
\(136\) −24.4853 95.8533i −0.180039 0.704803i
\(137\) 218.060i 1.59168i −0.605507 0.795840i \(-0.707030\pi\)
0.605507 0.795840i \(-0.292970\pi\)
\(138\) 0 0
\(139\) 275.165i 1.97960i −0.142458 0.989801i \(-0.545501\pi\)
0.142458 0.989801i \(-0.454499\pi\)
\(140\) 71.0870 + 68.0391i 0.507764 + 0.485993i
\(141\) 0 0
\(142\) −66.3444 + 46.0702i −0.467214 + 0.324438i
\(143\) 49.3035i 0.344780i
\(144\) 0 0
\(145\) 65.6422i 0.452705i
\(146\) 140.323 + 202.075i 0.961115 + 1.38407i
\(147\) 0 0
\(148\) −170.419 63.5374i −1.15148 0.429307i
\(149\) 158.666 1.06487 0.532437 0.846469i \(-0.321276\pi\)
0.532437 + 0.846469i \(0.321276\pi\)
\(150\) 0 0
\(151\) 62.5692i 0.414366i −0.978302 0.207183i \(-0.933570\pi\)
0.978302 0.207183i \(-0.0664295\pi\)
\(152\) 68.5795 17.5183i 0.451181 0.115252i
\(153\) 0 0
\(154\) −14.6732 72.2597i −0.0952805 0.469219i
\(155\) 183.280i 1.18245i
\(156\) 0 0
\(157\) −119.454 −0.760853 −0.380427 0.924811i \(-0.624223\pi\)
−0.380427 + 0.924811i \(0.624223\pi\)
\(158\) −122.682 176.671i −0.776469 1.11817i
\(159\) 0 0
\(160\) 11.9843 111.817i 0.0749021 0.698859i
\(161\) −27.6291 11.8978i −0.171609 0.0738995i
\(162\) 0 0
\(163\) −114.091 −0.699945 −0.349972 0.936760i \(-0.613809\pi\)
−0.349972 + 0.936760i \(0.613809\pi\)
\(164\) −58.8172 + 157.758i −0.358641 + 0.961942i
\(165\) 0 0
\(166\) −151.630 + 105.293i −0.913434 + 0.634298i
\(167\) 7.52860i 0.0450814i 0.999746 + 0.0225407i \(0.00717554\pi\)
−0.999746 + 0.0225407i \(0.992824\pi\)
\(168\) 0 0
\(169\) −81.3664 −0.481458
\(170\) 49.5764 + 71.3935i 0.291626 + 0.419962i
\(171\) 0 0
\(172\) −32.4966 + 87.1619i −0.188934 + 0.506755i
\(173\) 247.124i 1.42846i 0.699910 + 0.714231i \(0.253223\pi\)
−0.699910 + 0.714231i \(0.746777\pi\)
\(174\) 0 0
\(175\) 81.3274 + 35.0217i 0.464728 + 0.200124i
\(176\) −55.1670 + 63.7000i −0.313449 + 0.361932i
\(177\) 0 0
\(178\) −2.95784 + 2.05396i −0.0166171 + 0.0115391i
\(179\) 185.560i 1.03665i −0.855184 0.518324i \(-0.826556\pi\)
0.855184 0.518324i \(-0.173444\pi\)
\(180\) 0 0
\(181\) −322.522 −1.78189 −0.890944 0.454113i \(-0.849956\pi\)
−0.890944 + 0.454113i \(0.849956\pi\)
\(182\) 128.437 26.0806i 0.705696 0.143300i
\(183\) 0 0
\(184\) 8.50884 + 33.3098i 0.0462437 + 0.181032i
\(185\) 159.794 0.863750
\(186\) 0 0
\(187\) 65.1307i 0.348292i
\(188\) −106.833 39.8305i −0.568259 0.211864i
\(189\) 0 0
\(190\) −51.0794 + 35.4701i −0.268839 + 0.186685i
\(191\) 301.533 1.57871 0.789355 0.613937i \(-0.210415\pi\)
0.789355 + 0.613937i \(0.210415\pi\)
\(192\) 0 0
\(193\) −11.9190 −0.0617567 −0.0308783 0.999523i \(-0.509830\pi\)
−0.0308783 + 0.999523i \(0.509830\pi\)
\(194\) 139.405 + 200.753i 0.718583 + 1.03481i
\(195\) 0 0
\(196\) 180.476 76.4480i 0.920798 0.390041i
\(197\) −149.961 −0.761224 −0.380612 0.924735i \(-0.624287\pi\)
−0.380612 + 0.924735i \(0.624287\pi\)
\(198\) 0 0
\(199\) 17.5356 0.0881185 0.0440593 0.999029i \(-0.485971\pi\)
0.0440593 + 0.999029i \(0.485971\pi\)
\(200\) −25.0461 98.0488i −0.125231 0.490244i
\(201\) 0 0
\(202\) 97.2609 + 140.063i 0.481489 + 0.693379i
\(203\) 120.089 + 51.7133i 0.591570 + 0.254745i
\(204\) 0 0
\(205\) 147.923i 0.721574i
\(206\) 45.0362 31.2736i 0.218622 0.151813i
\(207\) 0 0
\(208\) −113.222 98.0555i −0.544338 0.471421i
\(209\) 46.5986 0.222960
\(210\) 0 0
\(211\) −377.299 −1.78815 −0.894074 0.447919i \(-0.852165\pi\)
−0.894074 + 0.447919i \(0.852165\pi\)
\(212\) −25.3741 + 68.0579i −0.119689 + 0.321028i
\(213\) 0 0
\(214\) 133.351 + 192.035i 0.623137 + 0.897361i
\(215\) 81.7276i 0.380128i
\(216\) 0 0
\(217\) 335.300 + 144.389i 1.54516 + 0.665388i
\(218\) 125.380 + 180.557i 0.575139 + 0.828241i
\(219\) 0 0
\(220\) 25.8637 69.3713i 0.117562 0.315324i
\(221\) 115.765 0.523825
\(222\) 0 0
\(223\) 191.043 0.856695 0.428348 0.903614i \(-0.359096\pi\)
0.428348 + 0.903614i \(0.359096\pi\)
\(224\) −195.122 110.015i −0.871081 0.491139i
\(225\) 0 0
\(226\) 104.837 + 150.973i 0.463881 + 0.668021i
\(227\) −54.0537 −0.238122 −0.119061 0.992887i \(-0.537988\pi\)
−0.119061 + 0.992887i \(0.537988\pi\)
\(228\) 0 0
\(229\) −63.8040 −0.278620 −0.139310 0.990249i \(-0.544488\pi\)
−0.139310 + 0.990249i \(0.544488\pi\)
\(230\) −17.2282 24.8098i −0.0749052 0.107869i
\(231\) 0 0
\(232\) −36.9833 144.780i −0.159411 0.624050i
\(233\) 91.0939i 0.390961i −0.980708 0.195480i \(-0.937373\pi\)
0.980708 0.195480i \(-0.0626266\pi\)
\(234\) 0 0
\(235\) 100.172 0.426264
\(236\) −106.738 + 286.292i −0.452282 + 1.21310i
\(237\) 0 0
\(238\) 169.667 34.4529i 0.712886 0.144760i
\(239\) −390.181 −1.63256 −0.816279 0.577658i \(-0.803967\pi\)
−0.816279 + 0.577658i \(0.803967\pi\)
\(240\) 0 0
\(241\) 66.2992i 0.275100i 0.990495 + 0.137550i \(0.0439228\pi\)
