Properties

Label 2016.3.e.c.1007.28
Level $2016$
Weight $3$
Character 2016.1007
Analytic conductor $54.932$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1007,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-336] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.28
Character \(\chi\) \(=\) 2016.1007
Dual form 2016.3.e.c.1007.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.51431i q^{5} +(6.42922 - 2.76859i) q^{7} -5.26675i q^{11} -9.36128 q^{13} +12.3664 q^{17} +8.84770i q^{19} -4.29743 q^{23} +12.6496 q^{25} -18.6786 q^{29} +52.1525 q^{31} +(9.72968 + 22.5943i) q^{35} -45.4695i q^{37} -42.0916 q^{41} +23.2557 q^{43} +28.5041i q^{47} +(33.6698 - 35.5998i) q^{49} +18.1585 q^{53} +18.5090 q^{55} +76.3857 q^{59} +3.84787 q^{61} -32.8984i q^{65} -4.55636 q^{67} -40.3858 q^{71} -123.009i q^{73} +(-14.5815 - 33.8611i) q^{77} +107.545i q^{79} +92.3016 q^{83} +43.4593i q^{85} -1.80053 q^{89} +(-60.1857 + 25.9176i) q^{91} -31.0935 q^{95} -122.204i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 336 q^{25} + 384 q^{43} + 368 q^{49} + 896 q^{67} + 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.51431i 0.702861i 0.936214 + 0.351431i \(0.114305\pi\)
−0.936214 + 0.351431i \(0.885695\pi\)
\(6\) 0 0
\(7\) 6.42922 2.76859i 0.918460 0.395513i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.26675i 0.478795i −0.970922 0.239398i \(-0.923050\pi\)
0.970922 0.239398i \(-0.0769499\pi\)
\(12\) 0 0
\(13\) −9.36128 −0.720098 −0.360049 0.932933i \(-0.617240\pi\)
−0.360049 + 0.932933i \(0.617240\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 12.3664 0.727435 0.363718 0.931509i \(-0.381507\pi\)
0.363718 + 0.931509i \(0.381507\pi\)
\(18\) 0 0
\(19\) 8.84770i 0.465669i 0.972516 + 0.232834i \(0.0748000\pi\)
−0.972516 + 0.232834i \(0.925200\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.29743 −0.186845 −0.0934223 0.995627i \(-0.529781\pi\)
−0.0934223 + 0.995627i \(0.529781\pi\)
\(24\) 0 0
\(25\) 12.6496 0.505986
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −18.6786 −0.644088 −0.322044 0.946725i \(-0.604370\pi\)
−0.322044 + 0.946725i \(0.604370\pi\)
\(30\) 0 0
\(31\) 52.1525 1.68234 0.841170 0.540771i \(-0.181867\pi\)
0.841170 + 0.540771i \(0.181867\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.72968 + 22.5943i 0.277991 + 0.645550i
\(36\) 0 0
\(37\) 45.4695i 1.22891i −0.788954 0.614453i \(-0.789377\pi\)
0.788954 0.614453i \(-0.210623\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −42.0916 −1.02662 −0.513312 0.858202i \(-0.671582\pi\)
−0.513312 + 0.858202i \(0.671582\pi\)
\(42\) 0 0
\(43\) 23.2557 0.540830 0.270415 0.962744i \(-0.412839\pi\)
0.270415 + 0.962744i \(0.412839\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 28.5041i 0.606469i 0.952916 + 0.303235i \(0.0980666\pi\)
−0.952916 + 0.303235i \(0.901933\pi\)
\(48\) 0 0
\(49\) 33.6698 35.5998i 0.687139 0.726526i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 18.1585 0.342614 0.171307 0.985218i \(-0.445201\pi\)
0.171307 + 0.985218i \(0.445201\pi\)
\(54\) 0 0
\(55\) 18.5090 0.336527
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 76.3857 1.29467 0.647336 0.762205i \(-0.275883\pi\)
0.647336 + 0.762205i \(0.275883\pi\)
\(60\) 0 0
\(61\) 3.84787 0.0630799 0.0315400 0.999502i \(-0.489959\pi\)
0.0315400 + 0.999502i \(0.489959\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 32.8984i 0.506129i
\(66\) 0 0
\(67\) −4.55636 −0.0680054 −0.0340027 0.999422i \(-0.510825\pi\)
−0.0340027 + 0.999422i \(0.510825\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −40.3858 −0.568814 −0.284407 0.958704i \(-0.591797\pi\)
−0.284407 + 0.958704i \(0.591797\pi\)
\(72\) 0 0
\(73\) 123.009i 1.68505i −0.538656 0.842526i \(-0.681068\pi\)
0.538656 0.842526i \(-0.318932\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −14.5815 33.8611i −0.189370 0.439754i
\(78\) 0 0
\(79\) 107.545i 1.36133i 0.732596 + 0.680663i \(0.238308\pi\)
−0.732596 + 0.680663i \(0.761692\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 92.3016 1.11207 0.556034 0.831160i \(-0.312323\pi\)
0.556034 + 0.831160i \(0.312323\pi\)
\(84\) 0 0
\(85\) 43.4593i 0.511286i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.80053 −0.0202306 −0.0101153 0.999949i \(-0.503220\pi\)
