Properties

Label 504.3.e.c.251.25
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.25
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.c.251.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.540392 - 1.92561i) q^{2} +(-3.41595 - 2.08117i) q^{4} +0.489356i q^{5} +(-5.24868 + 4.63156i) q^{7} +(-5.85347 + 5.45315i) q^{8} +(0.942310 + 0.264444i) q^{10} +6.94749i q^{11} +16.5922 q^{13} +(6.08224 + 12.6098i) q^{14} +(7.33748 + 14.2183i) q^{16} +28.0732 q^{17} -29.3568i q^{19} +(1.01843 - 1.67162i) q^{20} +(13.3782 + 3.75437i) q^{22} -7.49845 q^{23} +24.7605 q^{25} +(8.96631 - 31.9502i) q^{26} +(27.5683 - 4.89781i) q^{28} -17.9470 q^{29} +30.8259 q^{31} +(31.3441 - 6.44566i) q^{32} +(15.1705 - 54.0581i) q^{34} +(-2.26648 - 2.56848i) q^{35} +64.8471i q^{37} +(-56.5297 - 15.8642i) q^{38} +(-2.66853 - 2.86443i) q^{40} -50.7873 q^{41} +47.5472 q^{43} +(14.4589 - 23.7323i) q^{44} +(-4.05210 + 14.4391i) q^{46} +65.0090i q^{47} +(6.09730 - 48.6192i) q^{49} +(13.3804 - 47.6791i) q^{50} +(-56.6783 - 34.5312i) q^{52} +51.2494 q^{53} -3.39980 q^{55} +(5.46641 - 55.7326i) q^{56} +(-9.69841 + 34.5589i) q^{58} -27.2645 q^{59} +115.375 q^{61} +(16.6581 - 59.3588i) q^{62} +(4.52627 - 63.8397i) q^{64} +8.11952i q^{65} +7.26829 q^{67} +(-95.8968 - 58.4251i) q^{68} +(-6.17067 + 2.97638i) q^{70} -91.6063 q^{71} -27.5052i q^{73} +(124.870 + 35.0428i) q^{74} +(-61.0964 + 100.281i) q^{76} +(-32.1777 - 36.4652i) q^{77} +36.2471i q^{79} +(-6.95784 + 3.59064i) q^{80} +(-27.4450 + 97.7966i) q^{82} +117.776 q^{83} +13.7378i q^{85} +(25.6941 - 91.5574i) q^{86} +(-37.8857 - 40.6669i) q^{88} +35.2381 q^{89} +(-87.0874 + 76.8480i) q^{91} +(25.6144 + 15.6055i) q^{92} +(125.182 + 35.1303i) q^{94} +14.3659 q^{95} -24.7402i q^{97} +(-90.3267 - 38.0144i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 144 q^{22} - 336 q^{25} - 232 q^{28} - 384 q^{43} + 736 q^{46} + 368 q^{49} - 432 q^{58} + 480 q^{64} - 896 q^{67} + 264 q^{70} - 48 q^{88} - 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.540392 1.92561i 0.270196 0.962805i
\(3\) 0 0
\(4\) −3.41595 2.08117i −0.853988 0.520292i
\(5\) 0.489356i 0.0978713i 0.998802 + 0.0489356i \(0.0155829\pi\)
−0.998802 + 0.0489356i \(0.984417\pi\)
\(6\) 0 0
\(7\) −5.24868 + 4.63156i −0.749812 + 0.661651i
\(8\) −5.85347 + 5.45315i −0.731684 + 0.681644i
\(9\) 0 0
\(10\) 0.942310 + 0.264444i 0.0942310 + 0.0264444i
\(11\) 6.94749i 0.631590i 0.948827 + 0.315795i \(0.102271\pi\)
−0.948827 + 0.315795i \(0.897729\pi\)
\(12\) 0 0
\(13\) 16.5922 1.27633 0.638163 0.769901i \(-0.279695\pi\)
0.638163 + 0.769901i \(0.279695\pi\)
\(14\) 6.08224 + 12.6098i 0.434446 + 0.900698i
\(15\) 0 0
\(16\) 7.33748 + 14.2183i 0.458593 + 0.888647i
\(17\) 28.0732 1.65137 0.825683 0.564135i \(-0.190790\pi\)
0.825683 + 0.564135i \(0.190790\pi\)
\(18\) 0 0
\(19\) 29.3568i 1.54509i −0.634958 0.772547i \(-0.718983\pi\)
0.634958 0.772547i \(-0.281017\pi\)
\(20\) 1.01843 1.67162i 0.0509216 0.0835809i
\(21\) 0 0
\(22\) 13.3782 + 3.75437i 0.608098 + 0.170653i
\(23\) −7.49845 −0.326020 −0.163010 0.986624i \(-0.552120\pi\)
−0.163010 + 0.986624i \(0.552120\pi\)
\(24\) 0 0
\(25\) 24.7605 0.990421
\(26\) 8.96631 31.9502i 0.344858 1.22885i
\(27\) 0 0
\(28\) 27.5683 4.89781i 0.984582 0.174922i
\(29\) −17.9470 −0.618862 −0.309431 0.950922i \(-0.600139\pi\)
−0.309431 + 0.950922i \(0.600139\pi\)