−0.990495 + 0.137550i \(0.956077\pi\)
\(242\) 153.207 106.388i 0.633085 0.439621i
\(243\) 0 0
\(244\) −5.37688 + 14.4218i −0.0220364 + 0.0591056i
\(245\) −125.109 + 118.326i −0.510647 + 0.482963i
\(246\) 0 0
\(247\) 82.8258i 0.335327i
\(248\) −103.261 404.240i −0.416376 1.63000i
\(249\) 0 0
\(250\) 150.936 + 217.358i 0.603743 + 0.869434i
\(251\) 72.6421 0.289411 0.144705 0.989475i \(-0.453777\pi\)
0.144705 + 0.989475i \(0.453777\pi\)
\(252\) 0 0
\(253\) 22.6335i 0.0894603i
\(254\) 62.1376 + 89.4826i 0.244636 + 0.352294i
\(255\) 0 0
\(256\) 36.5662 + 253.375i 0.142837 + 0.989746i
\(257\) 480.730 1.87055 0.935273 0.353927i \(-0.115154\pi\)
0.935273 + 0.353927i \(0.115154\pi\)
\(258\) 0 0
\(259\) 125.887 292.334i 0.486048 1.12870i
\(260\) 123.303 + 45.9710i 0.474241 + 0.176812i
\(261\) 0 0
\(262\) −377.640 + 262.237i −1.44138 + 1.00091i
\(263\) −221.781 −0.843274 −0.421637 0.906765i \(-0.638544\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(264\) 0 0
\(265\) 63.8147i 0.240810i
\(266\) 24.6498 + 121.390i 0.0926683 + 0.456355i
\(267\) 0 0
\(268\) 6.36689 17.0772i 0.0237571 0.0637208i
\(269\) 65.8358i 0.244743i −0.992484 0.122371i \(-0.960950\pi\)
0.992484 0.122371i \(-0.0390499\pi\)
\(270\) 0 0
\(271\) −63.0008 −0.232475 −0.116238 0.993221i \(-0.537083\pi\)
−0.116238 + 0.993221i \(0.537083\pi\)
\(272\) −149.569 129.533i −0.549884 0.476224i
\(273\) 0 0
\(274\) −248.753 358.222i −0.907857 1.30738i
\(275\) 66.6225i 0.242264i
\(276\) 0 0
\(277\) 274.997i 0.992769i 0.868103 + 0.496385i \(0.165339\pi\)
−0.868103 + 0.496385i \(0.834661\pi\)
\(278\) −313.895 452.031i −1.12912 1.62601i
\(279\) 0 0
\(280\) 194.395 + 30.6795i 0.694268 + 0.109570i
\(281\) 148.229i 0.527504i 0.964591 + 0.263752i \(0.0849600\pi\)
−0.964591 + 0.263752i \(0.915040\pi\)
\(282\) 0 0
\(283\) 265.522i 0.938240i −0.883134 0.469120i \(-0.844571\pi\)
0.883134 0.469120i \(-0.155429\pi\)
\(284\) −56.4336 + 151.365i −0.198710 + 0.532976i
\(285\) 0 0
\(286\) −56.2431 80.9941i −0.196654 0.283196i
\(287\) −270.616 116.534i −0.942913 0.406043i
\(288\) 0 0
\(289\) −136.072 −0.470838
\(290\) 74.8816 + 107.835i 0.258212 + 0.371844i
\(291\) 0 0
\(292\) 461.035 + 171.888i 1.57889 + 0.588657i
\(293\) 521.117i 1.77855i −0.457368 0.889277i \(-0.651208\pi\)
0.457368 0.889277i \(-0.348792\pi\)
\(294\) 0 0
\(295\) 268.443i 0.909975i
\(296\) −352.439 + 90.0289i −1.19067 + 0.304152i
\(297\) 0 0
\(298\) 260.652 180.999i 0.874670 0.607380i
\(299\) −40.2294 −0.134546
\(300\) 0 0
\(301\) −149.516 64.3855i −0.496731 0.213905i
\(302\) −71.3761 102.787i −0.236345 0.340353i
\(303\) 0 0
\(304\) 92.6760 107.011i 0.304855 0.352009i
\(305\) 13.5226i 0.0443364i
\(306\) 0 0
\(307\) 120.087i 0.391162i 0.980688 + 0.195581i \(0.0626592\pi\)
−0.980688 + 0.195581i \(0.937341\pi\)
\(308\) −106.535 101.967i −0.345893 0.331063i
\(309\) 0 0
\(310\) 209.077 + 301.086i 0.674443 + 0.971246i
\(311\) 351.784i 1.13114i −0.824701 0.565570i \(-0.808656\pi\)
0.824701 0.565570i \(-0.191344\pi\)
\(312\) 0 0
\(313\) 55.1841i 0.176307i −0.996107 0.0881536i \(-0.971903\pi\)
0.996107 0.0881536i \(-0.0280966\pi\)
\(314\) −196.235 + 136.268i −0.624952 + 0.433973i
\(315\) 0 0
\(316\) −403.076 150.279i −1.27556 0.475567i
\(317\) 410.736 1.29570 0.647849 0.761769i \(-0.275669\pi\)
0.647849 + 0.761769i \(0.275669\pi\)
\(318\) 0 0
\(319\) 98.3753i 0.308386i
\(320\) −107.869 197.361i −0.337090 0.616753i
\(321\) 0 0
\(322\) −58.9606 + 11.9727i −0.183108 + 0.0371822i
\(323\) 109.414i 0.338744i
\(324\) 0 0
\(325\) 118.417 0.364360
\(326\) −187.425 + 130.150i −0.574923 + 0.399232i
\(327\) 0 0
\(328\) 83.3407 + 326.256i 0.254087 + 0.994684i
\(329\) 78.9162 183.259i 0.239867 0.557018i
\(330\) 0 0
\(331\) −284.206 −0.858629 −0.429314 0.903155i \(-0.641245\pi\)
−0.429314 + 0.903155i \(0.641245\pi\)
\(332\) −128.979 + 345.945i −0.388490 + 1.04200i
\(333\) 0 0
\(334\) 8.58828 + 12.3677i 0.0257134 + 0.0370291i
\(335\) 16.0125i 0.0477984i
\(336\) 0 0
\(337\) −459.374 −1.36313 −0.681564 0.731758i \(-0.738700\pi\)
−0.681564 + 0.731758i \(0.738700\pi\)
\(338\) −133.666 + 92.8191i −0.395462 + 0.274613i
\(339\) 0 0
\(340\) 162.885 + 60.7284i 0.479073 + 0.178613i
\(341\) 274.674i 0.805496i
\(342\) 0 0
\(343\) 117.909 + 322.097i 0.343759 + 0.939058i
\(344\) 46.0459 + 180.257i 0.133854 + 0.524004i
\(345\) 0 0
\(346\) 281.908 + 405.967i 0.814762 + 1.17331i
\(347\) 460.926i 1.32832i −0.747592 0.664159i \(-0.768790\pi\)
0.747592 0.664159i \(-0.231210\pi\)
\(348\) 0 0
\(349\) 359.787 1.03091 0.515454 0.856917i \(-0.327623\pi\)
0.515454 + 0.856917i \(0.327623\pi\)
\(350\) 173.553 35.2420i 0.495866 0.100691i