−0.0101153 + 0.999949i \(0.503220\pi\)
\(90\) 0 0
\(91\) −60.1857 + 25.9176i −0.661382 + 0.284808i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −31.0935 −0.327300
\(96\) 0 0
\(97\) 122.204i 1.25984i −0.776660 0.629919i \(-0.783088\pi\)
0.776660 0.629919i \(-0.216912\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 85.2602i 0.844160i 0.906559 + 0.422080i \(0.138700\pi\)
−0.906559 + 0.422080i \(0.861300\pi\)
\(102\) 0 0
\(103\) 27.4148 0.266164 0.133082 0.991105i \(-0.457513\pi\)
0.133082 + 0.991105i \(0.457513\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 116.898i 1.09250i 0.837622 + 0.546250i \(0.183945\pi\)
−0.837622 + 0.546250i \(0.816055\pi\)
\(108\) 0 0
\(109\) 109.910i 1.00835i 0.863602 + 0.504175i \(0.168203\pi\)
−0.863602 + 0.504175i \(0.831797\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 91.9016i 0.813288i −0.913587 0.406644i \(-0.866699\pi\)
0.913587 0.406644i \(-0.133301\pi\)
\(114\) 0 0
\(115\) 15.1025i 0.131326i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 79.5063 34.2375i 0.668120 0.287710i
\(120\) 0 0
\(121\) 93.2614 0.770755
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 132.312i 1.05850i
\(126\) 0 0
\(127\) 54.4707i 0.428903i −0.976735 0.214452i \(-0.931204\pi\)
0.976735 0.214452i \(-0.0687964\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 229.881 1.75481 0.877407 0.479746i \(-0.159271\pi\)
0.877407 + 0.479746i \(0.159271\pi\)
\(132\) 0 0
\(133\) 24.4957 + 56.8838i 0.184178 + 0.427698i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 218.060i 1.59168i 0.605507 + 0.795840i \(0.292970\pi\)
−0.605507 + 0.795840i \(0.707030\pi\)
\(138\) 0 0
\(139\) 275.165i 1.97960i −0.142458 0.989801i \(-0.545501\pi\)
0.142458 0.989801i \(-0.454499\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 49.3035i 0.344780i
\(144\) 0 0
\(145\) 65.6422i 0.452705i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −158.666 −1.06487 −0.532437 0.846469i \(-0.678724\pi\)
−0.532437 + 0.846469i \(0.678724\pi\)
\(150\) 0 0
\(151\) 62.5692i 0.414366i 0.978302 + 0.207183i \(0.0664295\pi\)
−0.978302 + 0.207183i \(0.933570\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 183.280i 1.18245i
\(156\) 0 0
\(157\) 119.454 0.760853 0.380427 0.924811i \(-0.375777\pi\)
0.380427 + 0.924811i \(0.375777\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −27.6291 + 11.8978i −0.171609 + 0.0738995i
\(162\) 0 0
\(163\) 114.091 0.699945 0.349972 0.936760i \(-0.386191\pi\)
0.349972 + 0.936760i \(0.386191\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.52860i 0.0450814i −0.999746 0.0225407i \(-0.992824\pi\)
0.999746 0.0225407i \(-0.00717554\pi\)
\(168\) 0 0
\(169\) −81.3664 −0.481458
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 247.124i 1.42846i 0.699910 + 0.714231i \(0.253223\pi\)
−0.699910 + 0.714231i \(0.746777\pi\)
\(174\) 0 0
\(175\) 81.3274 35.0217i 0.464728 0.200124i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 185.560i 1.03665i −0.855184 0.518324i \(-0.826556\pi\)
0.855184 0.518324i \(-0.173444\pi\)
\(180\) 0 0
\(181\) 322.522 1.78189 0.890944 0.454113i \(-0.150044\pi\)
0.890944 + 0.454113i \(0.150044\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 159.794 0.863750
\(186\) 0 0
\(187\) 65.1307i 0.348292i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 301.533 1.57871 0.789355 0.613937i \(-0.210415\pi\)
0.789355 + 0.613937i \(0.210415\pi\)
\(192\) 0 0
\(193\) −11.9190 −0.0617567 −0.0308783 0.999523i \(-0.509830\pi\)
−0.0308783 + 0.999523i \(0.509830\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 149.961 0.761224 0.380612 0.924735i \(-0.375713\pi\)
0.380612 + 0.924735i \(0.375713\pi\)
\(198\) 0 0
\(199\) 17.5356 0.0881185 0.0440593 0.999029i \(-0.485971\pi\)
0.0440593 + 0.999029i \(0.485971\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −120.089 + 51.7133i −0.591570 + 0.254745i
\(204\) 0 0
\(205\) 147.923i 0.721574i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 46.5986 0.222960
\(210\) 0 0
\(211\) 377.299 1.78815 0.894074 0.447919i \(-0.147835\pi\)
0.894074 + 0.447919i \(0.147835\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 81.7276i 0.380128i
\(216\) 0 0