\(30\) 0 0
\(31\) 30.8259 0.994385 0.497193 0.867640i \(-0.334364\pi\)
0.497193 + 0.867640i \(0.334364\pi\)
\(32\) 31.3441 6.44566i 0.979504 0.201427i
\(33\) 0 0
\(34\) 15.1705 54.0581i 0.446192 1.58994i
\(35\) −2.26648 2.56848i −0.0647567 0.0733850i
\(36\) 0 0
\(37\) 64.8471i 1.75262i 0.481744 + 0.876312i \(0.340004\pi\)
−0.481744 + 0.876312i \(0.659996\pi\)
\(38\) −56.5297 15.8642i −1.48762 0.417478i
\(39\) 0 0
\(40\) −2.66853 2.86443i −0.0667134 0.0716108i
\(41\) −50.7873 −1.23871 −0.619357 0.785109i \(-0.712607\pi\)
−0.619357 + 0.785109i \(0.712607\pi\)
\(42\) 0 0
\(43\) 47.5472 1.10575 0.552875 0.833264i \(-0.313531\pi\)
0.552875 + 0.833264i \(0.313531\pi\)
\(44\) 14.4589 23.7323i 0.328611 0.539371i
\(45\) 0 0
\(46\) −4.05210 + 14.4391i −0.0880892 + 0.313894i
\(47\) 65.0090i 1.38317i 0.722295 + 0.691585i \(0.243087\pi\)
−0.722295 + 0.691585i \(0.756913\pi\)
\(48\) 0 0
\(49\) 6.09730 48.6192i 0.124435 0.992228i
\(50\) 13.3804 47.6791i 0.267608 0.953583i
\(51\) 0 0
\(52\) −56.6783 34.5312i −1.08997 0.664062i
\(53\) 51.2494 0.966969 0.483485 0.875353i \(-0.339371\pi\)
0.483485 + 0.875353i \(0.339371\pi\)
\(54\) 0 0
\(55\) −3.39980 −0.0618145
\(56\) 5.46641 55.7326i 0.0976144 0.995224i
\(57\) 0 0
\(58\) −9.69841 + 34.5589i −0.167214 + 0.595844i
\(59\) −27.2645 −0.462110 −0.231055 0.972941i \(-0.574218\pi\)
−0.231055 + 0.972941i \(0.574218\pi\)
\(60\) 0 0
\(61\) 115.375 1.89140 0.945699 0.325043i \(-0.105379\pi\)
0.945699 + 0.325043i \(0.105379\pi\)
\(62\) 16.6581 59.3588i 0.268679 0.957399i
\(63\) 0 0
\(64\) 4.52627 63.8397i 0.0707230 0.997496i
\(65\) 8.11952i 0.124916i
\(66\) 0 0
\(67\) 7.26829 0.108482 0.0542409 0.998528i \(-0.482726\pi\)
0.0542409 + 0.998528i \(0.482726\pi\)
\(68\) −95.8968 58.4251i −1.41025 0.859192i
\(69\) 0 0
\(70\) −6.17067 + 2.97638i −0.0881525 + 0.0425197i
\(71\) −91.6063 −1.29023 −0.645115 0.764085i \(-0.723191\pi\)
−0.645115 + 0.764085i \(0.723191\pi\)
\(72\) 0 0
\(73\) 27.5052i 0.376783i −0.982094 0.188392i \(-0.939673\pi\)
0.982094 0.188392i \(-0.0603274\pi\)
\(74\) 124.870 + 35.0428i 1.68744 + 0.473552i
\(75\) 0 0
\(76\) −61.0964 + 100.281i −0.803900 + 1.31949i
\(77\) −32.1777 36.4652i −0.417892 0.473574i
\(78\) 0 0
\(79\) 36.2471i 0.458824i 0.973329 + 0.229412i \(0.0736803\pi\)
−0.973329 + 0.229412i \(0.926320\pi\)
\(80\) −6.95784 + 3.59064i −0.0869730 + 0.0448830i
\(81\) 0 0
\(82\) −27.4450 + 97.7966i −0.334695 + 1.19264i
\(83\) 117.776 1.41899 0.709495 0.704711i \(-0.248923\pi\)
0.709495 + 0.704711i \(0.248923\pi\)
\(84\) 0 0
\(85\) 13.7378i 0.161621i
\(86\) 25.6941 91.5574i 0.298769 1.06462i
\(87\) 0 0
\(88\) −37.8857 40.6669i −0.430520 0.462124i
\(89\) 35.2381 0.395933 0.197967 0.980209i \(-0.436566\pi\)
0.197967 + 0.980209i \(0.436566\pi\)
\(90\) 0 0
\(91\) −87.0874 + 76.8480i −0.957004 + 0.844483i
\(92\) 25.6144 + 15.6055i 0.278417 + 0.169625i
\(93\) 0 0
\(94\) 125.182 + 35.1303i 1.33172 + 0.373727i
\(95\) 14.3659 0.151220
\(96\) 0 0
\(97\) 24.7402i 0.255053i −0.991835 0.127527i \(-0.959296\pi\)
0.991835 0.127527i \(-0.0407038\pi\)
\(98\) −90.3267 38.0144i −0.921701 0.387902i
\(99\) 0 0
\(100\) −84.5808 51.5308i −0.845808 0.515308i
\(101\) 54.1213i 0.535854i 0.963439 + 0.267927i \(0.0863387\pi\)
−0.963439 + 0.267927i \(0.913661\pi\)
\(102\) 0 0
\(103\) −118.143 −1.14701 −0.573507 0.819200i \(-0.694418\pi\)