\(351\) 0 0
\(352\) −17.9604 + 167.576i −0.0510240 + 0.476069i
\(353\) 152.580 0.432238 0.216119 0.976367i \(-0.430660\pi\)
0.216119 + 0.976367i \(0.430660\pi\)
\(354\) 0 0
\(355\) 141.928i 0.399797i
\(356\) −2.51599 + 6.74834i −0.00706738 + 0.0189560i
\(357\) 0 0
\(358\) −211.678 304.832i −0.591280 0.851486i
\(359\) 405.919 1.13069 0.565347 0.824853i \(-0.308742\pi\)
0.565347 + 0.824853i \(0.308742\pi\)
\(360\) 0 0
\(361\) 282.718 0.783153
\(362\) −529.828 + 367.918i −1.46361 + 1.01635i
\(363\) 0 0
\(364\) 181.240 189.359i 0.497912 0.520217i
\(365\) −432.291 −1.18436
\(366\) 0 0
\(367\) −70.1579 −0.191166 −0.0955830 0.995421i \(-0.530472\pi\)
−0.0955830 + 0.995421i \(0.530472\pi\)
\(368\) 51.9763 + 45.0137i 0.141240 + 0.122320i
\(369\) 0 0
\(370\) 262.504 182.285i 0.709470 0.492663i
\(371\) −116.745 50.2736i −0.314677 0.135508i
\(372\) 0 0
\(373\) 330.205i 0.885268i −0.896702 0.442634i \(-0.854044\pi\)
0.896702 0.442634i \(-0.145956\pi\)
\(374\) −74.2981 106.995i −0.198658 0.286082i
\(375\) 0 0
\(376\) −220.938 + 56.4376i −0.587601 + 0.150100i
\(377\) 174.855 0.463807
\(378\) 0 0
\(379\) −29.3602 −0.0774675 −0.0387337 0.999250i \(-0.512332\pi\)
−0.0387337 + 0.999250i \(0.512332\pi\)
\(380\) −43.4490 + 116.538i −0.114339 + 0.306679i
\(381\) 0 0
\(382\) 495.349 343.975i 1.29673 0.900459i
\(383\) 328.601i 0.857966i −0.903313 0.428983i \(-0.858872\pi\)
0.903313 0.428983i \(-0.141128\pi\)
\(384\) 0 0
\(385\) 118.998 + 51.2438i 0.309086 + 0.133101i
\(386\) −19.5802 + 13.5967i −0.0507259 + 0.0352246i
\(387\) 0 0
\(388\) 458.020 + 170.764i 1.18046 + 0.440113i
\(389\) 397.533 1.02194 0.510968 0.859599i \(-0.329287\pi\)
0.510968 + 0.859599i \(0.329287\pi\)
\(390\) 0 0
\(391\) −53.1437 −0.135917
\(392\) 209.272 331.465i 0.533858 0.845574i
\(393\) 0 0
\(394\) −246.351 + 171.069i −0.625256 + 0.434184i
\(395\) 377.945 0.956824
\(396\) 0 0
\(397\) 192.561 0.485041 0.242520 0.970146i \(-0.422026\pi\)
0.242520 + 0.970146i \(0.422026\pi\)
\(398\) 28.8069 20.0038i 0.0723791 0.0502608i
\(399\) 0 0
\(400\) −152.994 132.500i −0.382486 0.331249i
\(401\) 447.317i 1.11550i −0.830008 0.557752i \(-0.811664\pi\)
0.830008 0.557752i \(-0.188336\pi\)
\(402\) 0 0
\(403\) 488.215 1.21145
\(404\) 319.554 + 119.139i 0.790975 + 0.294899i
\(405\) 0 0
\(406\) 256.270 52.0386i 0.631206 0.128174i
\(407\) −239.476 −0.588394
\(408\) 0 0
\(409\) 556.925i 1.36167i −0.732435 0.680837i \(-0.761616\pi\)
0.732435 0.680837i \(-0.238384\pi\)
\(410\) −168.743 243.002i −0.411569 0.592689i
\(411\) 0 0
\(412\) 38.3085 102.750i 0.0929817 0.249394i
\(413\) −491.100 211.481i −1.18911 0.512060i
\(414\) 0 0
\(415\) 324.376i 0.781629i
\(416\) −297.855 31.9234i −0.715998 0.0767390i
\(417\) 0 0
\(418\) 76.5506 53.1575i 0.183136 0.127171i
\(419\) 655.843 1.56526 0.782628 0.622489i \(-0.213879\pi\)
0.782628 + 0.622489i \(0.213879\pi\)
\(420\) 0 0
\(421\) 358.380i 0.851258i 0.904898 + 0.425629i \(0.139947\pi\)
−0.904898 + 0.425629i \(0.860053\pi\)
\(422\) −619.815 + 430.405i −1.46875 + 1.01992i
\(423\) 0 0
\(424\) 35.9536 + 140.749i 0.0847963 + 0.331955i
\(425\) 156.431 0.368072
\(426\) 0 0
\(427\) −24.7388 10.6532i −0.0579364 0.0249489i
\(428\) 438.130 + 163.348i 1.02367 + 0.381655i
\(429\) 0 0
\(430\) −93.2310 134.259i −0.216816 0.312231i
\(431\) 340.972 0.791117 0.395559 0.918441i \(-0.370551\pi\)
0.395559 + 0.918441i \(0.370551\pi\)
\(432\) 0 0
\(433\) 213.233i 0.492454i 0.969212 + 0.246227i \(0.0791909\pi\)
−0.969212 + 0.246227i \(0.920809\pi\)
\(434\) 715.532 145.297i 1.64869 0.334786i
\(435\) 0 0
\(436\) 411.941 + 153.584i 0.944819 + 0.352257i
\(437\) 38.0223i 0.0870077i
\(438\) 0 0
\(439\) 238.439 0.543140 0.271570 0.962419i \(-0.412457\pi\)
0.271570 + 0.962419i \(0.412457\pi\)
\(440\) −36.6475 143.465i −0.0832897 0.326057i
\(441\) 0 0
\(442\) 190.175 132.060i 0.430261 0.298778i
\(443\) 112.783i 0.254589i −0.991865 0.127295i \(-0.959371\pi\)
0.991865 0.127295i \(-0.0406294\pi\)
\(444\) 0 0
\(445\) 6.32760i 0.0142193i
\(446\) 313.839 217.933i 0.703675 0.488639i
\(447\) 0 0
\(448\) −446.040 + 41.8572i −0.995626 + 0.0934313i
\(449\) 366.262i 0.815729i 0.913043 + 0.407864i \(0.133726\pi\)
−0.913043 + 0.407864i \(0.866274\pi\)
\(450\) 0 0
\(451\) 221.686i 0.491543i
\(452\) 344.446 + 128.420i 0.762048 + 0.284115i
\(453\) 0 0
\(454\) −88.7976 + 61.6619i −0.195589 + 0.135819i
\(455\) −91.0823 + 211.511i −0.200181 + 0.464860i
\(456\) 0 0
\(457\) −127.312 −0.278582 −0.139291 0.990252i \(-0.544482\pi\)
−0.139291 + 0.990252i \(0.544482\pi\)
\(458\) −104.815 + 72.7846i −0.228854 + 0.158918i
\(459\) 0 0
\(460\) −56.6038 21.1036i −0.123052 0.0458775i
\(461\) 588.619i 1.27683i 0.769692 + 0.638415i \(0.220410\pi\)