\(217\) 335.300 144.389i 1.54516 0.665388i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −115.765 −0.523825
\(222\) 0 0
\(223\) 191.043 0.856695 0.428348 0.903614i \(-0.359096\pi\)
0.428348 + 0.903614i \(0.359096\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 54.0537 0.238122 0.119061 0.992887i \(-0.462012\pi\)
0.119061 + 0.992887i \(0.462012\pi\)
\(228\) 0 0
\(229\) 63.8040 0.278620 0.139310 0.990249i \(-0.455512\pi\)
0.139310 + 0.990249i \(0.455512\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 91.0939i 0.390961i 0.980708 + 0.195480i \(0.0626266\pi\)
−0.980708 + 0.195480i \(0.937373\pi\)
\(234\) 0 0
\(235\) −100.172 −0.426264
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −390.181 −1.63256 −0.816279 0.577658i \(-0.803967\pi\)
−0.816279 + 0.577658i \(0.803967\pi\)
\(240\) 0 0
\(241\) 66.2992i 0.275100i −0.990495 0.137550i \(-0.956077\pi\)
0.990495 0.137550i \(-0.0439228\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 125.109 + 118.326i 0.510647 + 0.482963i
\(246\) 0 0
\(247\) 82.8258i 0.335327i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −72.6421 −0.289411 −0.144705 0.989475i \(-0.546223\pi\)
−0.144705 + 0.989475i \(0.546223\pi\)
\(252\) 0 0
\(253\) 22.6335i 0.0894603i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 480.730 1.87055 0.935273 0.353927i \(-0.115154\pi\)
0.935273 + 0.353927i \(0.115154\pi\)
\(258\) 0 0
\(259\) −125.887 292.334i −0.486048 1.12870i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −221.781 −0.843274 −0.421637 0.906765i \(-0.638544\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(264\) 0 0
\(265\) 63.8147i 0.240810i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 65.8358i 0.244743i −0.992484 0.122371i \(-0.960950\pi\)
0.992484 0.122371i \(-0.0390499\pi\)
\(270\) 0 0
\(271\) −63.0008 −0.232475 −0.116238 0.993221i \(-0.537083\pi\)
−0.116238 + 0.993221i \(0.537083\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 66.6225i 0.242264i
\(276\) 0 0
\(277\) 274.997i 0.992769i 0.868103 + 0.496385i \(0.165339\pi\)
−0.868103 + 0.496385i \(0.834661\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 148.229i 0.527504i −0.964591 0.263752i \(-0.915040\pi\)
0.964591 0.263752i \(-0.0849600\pi\)
\(282\) 0 0
\(283\) 265.522i 0.938240i −0.883134 0.469120i \(-0.844571\pi\)
0.883134 0.469120i \(-0.155429\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −270.616 + 116.534i −0.942913 + 0.406043i
\(288\) 0 0
\(289\) −136.072 −0.470838
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 521.117i 1.77855i −0.457368 0.889277i \(-0.651208\pi\)
0.457368 0.889277i \(-0.348792\pi\)
\(294\) 0 0
\(295\) 268.443i 0.909975i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 40.2294 0.134546
\(300\) 0 0
\(301\) 149.516 64.3855i 0.496731 0.213905i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 13.5226i 0.0443364i
\(306\) 0 0
\(307\) 120.087i 0.391162i 0.980688 + 0.195581i \(0.0626592\pi\)
−0.980688 + 0.195581i \(0.937341\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 351.784i 1.13114i 0.824701 + 0.565570i \(0.191344\pi\)
−0.824701 + 0.565570i \(0.808656\pi\)
\(312\) 0 0
\(313\) 55.1841i 0.176307i 0.996107 + 0.0881536i \(0.0280966\pi\)
−0.996107 + 0.0881536i \(0.971903\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −410.736 −1.29570 −0.647849 0.761769i \(-0.724331\pi\)
−0.647849 + 0.761769i \(0.724331\pi\)
\(318\) 0 0
\(319\) 98.3753i 0.308386i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 109.414i 0.338744i
\(324\) 0 0
\(325\) −118.417 −0.364360
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 78.9162 + 183.259i 0.239867 + 0.557018i
\(330\) 0 0
\(331\) 284.206 0.858629 0.429314 0.903155i \(-0.358755\pi\)
0.429314 + 0.903155i \(0.358755\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.0125i 0.0477984i
\(336\) 0 0
\(337\) −459.374 −1.36313 −0.681564 0.731758i \(-0.738700\pi\)
−0.681564 + 0.731758i \(0.738700\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 274.674i 0.805496i
\(342\) 0 0
\(343\) 117.909 322.097i 0.343759 0.939058i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 460.926i 1.32832i −0.747592 0.664159i \(-0.768790\pi\)
0.747592 0.664159i \(-0.231210\pi\)
\(348\) 0 0
\(349\) −359.787 −1.03091 −0.515454 0.856917i \(-0.672377\pi\)