−0.573507 + 0.819200i \(0.694418\pi\)
\(104\) −97.1222 + 90.4800i −0.933868 + 0.870000i
\(105\) 0 0
\(106\) 27.6947 98.6863i 0.261271 0.931003i
\(107\) 85.2840i 0.797046i 0.917158 + 0.398523i \(0.130477\pi\)
−0.917158 + 0.398523i \(0.869523\pi\)
\(108\) 0 0
\(109\) 88.3506i 0.810556i 0.914193 + 0.405278i \(0.132825\pi\)
−0.914193 + 0.405278i \(0.867175\pi\)
\(110\) −1.83722 + 6.54669i −0.0167020 + 0.0595154i
\(111\) 0 0
\(112\) −104.365 40.6436i −0.931832 0.362889i
\(113\) 113.657i 1.00581i −0.864341 0.502907i \(-0.832264\pi\)
0.864341 0.502907i \(-0.167736\pi\)
\(114\) 0 0
\(115\) 3.66942i 0.0319080i
\(116\) 61.3061 + 37.3507i 0.528501 + 0.321989i
\(117\) 0 0
\(118\) −14.7335 + 52.5007i −0.124860 + 0.444922i
\(119\) −147.347 + 130.023i −1.23821 + 1.09263i
\(120\) 0 0
\(121\) 72.7324 0.601094
\(122\) 62.3478 222.168i 0.511048 1.82105i
\(123\) 0 0
\(124\) −105.300 64.1540i −0.849194 0.517371i
\(125\) 24.3506i 0.194805i
\(126\) 0 0
\(127\) 230.345i 1.81374i −0.421409 0.906871i \(-0.638464\pi\)
0.421409 0.906871i \(-0.361536\pi\)
\(128\) −120.485 43.2143i −0.941285 0.337612i
\(129\) 0 0
\(130\) 15.6350 + 4.38772i 0.120269 + 0.0337517i
\(131\) 65.7427 0.501853 0.250926 0.968006i \(-0.419265\pi\)
0.250926 + 0.968006i \(0.419265\pi\)
\(132\) 0 0
\(133\) 135.968 + 154.084i 1.02231 + 1.15853i
\(134\) 3.92772 13.9959i 0.0293113 0.104447i
\(135\) 0 0
\(136\) −164.326 + 153.087i −1.20828 + 1.12564i
\(137\) 251.938i 1.83896i 0.393131 + 0.919482i \(0.371392\pi\)
−0.393131 + 0.919482i \(0.628608\pi\)
\(138\) 0 0
\(139\) 55.1901i 0.397051i −0.980096 0.198526i \(-0.936385\pi\)
0.980096 0.198526i \(-0.0636153\pi\)
\(140\) 2.39677 + 13.4907i 0.0171198 + 0.0963623i
\(141\) 0 0
\(142\) −49.5033 + 176.398i −0.348615 + 1.24224i
\(143\) 115.274i 0.806115i
\(144\) 0 0
\(145\) 8.78248i 0.0605688i
\(146\) −52.9643 14.8636i −0.362769 0.101805i
\(147\) 0 0
\(148\) 134.958 221.515i 0.911876 1.49672i
\(149\) −18.0084 −0.120862 −0.0604308 0.998172i \(-0.519247\pi\)
−0.0604308 + 0.998172i \(0.519247\pi\)
\(150\) 0 0
\(151\) 123.390i 0.817155i −0.912724 0.408578i \(-0.866025\pi\)
0.912724 0.408578i \(-0.133975\pi\)
\(152\) 160.087 + 171.839i 1.05320 + 1.13052i
\(153\) 0 0
\(154\) −87.6063 + 42.2563i −0.568872 + 0.274392i
\(155\) 15.0849i 0.0973217i
\(156\) 0 0
\(157\) 39.5283 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(158\) 69.7978 + 19.5876i 0.441758 + 0.123972i
\(159\) 0 0
\(160\) 3.15422 + 15.3384i 0.0197139 + 0.0958653i
\(161\) 39.3570 34.7295i 0.244453 0.215711i
\(162\) 0 0
\(163\) −5.42728 −0.0332962 −0.0166481 0.999861i \(-0.505300\pi\)
−0.0166481 + 0.999861i \(0.505300\pi\)
\(164\) 173.487 + 105.697i 1.05785 + 0.644493i
\(165\) 0 0
\(166\) 63.6452 226.791i 0.383405 1.36621i
\(167\) 156.148i 0.935019i 0.883988 + 0.467509i \(0.154849\pi\)
−0.883988 + 0.467509i \(0.845151\pi\)
\(168\) 0 0
\(169\) 106.302 0.629009
\(170\) 26.4537 + 7.42379i 0.155610 + 0.0436694i
\(171\) 0 0
\(172\) −162.419 98.9538i −0.944297 0.575313i
\(173\) 148.083i 0.855970i −0.903786 0.427985i \(-0.859224\pi\)
0.903786 0.427985i \(-0.140776\pi\)
\(174\) 0 0
\(175\) −129.960 + 114.680i −0.742629 + 0.655314i
\(176\) −98.7818 + 50.9771i −0.561260 + 0.289642i
\(177\) 0 0
\(178\) 19.0424 67.8548i 0.106980 0.381207i
\(179\) 146.484i 0.818348i 0.912456 + 0.409174i \(0.134183\pi\)
−0.912456 + 0.409174i \(0.865817\pi\)
\(180\) 0 0