−0.769692 + 0.638415i \(0.779590\pi\)
\(462\) 0 0
\(463\) 269.281i 0.581601i 0.956784 + 0.290801i \(0.0939217\pi\)
−0.956784 + 0.290801i \(0.906078\pi\)
\(464\) −225.913 195.650i −0.486881 0.421660i
\(465\) 0 0
\(466\) −103.916 149.646i −0.222995 0.321129i
\(467\) 357.434 0.765383 0.382692 0.923876i \(-0.374997\pi\)
0.382692 + 0.923876i \(0.374997\pi\)
\(468\) 0 0
\(469\) 29.2939 + 12.6147i 0.0624603 + 0.0268970i
\(470\) 164.559 114.272i 0.350126 0.243131i
\(471\) 0 0
\(472\) 151.242 + 592.074i 0.320429 + 1.25439i
\(473\) 122.482i 0.258947i
\(474\) 0 0
\(475\) 111.920i 0.235622i
\(476\) 239.421 250.146i 0.502985 0.525517i
\(477\) 0 0
\(478\) −640.977 + 445.101i −1.34096 + 0.931173i
\(479\) 758.388i 1.58327i 0.610992 + 0.791637i \(0.290771\pi\)
−0.610992 + 0.791637i \(0.709229\pi\)
\(480\) 0 0
\(481\) 425.653i 0.884933i
\(482\) 75.6310 + 108.914i 0.156911 + 0.225963i
\(483\) 0 0
\(484\) 130.320 349.542i 0.269256 0.722194i
\(485\) −429.464 −0.885492
\(486\) 0 0
\(487\) 616.289i 1.26548i −0.774364 0.632741i \(-0.781930\pi\)
0.774364 0.632741i \(-0.218070\pi\)
\(488\) 7.61873 + 29.8253i 0.0156122 + 0.0611174i
\(489\) 0 0
\(490\) −70.5434 + 337.100i −0.143966 + 0.687959i
\(491\) 574.215i 1.16948i 0.811221 + 0.584740i \(0.198803\pi\)
−0.811221 + 0.584740i \(0.801197\pi\)
\(492\) 0 0
\(493\) 230.987 0.468532
\(494\) 94.4839 + 136.063i 0.191263 + 0.275432i
\(495\) 0 0
\(496\) −630.772 546.276i −1.27172 1.10136i
\(497\) −259.649 111.812i −0.522433 0.224973i
\(498\) 0 0
\(499\) −613.646 −1.22975 −0.614875 0.788624i \(-0.710794\pi\)
−0.614875 + 0.788624i \(0.710794\pi\)
\(500\) 495.905 + 184.888i 0.991809 + 0.369777i
\(501\) 0 0
\(502\) 119.334 82.8667i 0.237717 0.165073i
\(503\) 55.3348i 0.110010i 0.998486 + 0.0550048i \(0.0175174\pi\)
−0.998486 + 0.0550048i \(0.982483\pi\)
\(504\) 0 0
\(505\) −299.630 −0.593328
\(506\) 25.8192 + 37.1815i 0.0510261 + 0.0734812i
\(507\) 0 0
\(508\) 204.155 + 76.1153i 0.401880 + 0.149833i
\(509\) 310.802i 0.610613i 0.952254 + 0.305307i \(0.0987589\pi\)
−0.952254 + 0.305307i \(0.901241\pi\)
\(510\) 0 0
\(511\) −340.561 + 790.851i −0.666460 + 1.54765i
\(512\) 349.108 + 374.523i 0.681852 + 0.731490i
\(513\) 0 0
\(514\) 789.727 548.395i 1.53643 1.06692i
\(515\) 96.3442i 0.187076i
\(516\) 0 0
\(517\) −150.124 −0.290375
\(518\) −126.678 623.841i −0.244553 1.20433i
\(519\) 0 0
\(520\) 254.999 65.1384i 0.490383 0.125266i
\(521\) −774.806 −1.48715 −0.743576 0.668652i \(-0.766872\pi\)
−0.743576 + 0.668652i \(0.766872\pi\)
\(522\) 0 0
\(523\) 440.022i 0.841342i 0.907213 + 0.420671i \(0.138205\pi\)
−0.907213 + 0.420671i \(0.861795\pi\)
\(524\) −321.227 + 861.589i −0.613028 + 1.64425i
\(525\) 0 0
\(526\) −364.334 + 252.997i −0.692651 + 0.480984i
\(527\) 644.939 1.22379
\(528\) 0 0
\(529\) −510.532 −0.965089
\(530\) −72.7968 104.833i −0.137353 0.197797i
\(531\) 0 0
\(532\) 178.970 + 171.297i 0.336410 + 0.321986i
\(533\) −394.031 −0.739270
\(534\) 0 0
\(535\) −410.814 −0.767876
\(536\) −9.02153 35.3169i −0.0168312 0.0658897i
\(537\) 0 0
\(538\) −75.1024 108.153i −0.139596 0.201028i
\(539\) 187.495 177.330i 0.347857 0.328999i
\(540\) 0 0
\(541\) 1012.28i 1.87113i −0.353159 0.935563i \(-0.614893\pi\)
0.353159 0.935563i \(-0.385107\pi\)
\(542\) −103.496 + 71.8684i −0.190951 + 0.132599i
\(543\) 0 0
\(544\) −393.471 42.1714i −0.723293 0.0775209i
\(545\) −386.258 −0.708730
\(546\) 0 0
\(547\) 588.492 1.07585 0.537927 0.842991i \(-0.319208\pi\)
0.537927 + 0.842991i \(0.319208\pi\)
\(548\) −817.286 304.709i −1.49140 0.556038i
\(549\) 0 0
\(550\) −75.9999 109.445i −0.138182 0.198991i
\(551\) 165.262i 0.299932i
\(552\) 0 0
\(553\) 297.748 691.430i 0.538423 1.25032i
\(554\) 313.704 + 451.756i 0.566253 + 0.815444i
\(555\) 0 0
\(556\) −1031.31 384.505i −1.85488 0.691555i
\(557\) 1101.14 1.97691 0.988454 0.151520i \(-0.0484168\pi\)
0.988454 + 0.151520i \(0.0484168\pi\)
\(558\) 0 0
\(559\) −217.703 −0.389451
\(560\) 354.344 171.358i 0.632756 0.305996i
\(561\) 0 0
\(562\) 169.092 + 243.505i 0.300876 + 0.433283i
\(563\) −394.840 −0.701315 −0.350658 0.936504i \(-0.614042\pi\)
−0.350658 + 0.936504i \(0.614042\pi\)
\(564\) 0 0
\(565\) −322.970 −0.571629
\(566\) −302.895 436.191i −0.535150 0.770655i
\(567\) 0 0
\(568\) 79.9632 + 313.034i 0.140780 + 0.551117i
\(569\) 314.095i 0.552013i −0.961156 0.276006i \(-0.910989\pi\)
0.961156 0.276006i \(-0.0890111\pi\)
\(570\) 0 0
\(571\) 715.232 1.25260 0.626298 0.779584i \(-0.284569\pi\)
0.626298 + 0.779584i \(0.284569\pi\)
\(572\) −184.789 68.8949i −0.323057 0.120446i
\(573\) 0 0
\(574\) −577.496 + 117.267i −1.00609 + 0.204299i
\(575\) −54.3609 −0.0945407
\(576\) 0 0