−0.515454 + 0.856917i \(0.672377\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 152.580 0.432238 0.216119 0.976367i \(-0.430660\pi\)
0.216119 + 0.976367i \(0.430660\pi\)
\(354\) 0 0
\(355\) 141.928i 0.399797i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 405.919 1.13069 0.565347 0.824853i \(-0.308742\pi\)
0.565347 + 0.824853i \(0.308742\pi\)
\(360\) 0 0
\(361\) 282.718 0.783153
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 432.291 1.18436
\(366\) 0 0
\(367\) −70.1579 −0.191166 −0.0955830 0.995421i \(-0.530472\pi\)
−0.0955830 + 0.995421i \(0.530472\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 116.745 50.2736i 0.314677 0.135508i
\(372\) 0 0
\(373\) 330.205i 0.885268i −0.896702 0.442634i \(-0.854044\pi\)
0.896702 0.442634i \(-0.145956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 174.855 0.463807
\(378\) 0 0
\(379\) 29.3602 0.0774675 0.0387337 0.999250i \(-0.487668\pi\)
0.0387337 + 0.999250i \(0.487668\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 328.601i 0.857966i 0.903313 + 0.428983i \(0.141128\pi\)
−0.903313 + 0.428983i \(0.858872\pi\)
\(384\) 0 0
\(385\) 118.998 51.2438i 0.309086 0.133101i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −397.533 −1.02194 −0.510968 0.859599i \(-0.670713\pi\)
−0.510968 + 0.859599i \(0.670713\pi\)
\(390\) 0 0
\(391\) −53.1437 −0.135917
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −377.945 −0.956824
\(396\) 0 0
\(397\) −192.561 −0.485041 −0.242520 0.970146i \(-0.577974\pi\)
−0.242520 + 0.970146i \(0.577974\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 447.317i 1.11550i 0.830008 + 0.557752i \(0.188336\pi\)
−0.830008 + 0.557752i \(0.811664\pi\)
\(402\) 0 0
\(403\) −488.215 −1.21145
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −239.476 −0.588394
\(408\) 0 0
\(409\) 556.925i 1.36167i 0.732435 + 0.680837i \(0.238384\pi\)
−0.732435 + 0.680837i \(0.761616\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 491.100 211.481i 1.18911 0.512060i
\(414\) 0 0
\(415\) 324.376i 0.781629i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −655.843 −1.56526 −0.782628 0.622489i \(-0.786121\pi\)
−0.782628 + 0.622489i \(0.786121\pi\)
\(420\) 0 0
\(421\) 358.380i 0.851258i 0.904898 + 0.425629i \(0.139947\pi\)
−0.904898 + 0.425629i \(0.860053\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 156.431 0.368072
\(426\) 0 0
\(427\) 24.7388 10.6532i 0.0579364 0.0249489i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 340.972 0.791117 0.395559 0.918441i \(-0.370551\pi\)
0.395559 + 0.918441i \(0.370551\pi\)
\(432\) 0 0
\(433\) 213.233i 0.492454i −0.969212 0.246227i \(-0.920809\pi\)
0.969212 0.246227i \(-0.0791909\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 38.0223i 0.0870077i
\(438\) 0 0
\(439\) 238.439 0.543140 0.271570 0.962419i \(-0.412457\pi\)
0.271570 + 0.962419i \(0.412457\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 112.783i 0.254589i −0.991865 0.127295i \(-0.959371\pi\)
0.991865 0.127295i \(-0.0406294\pi\)
\(444\) 0 0
\(445\) 6.32760i 0.0142193i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 366.262i 0.815729i −0.913043 0.407864i \(-0.866274\pi\)
0.913043 0.407864i \(-0.133726\pi\)
\(450\) 0 0
\(451\) 221.686i 0.491543i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −91.0823 211.511i −0.200181 0.464860i
\(456\) 0 0
\(457\) −127.312 −0.278582 −0.139291 0.990252i \(-0.544482\pi\)
−0.139291 + 0.990252i \(0.544482\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 588.619i 1.27683i 0.769692 + 0.638415i \(0.220410\pi\)
−0.769692 + 0.638415i \(0.779590\pi\)
\(462\) 0 0
\(463\) 269.281i 0.581601i −0.956784 0.290801i \(-0.906078\pi\)
0.956784 0.290801i \(-0.0939217\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −357.434 −0.765383 −0.382692 0.923876i \(-0.625003\pi\)
−0.382692 + 0.923876i \(0.625003\pi\)
\(468\) 0 0
\(469\) −29.2939 + 12.6147i −0.0624603 + 0.0268970i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 122.482i 0.258947i
\(474\) 0 0
\(475\) 111.920i 0.235622i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 758.388i 1.58327i −0.610992 0.791637i \(-0.709229\pi\)
0.610992 0.791637i \(-0.290771\pi\)
\(480\) 0 0