\(181\) 150.952 0.833987 0.416993 0.908910i \(-0.363084\pi\)
0.416993 + 0.908910i \(0.363084\pi\)
\(182\) 100.918 + 209.224i 0.554494 + 1.14958i
\(183\) 0 0
\(184\) 43.8920 40.8902i 0.238543 0.222229i
\(185\) −31.7333 −0.171532
\(186\) 0 0
\(187\) 195.038i 1.04299i
\(188\) 135.295 222.068i 0.719653 1.18121i
\(189\) 0 0
\(190\) 7.76323 27.6632i 0.0408591 0.145596i
\(191\) −243.251 −1.27357 −0.636783 0.771043i \(-0.719735\pi\)
−0.636783 + 0.771043i \(0.719735\pi\)
\(192\) 0 0
\(193\) −138.025 −0.715158 −0.357579 0.933883i \(-0.616398\pi\)
−0.357579 + 0.933883i \(0.616398\pi\)
\(194\) −47.6399 13.3694i −0.245567 0.0689143i
\(195\) 0 0
\(196\) −122.013 + 153.391i −0.622514 + 0.782609i
\(197\) −80.7464 −0.409880 −0.204940 0.978775i \(-0.565700\pi\)
−0.204940 + 0.978775i \(0.565700\pi\)
\(198\) 0 0
\(199\) −230.552 −1.15855 −0.579276 0.815131i \(-0.696665\pi\)
−0.579276 + 0.815131i \(0.696665\pi\)
\(200\) −144.935 + 135.023i −0.724675 + 0.675115i
\(201\) 0 0
\(202\) 104.217 + 29.2467i 0.515923 + 0.144786i
\(203\) 94.1981 83.1226i 0.464030 0.409471i
\(204\) 0 0
\(205\) 24.8531i 0.121235i
\(206\) −63.8432 + 227.497i −0.309919 + 1.10435i
\(207\) 0 0
\(208\) 121.745 + 235.914i 0.585314 + 1.13420i
\(209\) 203.956 0.975866
\(210\) 0 0
\(211\) −10.9675 −0.0519789 −0.0259894 0.999662i \(-0.508274\pi\)
−0.0259894 + 0.999662i \(0.508274\pi\)
\(212\) −175.065 106.659i −0.825780 0.503106i
\(213\) 0 0
\(214\) 164.224 + 46.0867i 0.767401 + 0.215359i
\(215\) 23.2675i 0.108221i
\(216\) 0 0
\(217\) −161.796 + 142.772i −0.745602 + 0.657936i
\(218\) 170.129 + 47.7439i 0.780408 + 0.219009i
\(219\) 0 0
\(220\) 11.6136 + 7.07555i 0.0527889 + 0.0321616i
\(221\) 465.797 2.10768
\(222\) 0 0
\(223\) −150.911 −0.676730 −0.338365 0.941015i \(-0.609874\pi\)
−0.338365 + 0.941015i \(0.609874\pi\)
\(224\) −134.662 + 179.003i −0.601169 + 0.799122i
\(225\) 0 0
\(226\) −218.859 61.4193i −0.968403 0.271767i
\(227\) 179.331 0.790002 0.395001 0.918681i \(-0.370744\pi\)
0.395001 + 0.918681i \(0.370744\pi\)
\(228\) 0 0
\(229\) −12.7967 −0.0558808 −0.0279404 0.999610i \(-0.508895\pi\)
−0.0279404 + 0.999610i \(0.508895\pi\)
\(230\) −7.06587 1.98292i −0.0307212 0.00862140i
\(231\) 0 0
\(232\) 105.052 97.8677i 0.452812 0.421844i
\(233\) 88.7566i 0.380930i −0.981694 0.190465i \(-0.939000\pi\)
0.981694 0.190465i \(-0.0609995\pi\)
\(234\) 0 0
\(235\) −31.8126 −0.135373
\(236\) 93.1342 + 56.7419i 0.394636 + 0.240432i
\(237\) 0 0
\(238\) 170.748 + 353.997i 0.717428 + 1.48738i
\(239\) −144.716 −0.605506 −0.302753 0.953069i \(-0.597906\pi\)
−0.302753 + 0.953069i \(0.597906\pi\)
\(240\) 0 0
\(241\) 40.5889i 0.168419i 0.996448 + 0.0842093i \(0.0268364\pi\)
−0.996448 + 0.0842093i \(0.973164\pi\)
\(242\) 39.3040 140.054i 0.162413 0.578737i
\(243\) 0 0
\(244\) −394.117 240.115i −1.61523 0.984079i
\(245\) 23.7921 + 2.98375i 0.0971106 + 0.0121786i
\(246\) 0 0
\(247\) 487.095i 1.97204i
\(248\) −180.439 + 168.099i −0.727576 + 0.677817i
\(249\) 0 0
\(250\) 46.8898 + 13.1589i 0.187559 + 0.0526355i
\(251\) −446.676 −1.77959 −0.889793 0.456365i \(-0.849151\pi\)
−0.889793 + 0.456365i \(0.849151\pi\)
\(252\) 0 0
\(253\) 52.0954i 0.205911i
\(254\) −443.555 124.477i −1.74628 0.490065i
\(255\) 0 0
\(256\) −148.323 + 208.654i −0.579386 + 0.815053i
\(257\) −311.679 −1.21276 −0.606379 0.795176i \(-0.707378\pi\)
−0.606379 + 0.795176i \(0.707378\pi\)