\(577\) 250.055i 0.433371i −0.976241 0.216685i \(-0.930475\pi\)
0.976241 0.216685i \(-0.0695246\pi\)
\(578\) −223.535 + 155.225i −0.386738 + 0.268555i
\(579\) 0 0
\(580\) 246.026 + 91.7259i 0.424182 + 0.158148i
\(581\) −593.428 255.546i −1.02139 0.439837i
\(582\) 0 0
\(583\) 95.6365i 0.164042i
\(584\) 953.454 243.556i 1.63263 0.417047i
\(585\) 0 0
\(586\) −594.466 856.073i −1.01445 1.46087i
\(587\) −608.274 −1.03624 −0.518121 0.855308i \(-0.673368\pi\)
−0.518121 + 0.855308i \(0.673368\pi\)
\(588\) 0 0
\(589\) 461.430i 0.783413i
\(590\) −306.227 440.989i −0.519029 0.747438i
\(591\) 0 0
\(592\) −476.274 + 549.943i −0.804517 + 0.928957i
\(593\) −1006.48 −1.69727 −0.848634 0.528980i \(-0.822575\pi\)
−0.848634 + 0.528980i \(0.822575\pi\)
\(594\) 0 0
\(595\) −120.321 + 279.410i −0.202220 + 0.469596i
\(596\) 221.714 594.679i 0.372004 0.997783i
\(597\) 0 0
\(598\) −66.0875 + 45.8918i −0.110514 + 0.0767422i
\(599\) −81.6309 −0.136279 −0.0681393 0.997676i \(-0.521706\pi\)
−0.0681393 + 0.997676i \(0.521706\pi\)
\(600\) 0 0
\(601\) 84.9314i 0.141317i 0.997501 + 0.0706584i \(0.0225100\pi\)
−0.997501 + 0.0706584i \(0.977490\pi\)
\(602\) −319.068 + 64.7905i −0.530013 + 0.107625i
\(603\) 0 0
\(604\) −234.508 87.4319i −0.388259 0.144755i
\(605\) 327.749i 0.541734i
\(606\) 0 0
\(607\) −964.122 −1.58834 −0.794170 0.607696i \(-0.792094\pi\)
−0.794170 + 0.607696i \(0.792094\pi\)
\(608\) 30.1721 281.514i 0.0496251 0.463017i
\(609\) 0 0
\(610\) −15.4260 22.2145i −0.0252885 0.0364172i
\(611\) 266.835i 0.436718i
\(612\) 0 0
\(613\) 282.857i 0.461430i 0.973021 + 0.230715i \(0.0741065\pi\)
−0.973021 + 0.230715i \(0.925894\pi\)
\(614\) 136.989 + 197.274i 0.223110 + 0.321294i
\(615\) 0 0
\(616\) −291.332 45.9782i −0.472942 0.0746399i
\(617\) 805.890i 1.30614i 0.757296 + 0.653071i \(0.226520\pi\)
−0.757296 + 0.653071i \(0.773480\pi\)
\(618\) 0 0
\(619\) 970.057i 1.56714i 0.621306 + 0.783568i \(0.286602\pi\)
−0.621306 + 0.783568i \(0.713398\pi\)
\(620\) 686.930 + 256.109i 1.10795 + 0.413078i
\(621\) 0 0
\(622\) −401.299 577.899i −0.645176 0.929099i
\(623\) −11.5760 4.98492i −0.0185810 0.00800148i
\(624\) 0 0
\(625\) −148.745 −0.237992
\(626\) −62.9515 90.6547i −0.100562 0.144816i
\(627\) 0 0
\(628\) −166.921 + 447.712i −0.265797 + 0.712917i
\(629\) 562.294i 0.893949i
\(630\) 0 0
\(631\) 750.402i 1.18923i 0.804012 + 0.594613i \(0.202695\pi\)
−0.804012 + 0.594613i \(0.797305\pi\)
\(632\) −833.591 + 212.937i −1.31897 + 0.336926i
\(633\) 0 0
\(634\) 674.744 468.549i 1.06427 0.739036i
\(635\) −191.427 −0.301459
\(636\) 0 0
\(637\) 315.192 + 333.260i 0.494807 + 0.523171i
\(638\) −112.222 161.608i −0.175896 0.253303i
\(639\) 0 0
\(640\) −402.343 201.167i −0.628661 0.314323i
\(641\) 1031.35i 1.60897i 0.593974 + 0.804484i \(0.297558\pi\)
−0.593974 + 0.804484i \(0.702442\pi\)
\(642\) 0 0
\(643\) 545.671i 0.848634i 0.905514 + 0.424317i \(0.139486\pi\)
−0.905514 + 0.424317i \(0.860514\pi\)
\(644\) −83.2007 + 86.9278i −0.129194 + 0.134981i
\(645\) 0 0
\(646\) 124.815 + 179.742i 0.193212 + 0.278238i
\(647\) 291.352i 0.450313i 0.974323 + 0.225156i \(0.0722893\pi\)
−0.974323 + 0.225156i \(0.927711\pi\)
\(648\) 0 0
\(649\) 402.304i 0.619883i
\(650\) 194.531 135.085i 0.299279 0.207822i
\(651\) 0 0
\(652\) −159.426 + 427.611i −0.244519 + 0.655845i
\(653\) 383.246 0.586900 0.293450 0.955974i \(-0.405197\pi\)
0.293450 + 0.955974i \(0.405197\pi\)
\(654\) 0 0
\(655\) 807.871i 1.23339i
\(656\) 509.087 + 440.892i 0.776048 + 0.672091i
\(657\) 0 0
\(658\) −79.4125 391.076i −0.120688 0.594340i
\(659\) 60.8502i 0.0923372i 0.998934 + 0.0461686i \(0.0147011\pi\)
−0.998934 + 0.0461686i \(0.985299\pi\)
\(660\) 0 0
\(661\) −519.891 −0.786523 −0.393261 0.919427i \(-0.628653\pi\)
−0.393261 + 0.919427i \(0.628653\pi\)
\(662\) −466.884 + 324.209i −0.705263 + 0.489742i
\(663\) 0 0
\(664\) 182.756 + 715.440i 0.275235 + 1.07747i
\(665\) −199.907 86.0854i −0.300612 0.129452i
\(666\) 0 0
\(667\) −80.2697 −0.120344
\(668\) 28.2171 + 10.5202i 0.0422411 + 0.0157488i
\(669\) 0 0
\(670\) 18.2663 + 26.3047i 0.0272631 + 0.0392608i
\(671\) 20.2658i 0.0302024i
\(672\) 0 0
\(673\) 871.592 1.29508 0.647542 0.762029i \(-0.275797\pi\)
0.647542 + 0.762029i \(0.275797\pi\)
\(674\) −754.645 + 524.033i −1.11965 + 0.777497i
\(675\) 0 0
\(676\) −113.698 + 304.960i −0.168193 + 0.451124i
\(677\) 458.477i 0.677219i −0.940927 0.338610i \(-0.890043\pi\)
0.940927 0.338610i \(-0.109957\pi\)
\(678\) 0 0
\(679\) −338.334 + 785.679i −0.498283 + 1.15711i
\(680\) 336.858 86.0488i 0.495379 0.126542i
\(681\) 0 0
\(682\) −313.336 451.226i −0.459436 0.661621i
\(683\) 270.189i 0.395591i −0.980243 0.197796i \(-0.936622\pi\)