\(481\) 425.653i 0.884933i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 429.464 0.885492
\(486\) 0 0
\(487\) 616.289i 1.26548i 0.774364 + 0.632741i \(0.218070\pi\)
−0.774364 + 0.632741i \(0.781930\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 574.215i 1.16948i 0.811221 + 0.584740i \(0.198803\pi\)
−0.811221 + 0.584740i \(0.801197\pi\)
\(492\) 0 0
\(493\) −230.987 −0.468532
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −259.649 + 111.812i −0.522433 + 0.224973i
\(498\) 0 0
\(499\) 613.646 1.22975 0.614875 0.788624i \(-0.289206\pi\)
0.614875 + 0.788624i \(0.289206\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 55.3348i 0.110010i −0.998486 0.0550048i \(-0.982483\pi\)
0.998486 0.0550048i \(-0.0175174\pi\)
\(504\) 0 0
\(505\) −299.630 −0.593328
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 310.802i 0.610613i 0.952254 + 0.305307i \(0.0987589\pi\)
−0.952254 + 0.305307i \(0.901241\pi\)
\(510\) 0 0
\(511\) −340.561 790.851i −0.666460 1.54765i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 96.3442i 0.187076i
\(516\) 0 0
\(517\) 150.124 0.290375
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −774.806 −1.48715 −0.743576 0.668652i \(-0.766872\pi\)
−0.743576 + 0.668652i \(0.766872\pi\)
\(522\) 0 0
\(523\) 440.022i 0.841342i 0.907213 + 0.420671i \(0.138205\pi\)
−0.907213 + 0.420671i \(0.861795\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 644.939 1.22379
\(528\) 0 0
\(529\) −510.532 −0.965089
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 394.031 0.739270
\(534\) 0 0
\(535\) −410.814 −0.767876
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −187.495 177.330i −0.347857 0.328999i
\(540\) 0 0
\(541\) 1012.28i 1.87113i −0.353159 0.935563i \(-0.614893\pi\)
0.353159 0.935563i \(-0.385107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −386.258 −0.708730
\(546\) 0 0
\(547\) −588.492 −1.07585 −0.537927 0.842991i \(-0.680792\pi\)
−0.537927 + 0.842991i \(0.680792\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 165.262i 0.299932i
\(552\) 0 0
\(553\) 297.748 + 691.430i 0.538423 + 1.25032i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1101.14 −1.97691 −0.988454 0.151520i \(-0.951583\pi\)
−0.988454 + 0.151520i \(0.951583\pi\)
\(558\) 0 0
\(559\) −217.703 −0.389451
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 394.840 0.701315 0.350658 0.936504i \(-0.385958\pi\)
0.350658 + 0.936504i \(0.385958\pi\)
\(564\) 0 0
\(565\) 322.970 0.571629
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 314.095i 0.552013i 0.961156 + 0.276006i \(0.0890111\pi\)
−0.961156 + 0.276006i \(0.910989\pi\)
\(570\) 0 0
\(571\) −715.232 −1.25260 −0.626298 0.779584i \(-0.715431\pi\)
−0.626298 + 0.779584i \(0.715431\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −54.3609 −0.0945407
\(576\) 0 0
\(577\) 250.055i 0.433371i 0.976241 + 0.216685i \(0.0695246\pi\)
−0.976241 + 0.216685i \(0.930475\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 593.428 255.546i 1.02139 0.439837i
\(582\) 0 0
\(583\) 95.6365i 0.164042i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 608.274 1.03624 0.518121 0.855308i \(-0.326632\pi\)
0.518121 + 0.855308i \(0.326632\pi\)
\(588\) 0 0
\(589\) 461.430i 0.783413i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1006.48 −1.69727 −0.848634 0.528980i \(-0.822575\pi\)
−0.848634 + 0.528980i \(0.822575\pi\)
\(594\) 0 0
\(595\) 120.321 + 279.410i 0.202220 + 0.469596i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −81.6309 −0.136279 −0.0681393 0.997676i \(-0.521706\pi\)
−0.0681393 + 0.997676i \(0.521706\pi\)
\(600\) 0 0
\(601\) 84.9314i 0.141317i −0.997501 0.0706584i \(-0.977490\pi\)
0.997501 0.0706584i \(-0.0225100\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 327.749i 0.541734i
\(606\) 0 0
\(607\) −964.122 −1.58834 −0.794170 0.607696i \(-0.792094\pi\)
−0.794170 + 0.607696i \(0.792094\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 266.835i 0.436718i
\(612\) 0 0
\(613\) 282.857i 0.461430i 0.973021 + 0.230715i \(0.0741065\pi\)
−0.973021 + 0.230715i \(0.925894\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 805.890i 1.30614i −0.757296 0.653071i \(-0.773480\pi\)
0.757296 0.653071i \(-0.226520\pi\)
\(618\) 0 0