\(258\) 0 0
\(259\) −300.343 340.362i −1.15963 1.31414i
\(260\) 16.8981 27.7359i 0.0649926 0.106677i
\(261\) 0 0
\(262\) 35.5268 126.595i 0.135598 0.483186i
\(263\) 254.263 0.966781 0.483390 0.875405i \(-0.339405\pi\)
0.483390 + 0.875405i \(0.339405\pi\)
\(264\) 0 0
\(265\) 25.0792i 0.0946385i
\(266\) 370.182 178.555i 1.39166 0.671259i
\(267\) 0 0
\(268\) −24.8281 15.1265i −0.0926423 0.0564422i
\(269\) 381.909i 1.41974i −0.704335 0.709868i \(-0.748755\pi\)
0.704335 0.709868i \(-0.251245\pi\)
\(270\) 0 0
\(271\) −108.365 −0.399870 −0.199935 0.979809i \(-0.564073\pi\)
−0.199935 + 0.979809i \(0.564073\pi\)
\(272\) 205.987 + 399.155i 0.757304 + 1.46748i
\(273\) 0 0
\(274\) 485.135 + 136.145i 1.77057 + 0.496881i
\(275\) 172.024i 0.625540i
\(276\) 0 0
\(277\) 179.094i 0.646547i 0.946306 + 0.323274i \(0.104783\pi\)
−0.946306 + 0.323274i \(0.895217\pi\)
\(278\) −106.275 29.8243i −0.382283 0.107282i
\(279\) 0 0
\(280\) 27.2731 + 2.67502i 0.0974039 + 0.00955365i
\(281\) 347.268i 1.23583i −0.786245 0.617915i \(-0.787977\pi\)
0.786245 0.617915i \(-0.212023\pi\)
\(282\) 0 0
\(283\) 155.999i 0.551233i 0.961268 + 0.275616i \(0.0888819\pi\)
−0.961268 + 0.275616i \(0.911118\pi\)
\(284\) 312.923 + 190.648i 1.10184 + 0.671296i
\(285\) 0 0
\(286\) 221.974 + 62.2933i 0.776132 + 0.217809i
\(287\) 266.566 235.224i 0.928802 0.819597i
\(288\) 0 0
\(289\) 499.105 1.72701
\(290\) −16.9116 4.74598i −0.0583160 0.0163654i
\(291\) 0 0
\(292\) −57.2429 + 93.9564i −0.196037 + 0.321769i
\(293\) 479.808i 1.63757i −0.574101 0.818785i \(-0.694648\pi\)
0.574101 0.818785i \(-0.305352\pi\)
\(294\) 0 0
\(295\) 13.3420i 0.0452272i
\(296\) −353.621 379.581i −1.19467 1.28237i
\(297\) 0 0
\(298\) −9.73158 + 34.6771i −0.0326563 + 0.116366i
\(299\) −124.416 −0.416108
\(300\) 0 0
\(301\) −249.560 + 220.218i −0.829104 + 0.731621i
\(302\) −237.602 66.6792i −0.786762 0.220792i
\(303\) 0 0
\(304\) 417.405 215.405i 1.37304 0.708568i
\(305\) 56.4596i 0.185114i
\(306\) 0 0
\(307\) 409.804i 1.33487i 0.744670 + 0.667433i \(0.232607\pi\)
−0.744670 + 0.667433i \(0.767393\pi\)
\(308\) 34.0275 + 191.531i 0.110479 + 0.621852i
\(309\) 0 0
\(310\) 29.0476 + 8.15174i 0.0937019 + 0.0262959i
\(311\) 229.581i 0.738202i −0.929389 0.369101i \(-0.879666\pi\)
0.929389 0.369101i \(-0.120334\pi\)
\(312\) 0 0
\(313\) 383.358i 1.22479i −0.790553 0.612393i \(-0.790207\pi\)
0.790553 0.612393i \(-0.209793\pi\)
\(314\) 21.3608 76.1161i 0.0680279 0.242408i
\(315\) 0 0
\(316\) 75.4363 123.818i 0.238722 0.391830i
\(317\) 286.747 0.904566 0.452283 0.891874i \(-0.350610\pi\)
0.452283 + 0.891874i \(0.350610\pi\)
\(318\) 0 0
\(319\) 124.687i 0.390867i
\(320\) 31.2404 + 2.21496i 0.0976262 + 0.00692175i
\(321\) 0 0
\(322\) −45.6074 94.5538i −0.141638 0.293645i
\(323\) 824.139i 2.55151i
\(324\) 0 0
\(325\) 410.833 1.26410
\(326\) −2.93286 + 10.4508i −0.00899650 + 0.0320578i
\(327\) 0 0
\(328\) 297.282 276.951i 0.906348 0.844362i
\(329\) −301.093 341.212i −0.915177 1.03712i
\(330\) 0 0
\(331\) 145.600 0.439880 0.219940 0.975513i \(-0.429414\pi\)
0.219940 + 0.975513i \(0.429414\pi\)
\(332\) −402.318 245.112i −1.21180 0.738289i
\(333\) 0 0
\(334\) 300.680 + 84.3811i 0.900241 + 0.252638i
\(335\) 3.55678i 0.0106173i
\(336\) 0 0
\(337\) −115.312 −0.342172 −0.171086 0.985256i \(-0.554728\pi\)
−0.171086 + 0.985256i \(0.554728\pi\)