0.980243 0.197796i \(-0.0633783\pi\)
\(684\) 0 0
\(685\) 766.330 1.11873
\(686\) 561.130 + 394.625i 0.817974 + 0.575255i
\(687\) 0 0
\(688\) 281.272 + 243.593i 0.408825 + 0.354060i
\(689\) −169.987 −0.246716
\(690\) 0 0
\(691\) 931.061i 1.34741i 0.739000 + 0.673705i \(0.235298\pi\)
−0.739000 + 0.673705i \(0.764702\pi\)
\(692\) 926.217 + 345.322i 1.33846 + 0.499020i
\(693\) 0 0
\(694\) −525.803 757.194i −0.757641 1.09106i
\(695\) 967.013 1.39139
\(696\) 0 0
\(697\) −520.521 −0.746802
\(698\) 591.046 410.429i 0.846771 0.588006i
\(699\) 0 0
\(700\) 244.905 255.876i 0.349864 0.365537i
\(701\) 421.119 0.600740 0.300370 0.953823i \(-0.402890\pi\)
0.300370 + 0.953823i \(0.402890\pi\)
\(702\) 0 0
\(703\) 402.301 0.572263
\(704\) 161.658 + 295.777i 0.229628 + 0.420138i
\(705\) 0 0
\(706\) 250.654 174.056i 0.355033 0.246539i
\(707\) −236.051 + 548.157i −0.333877 + 0.775328i
\(708\) 0 0
\(709\) 1227.26i 1.73097i −0.500931 0.865487i \(-0.667009\pi\)
0.500931 0.865487i \(-0.332991\pi\)
\(710\) −161.905 233.155i −0.228035 0.328387i
\(711\) 0 0
\(712\) 3.56501 + 13.9561i 0.00500704 + 0.0196012i
\(713\) −224.122 −0.314336
\(714\) 0 0
\(715\) 173.268 0.242332
\(716\) −695.476 259.295i −0.971335 0.362143i
\(717\) 0 0
\(718\) 666.831 463.054i 0.928734 0.644922i
\(719\) 1202.04i 1.67182i 0.548869 + 0.835908i \(0.315059\pi\)
−0.548869 + 0.835908i \(0.684941\pi\)
\(720\) 0 0
\(721\) 176.256 + 75.9005i 0.244461 + 0.105271i
\(722\) 464.440 322.512i 0.643269 0.446692i
\(723\) 0 0
\(724\) −450.680 + 1208.81i −0.622486 + 1.66962i
\(725\) 236.277 0.325900
\(726\) 0 0
\(727\) −725.480 −0.997910 −0.498955 0.866628i \(-0.666283\pi\)
−0.498955 + 0.866628i \(0.666283\pi\)
\(728\) 81.7230 517.823i 0.112257 0.711295i
\(729\) 0 0
\(730\) −710.153 + 493.137i −0.972812 + 0.675530i
\(731\) −287.589 −0.393418
\(732\) 0 0
\(733\) 1032.80 1.40900 0.704499 0.709705i \(-0.251172\pi\)
0.704499 + 0.709705i \(0.251172\pi\)
\(734\) −115.253 + 80.0329i −0.157021 + 0.109037i
\(735\) 0 0
\(736\) 136.735 + 14.6549i 0.185781 + 0.0199115i
\(737\) 23.9972i 0.0325607i
\(738\) 0 0
\(739\) 1062.50 1.43775 0.718877 0.695137i \(-0.244656\pi\)
0.718877 + 0.695137i \(0.244656\pi\)
\(740\) 223.290 598.904i 0.301743 0.809330i
\(741\) 0 0
\(742\) −249.135 + 50.5898i −0.335762 + 0.0681804i
\(743\) −684.488 −0.921249 −0.460625 0.887595i \(-0.652375\pi\)
−0.460625 + 0.887595i \(0.652375\pi\)
\(744\) 0 0
\(745\) 557.602i 0.748459i
\(746\) −376.683 542.450i −0.504936 0.727144i
\(747\) 0 0
\(748\) −244.109 91.0112i −0.326349 0.121673i
\(749\) −323.642 + 751.560i −0.432098 + 1.00342i
\(750\) 0 0
\(751\) 565.603i 0.753133i 0.926390 + 0.376567i \(0.122895\pi\)
−0.926390 + 0.376567i \(0.877105\pi\)
\(752\) −298.568 + 344.750i −0.397032 + 0.458444i
\(753\) 0 0
\(754\) 287.246 199.467i 0.380963 0.264545i
\(755\) 219.887 0.291242
\(756\) 0 0
\(757\) 383.583i 0.506714i 0.967373 + 0.253357i \(0.0815348\pi\)
−0.967373 + 0.253357i \(0.918465\pi\)
\(758\) −48.2319 + 33.4927i −0.0636305 + 0.0441856i
\(759\) 0 0
\(760\) 61.5647 + 241.009i 0.0810062 + 0.317118i
\(761\) −1312.55 −1.72476 −0.862382 0.506258i \(-0.831028\pi\)
−0.862382 + 0.506258i \(0.831028\pi\)
\(762\) 0 0
\(763\) −304.296 + 706.636i −0.398816 + 0.926129i
\(764\) 421.352 1130.14i 0.551507 1.47924i
\(765\) 0 0
\(766\) −374.853 539.815i −0.489364 0.704719i
\(767\) −715.068 −0.932292
\(768\) 0 0
\(769\) 1180.37i 1.53494i −0.641086 0.767469i \(-0.721516\pi\)
0.641086 0.767469i \(-0.278484\pi\)
\(770\) 253.943 51.5661i 0.329796 0.0669690i
\(771\) 0 0
\(772\) −16.6552 + 44.6724i −0.0215741 + 0.0578657i
\(773\) 1269.43i 1.64221i −0.570780 0.821103i \(-0.693359\pi\)
0.570780 0.821103i \(-0.306641\pi\)
\(774\) 0 0
\(775\) 659.711 0.851240
\(776\) 947.219 241.963i 1.22064 0.311808i
\(777\) 0 0
\(778\) 653.055 453.488i 0.839402 0.582889i
\(779\) 372.414i 0.478066i
\(780\) 0 0
\(781\) 212.702i 0.272345i
\(782\) −87.3026 + 60.6238i −0.111640 + 0.0775241i
\(783\) 0 0
\(784\) −34.3349 783.248i −0.0437945 0.999041i
\(785\) 419.798i 0.534774i
\(786\) 0 0
\(787\) 1159.82i 1.47372i −0.676044 0.736861i \(-0.736307\pi\)
0.676044 0.736861i \(-0.263693\pi\)
\(788\) −209.550 + 562.052i −0.265926 + 0.713263i
\(789\) 0 0
\(790\) 620.876 431.143i 0.785919 0.545750i
\(791\) −254.438 + 590.856i −0.321666 + 0.746973i
\(792\) 0 0
\(793\) −36.0210 −0.0454237
\(794\) 316.333 219.665i 0.398404 0.276656i
\(795\) 0 0
\(796\) 24.5036 65.7231i 0.0307834 0.0825667i
\(797\) 478.221i 0.600026i 0.953935 + 0.300013i \(0.0969910\pi\)
−0.953935 + 0.300013i \(0.903009\pi\)
\(798\) 0 0
\(799\) 352.493i 0.441167i
\(800\) −402.484 43.1373i −0.503105 0.0539216i
\(801\) 0 0