\(619\) 970.057i 1.56714i 0.621306 + 0.783568i \(0.286602\pi\)
−0.621306 + 0.783568i \(0.713398\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.5760 + 4.98492i −0.0185810 + 0.00800148i
\(624\) 0 0
\(625\) −148.745 −0.237992
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 562.294i 0.893949i
\(630\) 0 0
\(631\) 750.402i 1.18923i −0.804012 0.594613i \(-0.797305\pi\)
0.804012 0.594613i \(-0.202695\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 191.427 0.301459
\(636\) 0 0
\(637\) −315.192 + 333.260i −0.494807 + 0.523171i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1031.35i 1.60897i −0.593974 0.804484i \(-0.702442\pi\)
0.593974 0.804484i \(-0.297558\pi\)
\(642\) 0 0
\(643\) 545.671i 0.848634i 0.905514 + 0.424317i \(0.139486\pi\)
−0.905514 + 0.424317i \(0.860514\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 291.352i 0.450313i −0.974323 0.225156i \(-0.927711\pi\)
0.974323 0.225156i \(-0.0722893\pi\)
\(648\) 0 0
\(649\) 402.304i 0.619883i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −383.246 −0.586900 −0.293450 0.955974i \(-0.594803\pi\)
−0.293450 + 0.955974i \(0.594803\pi\)
\(654\) 0 0
\(655\) 807.871i 1.23339i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 60.8502i 0.0923372i 0.998934 + 0.0461686i \(0.0147011\pi\)
−0.998934 + 0.0461686i \(0.985299\pi\)
\(660\) 0 0
\(661\) 519.891 0.786523 0.393261 0.919427i \(-0.371347\pi\)
0.393261 + 0.919427i \(0.371347\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −199.907 + 86.0854i −0.300612 + 0.129452i
\(666\) 0 0
\(667\) 80.2697 0.120344
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 20.2658i 0.0302024i
\(672\) 0 0
\(673\) 871.592 1.29508 0.647542 0.762029i \(-0.275797\pi\)
0.647542 + 0.762029i \(0.275797\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 458.477i 0.677219i −0.940927 0.338610i \(-0.890043\pi\)
0.940927 0.338610i \(-0.109957\pi\)
\(678\) 0 0
\(679\) −338.334 785.679i −0.498283 1.15711i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 270.189i 0.395591i −0.980243 0.197796i \(-0.936622\pi\)
0.980243 0.197796i \(-0.0633783\pi\)
\(684\) 0 0
\(685\) −766.330 −1.11873
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −169.987 −0.246716
\(690\) 0 0
\(691\) 931.061i 1.34741i 0.739000 + 0.673705i \(0.235298\pi\)
−0.739000 + 0.673705i \(0.764702\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 967.013 1.39139
\(696\) 0 0
\(697\) −520.521 −0.746802
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −421.119 −0.600740 −0.300370 0.953823i \(-0.597110\pi\)
−0.300370 + 0.953823i \(0.597110\pi\)
\(702\) 0 0
\(703\) 402.301 0.572263
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 236.051 + 548.157i 0.333877 + 0.775328i
\(708\) 0 0
\(709\) 1227.26i 1.73097i −0.500931 0.865487i \(-0.667009\pi\)
0.500931 0.865487i \(-0.332991\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −224.122 −0.314336
\(714\) 0 0
\(715\) −173.268 −0.242332
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1202.04i 1.67182i −0.548869 0.835908i \(-0.684941\pi\)
0.548869 0.835908i \(-0.315059\pi\)
\(720\) 0 0
\(721\) 176.256 75.9005i 0.244461 0.105271i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −236.277 −0.325900
\(726\) 0 0
\(727\) −725.480 −0.997910 −0.498955 0.866628i \(-0.666283\pi\)
−0.498955 + 0.866628i \(0.666283\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 287.589 0.393418
\(732\) 0 0
\(733\) −1032.80 −1.40900 −0.704499 0.709705i \(-0.748828\pi\)
−0.704499 + 0.709705i \(0.748828\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.9972i 0.0325607i
\(738\) 0 0
\(739\) −1062.50 −1.43775 −0.718877 0.695137i \(-0.755344\pi\)
−0.718877 + 0.695137i \(0.755344\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −684.488 −0.921249 −0.460625 0.887595i \(-0.652375\pi\)
−0.460625 + 0.887595i \(0.652375\pi\)
\(744\) 0 0
\(745\) 557.602i 0.748459i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 323.642 + 751.560i 0.432098 + 1.00342i
\(750\) 0 0
\(751\) 565.603i 0.753133i −0.926390 0.376567i \(-0.877105\pi\)
0.926390 0.376567i \(-0.122895\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −219.887 −0.291242
\(756\) 0 0
\(757\) 383.583i 0.506714i 0.967373 + 0.253357i \(0.0815348\pi\)