\(338\) 57.4450 204.697i 0.169956 0.605613i
\(339\) 0 0
\(340\) 28.5907 46.9277i 0.0840902 0.138023i
\(341\) 214.163i 0.628044i
\(342\) 0 0
\(343\) 193.180 + 283.426i 0.563206 + 0.826316i
\(344\) −278.316 + 259.282i −0.809059 + 0.753727i
\(345\) 0 0
\(346\) −285.150 80.0227i −0.824132 0.231279i
\(347\) 166.848i 0.480831i −0.970670 0.240416i \(-0.922716\pi\)
0.970670 0.240416i \(-0.0772838\pi\)
\(348\) 0 0
\(349\) −65.9305 −0.188913 −0.0944563 0.995529i \(-0.530111\pi\)
−0.0944563 + 0.995529i \(0.530111\pi\)
\(350\) 150.599 + 312.225i 0.430284 + 0.892070i
\(351\) 0 0
\(352\) 44.7811 + 217.763i 0.127219 + 0.618645i
\(353\) −418.652 −1.18598 −0.592992 0.805209i \(-0.702053\pi\)
−0.592992 + 0.805209i \(0.702053\pi\)
\(354\) 0 0
\(355\) 44.8281i 0.126276i
\(356\) −120.372 73.3363i −0.338122 0.206001i
\(357\) 0 0
\(358\) 282.072 + 79.1589i 0.787910 + 0.221114i
\(359\) 612.879 1.70718 0.853592 0.520942i \(-0.174419\pi\)
0.853592 + 0.520942i \(0.174419\pi\)
\(360\) 0 0
\(361\) −500.820 −1.38731
\(362\) 81.5730 290.674i 0.225340 0.802967i
\(363\) 0 0
\(364\) 457.420 81.2656i 1.25665 0.223257i
\(365\) 13.4598 0.0368763
\(366\) 0 0
\(367\) −114.767 −0.312716 −0.156358 0.987700i \(-0.549975\pi\)
−0.156358 + 0.987700i \(0.549975\pi\)
\(368\) −55.0198 106.616i −0.149510 0.289716i
\(369\) 0 0
\(370\) −17.1484 + 61.1061i −0.0463471 + 0.165152i
\(371\) −268.992 + 237.364i −0.725045 + 0.639796i
\(372\) 0 0
\(373\) 546.200i 1.46434i −0.681120 0.732171i \(-0.738507\pi\)
0.681120 0.732171i \(-0.261493\pi\)
\(374\) 375.568 + 105.397i 1.00419 + 0.281810i
\(375\) 0 0
\(376\) −354.504 380.528i −0.942830 1.01204i
\(377\) −297.781 −0.789870
\(378\) 0 0
\(379\) 250.576 0.661150 0.330575 0.943780i \(-0.392757\pi\)
0.330575 + 0.943780i \(0.392757\pi\)
\(380\) −49.0733 29.8979i −0.129140 0.0786787i
\(381\) 0 0
\(382\) −131.451 + 468.407i −0.344112 + 1.22620i
\(383\) 423.702i 1.10627i −0.833092 0.553135i \(-0.813431\pi\)
0.833092 0.553135i \(-0.186569\pi\)
\(384\) 0 0
\(385\) 17.8445 15.7464i 0.0463492 0.0408997i
\(386\) −74.5878 + 265.783i −0.193233 + 0.688558i
\(387\) 0 0
\(388\) −51.4884 + 84.5113i −0.132702 + 0.217813i
\(389\) 27.1194 0.0697157 0.0348578 0.999392i \(-0.488902\pi\)
0.0348578 + 0.999392i \(0.488902\pi\)
\(390\) 0 0
\(391\) −210.506 −0.538378
\(392\) 229.437 + 317.840i 0.585299 + 0.810817i
\(393\) 0 0
\(394\) −43.6347 + 155.486i −0.110748 + 0.394635i
\(395\) −17.7377 −0.0449057
\(396\) 0 0
\(397\) −215.658 −0.543220 −0.271610 0.962407i \(-0.587556\pi\)
−0.271610 + 0.962407i \(0.587556\pi\)
\(398\) −124.588 + 443.953i −0.313036 + 1.11546i
\(399\) 0 0
\(400\) 181.680 + 352.054i 0.454200 + 0.880135i
\(401\) 423.953i 1.05724i 0.848859 + 0.528620i \(0.177290\pi\)
−0.848859 + 0.528620i \(0.822710\pi\)
\(402\) 0 0
\(403\) 511.471 1.26916
\(404\) 112.635 184.876i 0.278801 0.457613i
\(405\) 0 0
\(406\) −109.158 226.308i −0.268862 0.557408i
\(407\) −450.525 −1.10694
\(408\) 0 0
\(409\) 51.8874i 0.126864i −0.997986 0.0634320i \(-0.979795\pi\)
0.997986 0.0634320i \(-0.0202046\pi\)
\(410\) −47.8574 13.4304i −0.116725 0.0327571i
\(411\) 0 0
\(412\) 403.569 + 245.874i 0.979537 + 0.596783i
\(413\) 143.102 126.277i 0.346495 0.305755i
\(414\) 0 0
\(415\) 57.6345i 0.138878i
\(416\) 520.069 106.948i 1.25017 0.257086i
\(417\) 0 0
\(418\) 110.216 392.740i 0.263675 0.939569i