\(802\) −510.278 734.837i −0.636257 0.916256i
\(803\) 647.856 0.806795
\(804\) 0 0
\(805\) 41.8126 97.0971i 0.0519411 0.120618i
\(806\) 802.022 556.932i 0.995065 0.690983i
\(807\) 0 0
\(808\) 660.861 168.814i 0.817897 0.208928i
\(809\) 1061.21i 1.31176i 0.754865 + 0.655881i \(0.227703\pi\)
−0.754865 + 0.655881i \(0.772297\pi\)
\(810\) 0 0
\(811\) 738.364i 0.910437i 0.890380 + 0.455218i \(0.150439\pi\)
−0.890380 + 0.455218i \(0.849561\pi\)
\(812\) 361.628 377.828i 0.445355 0.465305i
\(813\) 0 0
\(814\) −393.404 + 273.184i −0.483297 + 0.335606i
\(815\) 400.951i 0.491964i
\(816\) 0 0
\(817\) 205.759i 0.251847i
\(818\) −635.314 914.897i −0.776667 1.11846i
\(819\) 0 0
\(820\) −554.412 206.702i −0.676112 0.252075i
\(821\) 448.627 0.546440 0.273220 0.961952i \(-0.411911\pi\)
0.273220 + 0.961952i \(0.411911\pi\)
\(822\) 0 0
\(823\) 1327.80i 1.61337i −0.590980 0.806686i \(-0.701259\pi\)
0.590980 0.806686i \(-0.298741\pi\)
\(824\) −54.2810 212.495i −0.0658750 0.257883i
\(825\) 0 0
\(826\) −1048.01 + 212.811i −1.26878 + 0.257640i
\(827\) 1315.08i 1.59018i −0.606493 0.795089i \(-0.707424\pi\)
0.606493 0.795089i \(-0.292576\pi\)
\(828\) 0 0
\(829\) 1191.63 1.43744 0.718718 0.695302i \(-0.244729\pi\)
0.718718 + 0.695302i \(0.244729\pi\)
\(830\) −370.033 532.874i −0.445823 0.642017i
\(831\) 0 0
\(832\) −525.723 + 287.337i −0.631879 + 0.345356i
\(833\) 416.374 + 440.241i 0.499849 + 0.528501i
\(834\) 0 0
\(835\) −26.4578 −0.0316860
\(836\) 65.1152 174.651i 0.0778890 0.208912i
\(837\) 0 0
\(838\) 1077.40 748.155i 1.28568 0.892786i
\(839\) 192.974i 0.230005i 0.993365 + 0.115002i \(0.0366876\pi\)
−0.993365 + 0.115002i \(0.963312\pi\)
\(840\) 0 0
\(841\) −492.111 −0.585150
\(842\) 408.823 + 588.734i 0.485538 + 0.699209i
\(843\) 0 0
\(844\) −527.224 + 1414.11i −0.624673 + 1.67549i
\(845\) 285.947i 0.338398i
\(846\) 0 0
\(847\) 599.598 + 258.203i 0.707908 + 0.304844i
\(848\) 219.623 + 190.203i 0.258990 + 0.224296i
\(849\) 0 0
\(850\) 256.979 178.449i 0.302328 0.209940i
\(851\) 195.402i 0.229614i
\(852\) 0 0
\(853\) 236.364 0.277097 0.138549 0.990356i \(-0.455756\pi\)
0.138549 + 0.990356i \(0.455756\pi\)
\(854\) −52.7928 + 10.7202i −0.0618183 + 0.0125529i
\(855\) 0 0
\(856\) 906.085 231.455i 1.05851 0.270392i
\(857\) 464.302 0.541775 0.270888 0.962611i \(-0.412683\pi\)
0.270888 + 0.962611i \(0.412683\pi\)
\(858\) 0 0
\(859\) 567.819i 0.661023i −0.943802 0.330511i \(-0.892779\pi\)
0.943802 0.330511i \(-0.107221\pi\)
\(860\) −306.314 114.203i −0.356179 0.132794i
\(861\) 0 0
\(862\) 560.137 388.965i 0.649810 0.451235i
\(863\) 610.907 0.707888 0.353944 0.935267i \(-0.384840\pi\)
0.353944 + 0.935267i \(0.384840\pi\)
\(864\) 0 0
\(865\) −868.469 −1.00401
\(866\) 243.246 + 350.291i 0.280884 + 0.404494i
\(867\) 0 0
\(868\) 1009.70 1054.94i 1.16325 1.21536i
\(869\) −566.411 −0.651797
\(870\) 0 0
\(871\) 42.6534 0.0489706
\(872\) 851.925 217.620i 0.976978 0.249565i
\(873\) 0 0
\(874\) −43.3741 62.4618i −0.0496271 0.0714666i
\(875\) −366.319 + 850.666i −0.418651 + 0.972190i
\(876\) 0 0
\(877\) 780.619i 0.890101i −0.895505 0.445050i \(-0.853186\pi\)
0.895505 0.445050i \(-0.146814\pi\)
\(878\) 391.699 272.000i 0.446126 0.309795i
\(879\) 0 0
\(880\) −223.861 193.874i −0.254388 0.220311i
\(881\) −539.433 −0.612296 −0.306148 0.951984i \(-0.599040\pi\)
−0.306148 + 0.951984i \(0.599040\pi\)
\(882\) 0 0
\(883\) 797.997 0.903734 0.451867 0.892085i \(-0.350758\pi\)
0.451867 + 0.892085i \(0.350758\pi\)
\(884\) 161.766 433.886i 0.182993 0.490822i
\(885\) 0 0
\(886\) −128.658 185.276i −0.145212 0.209115i
\(887\) 435.503i 0.490985i 0.969399 + 0.245492i \(0.0789496\pi\)
−0.969399 + 0.245492i \(0.921050\pi\)
\(888\) 0 0
\(889\) −150.807 + 350.204i −0.169637 + 0.393931i
\(890\) −7.21823 10.3948i −0.00811037 0.0116795i
\(891\) 0 0
\(892\) 266.956 716.026i 0.299278 0.802720i
\(893\) 252.196 0.282414
\(894\) 0 0
\(895\) 652.115 0.728620
\(896\) −684.991 + 577.584i −0.764499 + 0.644625i
\(897\) 0 0
\(898\) 417.815 + 601.683i 0.465273 + 0.670026i
\(899\) 974.134 1.08358
\(900\) 0 0
\(901\) −224.556 −0.249230
\(902\) 252.889 + 364.178i 0.280364 + 0.403745i
\(903\) 0 0
\(904\) 712.339 181.964i 0.787985 0.201287i
\(905\) 1133.44i 1.25242i
\(906\) 0 0
\(907\) −834.673 −0.920257 −0.460128 0.887852i \(-0.652197\pi\)
−0.460128 + 0.887852i \(0.652197\pi\)
\(908\) −75.5326 + 202.592i −0.0831857 + 0.223119i
\(909\) 0 0
\(910\) 91.6552 + 451.366i 0.100720 + 0.496006i
\(911\) −543.809 −0.596937 −0.298468 0.954420i \(-0.596476\pi\)
−0.298468 + 0.954420i \(0.596476\pi\)
\(912\) 0 0
\(913\) 486.129i 0.532453i
\(914\) −209.144 + 145.231i −0.228822 + 0.158897i
\(915\) 0 0