−0.967373 + 0.253357i \(0.918465\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1312.55 −1.72476 −0.862382 0.506258i \(-0.831028\pi\)
−0.862382 + 0.506258i \(0.831028\pi\)
\(762\) 0 0
\(763\) 304.296 + 706.636i 0.398816 + 0.926129i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −715.068 −0.932292
\(768\) 0 0
\(769\) 1180.37i 1.53494i 0.641086 + 0.767469i \(0.278484\pi\)
−0.641086 + 0.767469i \(0.721516\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1269.43i 1.64221i −0.570780 0.821103i \(-0.693359\pi\)
0.570780 0.821103i \(-0.306641\pi\)
\(774\) 0 0
\(775\) 659.711 0.851240
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 372.414i 0.478066i
\(780\) 0 0
\(781\) 212.702i 0.272345i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 419.798i 0.534774i
\(786\) 0 0
\(787\) 1159.82i 1.47372i −0.676044 0.736861i \(-0.736307\pi\)
0.676044 0.736861i \(-0.263693\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −254.438 590.856i −0.321666 0.746973i
\(792\) 0 0
\(793\) −36.0210 −0.0454237
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 478.221i 0.600026i 0.953935 + 0.300013i \(0.0969910\pi\)
−0.953935 + 0.300013i \(0.903009\pi\)
\(798\) 0 0
\(799\) 352.493i 0.441167i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −647.856 −0.806795
\(804\) 0 0
\(805\) −41.8126 97.0971i −0.0519411 0.120618i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1061.21i 1.31176i −0.754865 0.655881i \(-0.772297\pi\)
0.754865 0.655881i \(-0.227703\pi\)
\(810\) 0 0
\(811\) 738.364i 0.910437i 0.890380 + 0.455218i \(0.150439\pi\)
−0.890380 + 0.455218i \(0.849561\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 400.951i 0.491964i
\(816\) 0 0
\(817\) 205.759i 0.251847i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −448.627 −0.546440 −0.273220 0.961952i \(-0.588089\pi\)
−0.273220 + 0.961952i \(0.588089\pi\)
\(822\) 0 0
\(823\) 1327.80i 1.61337i 0.590980 + 0.806686i \(0.298741\pi\)
−0.590980 + 0.806686i \(0.701259\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1315.08i 1.59018i −0.606493 0.795089i \(-0.707424\pi\)
0.606493 0.795089i \(-0.292576\pi\)
\(828\) 0 0
\(829\) −1191.63 −1.43744 −0.718718 0.695302i \(-0.755271\pi\)
−0.718718 + 0.695302i \(0.755271\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 416.374 440.241i 0.499849 0.528501i
\(834\) 0 0
\(835\) 26.4578 0.0316860
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 192.974i 0.230005i −0.993365 0.115002i \(-0.963312\pi\)
0.993365 0.115002i \(-0.0366876\pi\)
\(840\) 0 0
\(841\) −492.111 −0.585150
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 285.947i 0.338398i
\(846\) 0 0
\(847\) 599.598 258.203i 0.707908 0.304844i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 195.402i 0.229614i
\(852\) 0 0
\(853\) −236.364 −0.277097 −0.138549 0.990356i \(-0.544244\pi\)
−0.138549 + 0.990356i \(0.544244\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 464.302 0.541775 0.270888 0.962611i \(-0.412683\pi\)
0.270888 + 0.962611i \(0.412683\pi\)
\(858\) 0 0
\(859\) 567.819i 0.661023i −0.943802 0.330511i \(-0.892779\pi\)
0.943802 0.330511i \(-0.107221\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 610.907 0.707888 0.353944 0.935267i \(-0.384840\pi\)
0.353944 + 0.935267i \(0.384840\pi\)
\(864\) 0 0
\(865\) −868.469 −1.00401
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 566.411 0.651797
\(870\) 0 0
\(871\) 42.6534 0.0489706
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 366.319 + 850.666i 0.418651 + 0.972190i
\(876\) 0 0
\(877\) 780.619i 0.890101i −0.895505 0.445050i \(-0.853186\pi\)
0.895505 0.445050i \(-0.146814\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −539.433 −0.612296 −0.306148 0.951984i \(-0.599040\pi\)
−0.306148 + 0.951984i \(0.599040\pi\)
\(882\) 0 0
\(883\) −797.997 −0.903734 −0.451867 0.892085i \(-0.649242\pi\)
−0.451867 + 0.892085i \(0.649242\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 435.503i 0.490985i −0.969399 0.245492i \(-0.921050\pi\)
0.969399 0.245492i \(-0.0789496\pi\)
\(888\) 0 0
\(889\) −150.807 350.204i −0.169637 0.393931i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −252.196 −0.282414
\(894\) 0 0
\(895\) 652.115 0.728620
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −974.134 −1.08358