\(419\) 418.176 0.998034 0.499017 0.866592i \(-0.333694\pi\)
0.499017 + 0.866592i \(0.333694\pi\)
\(420\) 0 0
\(421\) 48.3444i 0.114832i 0.998350 + 0.0574161i \(0.0182862\pi\)
−0.998350 + 0.0574161i \(0.981714\pi\)
\(422\) −5.92677 + 21.1192i −0.0140445 + 0.0500456i
\(423\) 0 0
\(424\) −299.987 + 279.471i −0.707516 + 0.659129i
\(425\) 695.107 1.63555
\(426\) 0 0
\(427\) −605.568 + 534.368i −1.41819 + 1.25145i
\(428\) 177.490 291.326i 0.414697 0.680668i
\(429\) 0 0
\(430\) 44.8042 + 12.5736i 0.104196 + 0.0292409i
\(431\) −106.413 −0.246898 −0.123449 0.992351i \(-0.539396\pi\)
−0.123449 + 0.992351i \(0.539396\pi\)
\(432\) 0 0
\(433\) 261.405i 0.603707i −0.953354 0.301854i \(-0.902395\pi\)
0.953354 0.301854i \(-0.0976054\pi\)
\(434\) 187.491 + 388.708i 0.432006 + 0.895641i
\(435\) 0 0
\(436\) 183.872 301.802i 0.421726 0.692205i
\(437\) 220.130i 0.503731i
\(438\) 0 0
\(439\) 611.541 1.39303 0.696517 0.717541i \(-0.254732\pi\)
0.696517 + 0.717541i \(0.254732\pi\)
\(440\) 19.9006 18.5396i 0.0452287 0.0421355i
\(441\) 0 0
\(442\) 251.713 896.944i 0.569486 2.02929i
\(443\) 695.830i 1.57072i 0.619038 + 0.785361i \(0.287523\pi\)
−0.619038 + 0.785361i \(0.712477\pi\)
\(444\) 0 0
\(445\) 17.2440i 0.0387505i
\(446\) −81.5509 + 290.595i −0.182849 + 0.651559i
\(447\) 0 0
\(448\) 271.921 + 356.038i 0.606966 + 0.794728i
\(449\) 45.4904i 0.101315i −0.998716 0.0506574i \(-0.983868\pi\)
0.998716 0.0506574i \(-0.0161317\pi\)
\(450\) 0 0
\(451\) 352.844i 0.782360i
\(452\) −236.539 + 388.247i −0.523317 + 0.858953i
\(453\) 0 0
\(454\) 96.9087 345.321i 0.213455 0.760619i
\(455\) −37.6060 42.6168i −0.0826506 0.0936632i
\(456\) 0 0
\(457\) 567.174 1.24108 0.620540 0.784175i \(-0.286913\pi\)
0.620540 + 0.784175i \(0.286913\pi\)
\(458\) −6.91523 + 24.6415i −0.0150988 + 0.0538023i
\(459\) 0 0
\(460\) −7.63667 + 12.5346i −0.0166015 + 0.0272490i
\(461\) 166.006i 0.360099i 0.983658 + 0.180050i \(0.0576258\pi\)
−0.983658 + 0.180050i \(0.942374\pi\)
\(462\) 0 0
\(463\) 194.577i 0.420254i −0.977674 0.210127i \(-0.932612\pi\)
0.977674 0.210127i \(-0.0673877\pi\)
\(464\) −131.686 255.177i −0.283806 0.549950i
\(465\) 0 0
\(466\) −170.911 47.9633i −0.366761 0.102926i
\(467\) −86.2300 −0.184647 −0.0923234 0.995729i \(-0.529429\pi\)
−0.0923234 + 0.995729i \(0.529429\pi\)
\(468\) 0 0
\(469\) −38.1489 + 33.6635i −0.0813410 + 0.0717772i
\(470\) −17.1912 + 61.2586i −0.0365771 + 0.130338i
\(471\) 0 0
\(472\) 159.592 148.677i 0.338118 0.314994i
\(473\) 330.334i 0.698380i
\(474\) 0 0
\(475\) 726.889i 1.53029i
\(476\) 773.931 137.497i 1.62590 0.288860i
\(477\) 0 0
\(478\) −78.2033 + 278.667i −0.163605 + 0.582984i
\(479\) 574.253i 1.19886i 0.800428 + 0.599429i \(0.204606\pi\)
−0.800428 + 0.599429i \(0.795394\pi\)
\(480\) 0 0
\(481\) 1075.96i 2.23692i
\(482\) 78.1584 + 21.9339i 0.162154 + 0.0455060i
\(483\) 0 0
\(484\) −248.450 151.368i −0.513327 0.312744i
\(485\) 12.1068 0.0249624
\(486\) 0 0
\(487\) 595.755i 1.22332i 0.791122 + 0.611658i \(0.209497\pi\)
−0.791122 + 0.611658i \(0.790503\pi\)
\(488\) −675.346 + 629.159i −1.38391 + 1.28926i
\(489\) 0 0
\(490\) 18.6026 44.2019i 0.0379645 0.0902080i
\(491\) 571.410i 1.16377i −0.813272 0.581883i \(-0.802316\pi\)
0.813272 0.581883i \(-0.197684\pi\)
\(492\) 0 0
\(493\) −503.830 −1.02197
\(494\) −937.955 263.222i −1.89869 0.532838i
\(495\) 0 0
\(496\) 226.185 + 438.294i 0.456018 + 0.883657i