\(916\) −89.1573 + 239.136i −0.0973333 + 0.261066i
\(917\) −1477.95 636.446i −1.61173 0.694052i
\(918\) 0 0
\(919\) 257.470i 0.280163i −0.990140 0.140082i \(-0.955264\pi\)
0.990140 0.140082i \(-0.0447365\pi\)
\(920\) −117.061 + 29.9027i −0.127240 + 0.0325029i
\(921\) 0 0
\(922\) 671.469 + 966.963i 0.728274 + 1.04877i
\(923\) −378.063 −0.409602
\(924\) 0 0
\(925\) 575.173i 0.621809i
\(926\) 307.184 + 442.366i 0.331732 + 0.477718i
\(927\) 0 0
\(928\) −594.310 63.6968i −0.640421 0.0686388i
\(929\) 943.723 1.01585 0.507924 0.861402i \(-0.330413\pi\)
0.507924 + 0.861402i \(0.330413\pi\)
\(930\) 0 0
\(931\) −314.976 + 297.900i −0.338321 + 0.319979i
\(932\) −341.418 127.291i −0.366329 0.136579i
\(933\) 0 0
\(934\) 587.181 407.744i 0.628673 0.436557i
\(935\) 228.889 0.244801
\(936\) 0 0
\(937\) 468.548i 0.500052i −0.968239 0.250026i \(-0.919561\pi\)
0.968239 0.250026i \(-0.0804391\pi\)
\(938\) 62.5133 12.6941i 0.0666453 0.0135331i
\(939\) 0 0
\(940\) 139.977 375.443i 0.148911 0.399408i
\(941\) 1430.10i 1.51977i 0.650058 + 0.759885i \(0.274745\pi\)
−0.650058 + 0.759885i \(0.725255\pi\)
\(942\) 0 0
\(943\) 180.885 0.191819
\(944\) 923.866 + 800.108i 0.978672 + 0.847572i
\(945\) 0 0
\(946\) 139.722 + 201.209i 0.147697 + 0.212694i
\(947\) 782.150i 0.825924i 0.910748 + 0.412962i \(0.135506\pi\)
−0.910748 + 0.412962i \(0.864494\pi\)
\(948\) 0 0
\(949\) 1151.52i 1.21340i
\(950\) 127.674 + 183.859i 0.134393 + 0.193536i
\(951\) 0 0
\(952\) 107.957 684.052i 0.113401 0.718542i
\(953\) 200.954i 0.210864i 0.994427 + 0.105432i \(0.0336226\pi\)
−0.994427 + 0.105432i \(0.966377\pi\)
\(954\) 0 0
\(955\) 1059.68i 1.10961i
\(956\) −545.225 + 1462.39i −0.570319 + 1.52970i
\(957\) 0 0
\(958\) 865.134 + 1245.85i 0.903062 + 1.30047i
\(959\) 603.720 1401.96i 0.629530 1.46189i
\(960\) 0 0
\(961\) 1758.89 1.83027
\(962\) −485.565 699.248i −0.504745 0.726869i
\(963\) 0 0
\(964\) 248.488 + 92.6440i 0.257768 + 0.0961037i
\(965\) 41.8872i 0.0434064i
\(966\) 0 0
\(967\) 297.101i 0.307240i 0.988130 + 0.153620i \(0.0490931\pi\)
−0.988130 + 0.153620i \(0.950907\pi\)
\(968\) −184.656 722.879i −0.190760 0.746776i
\(969\) 0 0
\(970\) −705.508 + 489.912i −0.727328 + 0.505064i
\(971\) 534.138 0.550090 0.275045 0.961431i \(-0.411307\pi\)
0.275045 + 0.961431i \(0.411307\pi\)
\(972\) 0 0
\(973\) 761.819 1769.09i 0.782959 1.81819i
\(974\) −703.034 1012.42i −0.721801 1.03945i
\(975\) 0 0
\(976\) 46.5391 + 40.3049i 0.0476835 + 0.0412960i
\(977\) 631.207i 0.646066i −0.946388 0.323033i \(-0.895298\pi\)
0.946388 0.323033i \(-0.104702\pi\)
\(978\) 0 0
\(979\) 9.48292i 0.00968633i
\(980\) 268.662 + 634.249i 0.274145 + 0.647193i
\(981\) 0 0
\(982\) 655.037 + 943.301i 0.667044 + 0.960591i
\(983\) 1569.91i 1.59706i −0.601955 0.798530i \(-0.705611\pi\)
0.601955 0.798530i \(-0.294389\pi\)
\(984\) 0 0
\(985\) 527.009i 0.535035i
\(986\) 379.457 263.499i 0.384845 0.267240i
\(987\) 0 0
\(988\) 310.430 + 115.738i 0.314200 + 0.117143i
\(989\) 99.9395 0.101051
\(990\) 0 0
\(991\) 890.354i 0.898440i −0.893421 0.449220i \(-0.851702\pi\)
0.893421 0.449220i \(-0.148298\pi\)
\(992\) −1659.38 177.848i −1.67276 0.179283i
\(993\) 0 0
\(994\) −554.093 + 112.515i −0.557437 + 0.113194i
\(995\) 61.6254i 0.0619351i
\(996\) 0 0
\(997\) −918.467 −0.921230 −0.460615 0.887600i \(-0.652371\pi\)
−0.460615 + 0.887600i \(0.652371\pi\)
\(998\) −1008.08 + 700.018i −1.01010 + 0.701421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.c.251.37 yes 48
3.2 odd 2 inner 504.3.e.c.251.12 yes 48
4.3 odd 2 2016.3.e.c.1007.16 48
7.6 odd 2 inner 504.3.e.c.251.38 yes 48
8.3 odd 2 inner 504.3.e.c.251.9 48
8.5 even 2 2016.3.e.c.1007.27 48
12.11 even 2 2016.3.e.c.1007.29 48
21.20 even 2 inner 504.3.e.c.251.11 yes 48
24.5 odd 2 2016.3.e.c.1007.18 48
24.11 even 2 inner 504.3.e.c.251.40 yes 48
28.27 even 2 2016.3.e.c.1007.17 48
56.13 odd 2 2016.3.e.c.1007.30 48
56.27 even 2 inner 504.3.e.c.251.10 yes 48
84.83 odd 2 2016.3.e.c.1007.28 48
168.83 odd 2 inner 504.3.e.c.251.39 yes 48
168.125 even 2 2016.3.e.c.1007.15 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.9 48 8.3 odd 2 inner
504.3.e.c.251.10 yes 48 56.27 even 2 inner
504.3.e.c.251.11 yes 48 21.20 even 2 inner
504.3.e.c.251.12 yes 48 3.2 odd 2 inner
504.3.e.c.251.37 yes 48 1.1 even 1 trivial
504.3.e.c.251.38 yes 48 7.6 odd 2 inner
504.3.e.c.251.39 yes 48 168.83 odd 2 inner
504.3.e.c.251.40 yes 48 24.11 even 2 inner
2016.3.e.c.1007.15 48 168.125 even 2
2016.3.e.c.1007.16 48 4.3 odd 2
2016.3.e.c.1007.17 48 28.27 even 2
2016.3.e.c.1007.18 48 24.5 odd 2
2016.3.e.c.1007.27 48 8.5 even 2
2016.3.e.c.1007.28 48 84.83 odd 2
2016.3.e.c.1007.29 48 12.11 even 2
2016.3.e.c.1007.30 48 56.13 odd 2