\(900\) 0 0
\(901\) 224.556 0.249230
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1133.44i 1.25242i
\(906\) 0 0
\(907\) 834.673 0.920257 0.460128 0.887852i \(-0.347803\pi\)
0.460128 + 0.887852i \(0.347803\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −543.809 −0.596937 −0.298468 0.954420i \(-0.596476\pi\)
−0.298468 + 0.954420i \(0.596476\pi\)
\(912\) 0 0
\(913\) 486.129i 0.532453i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1477.95 636.446i 1.61173 0.694052i
\(918\) 0 0
\(919\) 257.470i 0.280163i 0.990140 + 0.140082i \(0.0447365\pi\)
−0.990140 + 0.140082i \(0.955264\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 378.063 0.409602
\(924\) 0 0
\(925\) 575.173i 0.621809i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 943.723 1.01585 0.507924 0.861402i \(-0.330413\pi\)
0.507924 + 0.861402i \(0.330413\pi\)
\(930\) 0 0
\(931\) 314.976 + 297.900i 0.338321 + 0.319979i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 228.889 0.244801
\(936\) 0 0
\(937\) 468.548i 0.500052i 0.968239 + 0.250026i \(0.0804391\pi\)
−0.968239 + 0.250026i \(0.919561\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1430.10i 1.51977i 0.650058 + 0.759885i \(0.274745\pi\)
−0.650058 + 0.759885i \(0.725255\pi\)
\(942\) 0 0
\(943\) 180.885 0.191819
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 782.150i 0.825924i 0.910748 + 0.412962i \(0.135506\pi\)
−0.910748 + 0.412962i \(0.864494\pi\)
\(948\) 0 0
\(949\) 1151.52i 1.21340i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 200.954i 0.210864i −0.994427 0.105432i \(-0.966377\pi\)
0.994427 0.105432i \(-0.0336226\pi\)
\(954\) 0 0
\(955\) 1059.68i 1.10961i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 603.720 + 1401.96i 0.629530 + 1.46189i
\(960\) 0 0
\(961\) 1758.89 1.83027
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41.8872i 0.0434064i
\(966\) 0 0
\(967\) 297.101i 0.307240i −0.988130 0.153620i \(-0.950907\pi\)
0.988130 0.153620i \(-0.0490931\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −534.138 −0.550090 −0.275045 0.961431i \(-0.588693\pi\)
−0.275045 + 0.961431i \(0.588693\pi\)
\(972\) 0 0
\(973\) −761.819 1769.09i −0.782959 1.81819i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 631.207i 0.646066i 0.946388 + 0.323033i \(0.104702\pi\)
−0.946388 + 0.323033i \(0.895298\pi\)
\(978\) 0 0
\(979\) 9.48292i 0.00968633i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1569.91i 1.59706i 0.601955 + 0.798530i \(0.294389\pi\)
−0.601955 + 0.798530i \(0.705611\pi\)
\(984\) 0 0
\(985\) 527.009i 0.535035i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −99.9395 −0.101051
\(990\) 0 0
\(991\) 890.354i 0.898440i 0.893421 + 0.449220i \(0.148298\pi\)
−0.893421 + 0.449220i \(0.851702\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 61.6254i 0.0619351i
\(996\) 0 0
\(997\) 918.467 0.921230 0.460615 0.887600i \(-0.347629\pi\)
0.460615 + 0.887600i \(0.347629\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.e.c.1007.28 48
3.2 odd 2 inner 2016.3.e.c.1007.17 48
4.3 odd 2 504.3.e.c.251.11 yes 48
7.6 odd 2 inner 2016.3.e.c.1007.29 48
8.3 odd 2 inner 2016.3.e.c.1007.15 48
8.5 even 2 504.3.e.c.251.39 yes 48
12.11 even 2 504.3.e.c.251.38 yes 48
21.20 even 2 inner 2016.3.e.c.1007.16 48
24.5 odd 2 504.3.e.c.251.10 yes 48
24.11 even 2 inner 2016.3.e.c.1007.30 48
28.27 even 2 504.3.e.c.251.12 yes 48
56.13 odd 2 504.3.e.c.251.40 yes 48
56.27 even 2 inner 2016.3.e.c.1007.18 48
84.83 odd 2 504.3.e.c.251.37 yes 48
168.83 odd 2 inner 2016.3.e.c.1007.27 48
168.125 even 2 504.3.e.c.251.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.9 48 168.125 even 2
504.3.e.c.251.10 yes 48 24.5 odd 2
504.3.e.c.251.11 yes 48 4.3 odd 2
504.3.e.c.251.12 yes 48 28.27 even 2
504.3.e.c.251.37 yes 48 84.83 odd 2
504.3.e.c.251.38 yes 48 12.11 even 2
504.3.e.c.251.39 yes 48 8.5 even 2
504.3.e.c.251.40 yes 48 56.13 odd 2
2016.3.e.c.1007.15 48 8.3 odd 2 inner
2016.3.e.c.1007.16 48 21.20 even 2 inner
2016.3.e.c.1007.17 48 3.2 odd 2 inner
2016.3.e.c.1007.18 48 56.27 even 2 inner
2016.3.e.c.1007.27 48 168.83 odd 2 inner
2016.3.e.c.1007.28 48 1.1 even 1 trivial
2016.3.e.c.1007.29 48 7.6 odd 2 inner
2016.3.e.c.1007.30 48 24.11 even 2 inner