\(497\) 480.812 424.280i 0.967429 0.853683i
\(498\) 0 0
\(499\) −22.8477 −0.0457870 −0.0228935 0.999738i \(-0.507288\pi\)
−0.0228935 + 0.999738i \(0.507288\pi\)
\(500\) 50.6778 83.1806i 0.101356 0.166361i
\(501\) 0 0
\(502\) −241.380 + 860.124i −0.480837 + 1.71339i
\(503\) 688.951i 1.36968i −0.728692 0.684842i \(-0.759871\pi\)
0.728692 0.684842i \(-0.240129\pi\)
\(504\) 0 0
\(505\) −26.4846 −0.0524447
\(506\) −100.316 28.1519i −0.198252 0.0556362i
\(507\) 0 0
\(508\) −479.387 + 786.848i −0.943675 + 1.54891i
\(509\) 62.9269i 0.123628i −0.998088 0.0618142i \(-0.980311\pi\)
0.998088 0.0618142i \(-0.0196886\pi\)
\(510\) 0 0
\(511\) 127.392 + 144.366i 0.249299 + 0.282516i
\(512\) 321.633 + 398.367i 0.628190 + 0.778060i
\(513\) 0 0
\(514\) −168.429 + 600.172i −0.327682 + 1.16765i
\(515\) 57.8138i 0.112260i
\(516\) 0 0
\(517\) −451.650 −0.873597
\(518\) −817.707 + 394.416i −1.57859 + 0.761420i
\(519\) 0 0
\(520\) −44.2770 47.5274i −0.0851480 0.0913988i
\(521\) 612.508 1.17564 0.587820 0.808992i \(-0.299986\pi\)
0.587820 + 0.808992i \(0.299986\pi\)
\(522\) 0 0
\(523\) 692.859i 1.32478i −0.749160 0.662389i \(-0.769542\pi\)
0.749160 0.662389i \(-0.230458\pi\)
\(524\) −224.574 136.822i −0.428576 0.261110i
\(525\) 0 0
\(526\) 137.402 489.612i 0.261220 0.930822i
\(527\) 865.383 1.64209
\(528\) 0 0
\(529\) −472.773 −0.893711
\(530\) 48.2928 + 13.5526i 0.0911184 + 0.0255709i
\(531\) 0 0
\(532\) −143.784 809.317i −0.270270 1.52127i
\(533\) −842.675 −1.58100
\(534\) 0 0
\(535\) −41.7343 −0.0780079
\(536\) −42.5447 + 39.6351i −0.0793745 + 0.0739460i
\(537\) 0 0
\(538\) −735.408 206.380i −1.36693 0.383607i
\(539\) 337.781 + 42.3609i 0.626681 + 0.0785917i
\(540\) 0 0
\(541\) 634.171i 1.17222i −0.810232 0.586110i \(-0.800659\pi\)
0.810232 0.586110i \(-0.199341\pi\)
\(542\) −58.5594 + 208.668i −0.108043 + 0.384997i
\(543\) 0 0
\(544\) 879.930 180.950i 1.61752 0.332629i
\(545\) −43.2349 −0.0793301
\(546\) 0 0
\(547\) −361.551 −0.660971 −0.330486 0.943811i \(-0.607213\pi\)
−0.330486 + 0.943811i \(0.607213\pi\)
\(548\) 524.326 860.609i 0.956799 1.57045i
\(549\) 0 0
\(550\) 331.250 + 92.9601i 0.602273 + 0.169018i
\(551\) 526.866i 0.956200i
\(552\) 0 0
\(553\) −167.881 190.249i −0.303581 0.344031i
\(554\) 344.865 + 96.7807i 0.622499 + 0.174694i
\(555\) 0 0
\(556\) −114.860 + 188.527i −0.206583 + 0.339077i
\(557\) −687.553 −1.23439 −0.617193 0.786812i \(-0.711730\pi\)
−0.617193 + 0.786812i \(0.711730\pi\)
\(558\) 0 0
\(559\) 788.915 1.41130
\(560\) 19.8892 51.0718i 0.0355164 0.0911996i
\(561\) 0 0
\(562\) −668.704 187.661i −1.18986 0.333916i
\(563\) −960.105 −1.70534 −0.852669 0.522452i \(-0.825017\pi\)
−0.852669 + 0.522452i \(0.825017\pi\)
\(564\) 0 0
\(565\) 55.6187 0.0984403
\(566\) 300.393 + 84.3005i 0.530730 + 0.148941i
\(567\) 0 0
\(568\) 536.215 499.543i 0.944041 0.879478i
\(569\) 569.590i 1.00104i 0.865726 + 0.500518i \(0.166857\pi\)
−0.865726 + 0.500518i \(0.833143\pi\)
\(570\) 0 0
\(571\) 413.155 0.723564 0.361782 0.932263i \(-0.382168\pi\)
0.361782 + 0.932263i \(0.382168\pi\)
\(572\) 239.905 393.772i 0.419415 0.688413i
\(573\) 0 0
\(574\) −308.900 640.416i −0.538154 1.11571i
\(575\) −185.666 −0.322897
\(576\) 0 0
\(577\) 21.1560i 0.0366654i −0.999832 0.0183327i \(-0.994164\pi\)
0.999832 0.0183327i \(-0.00583581\pi\)
\(578\) 269.712 961.082i 0.466630 1.66277i
\(579\) 0 0
\(580\) −18.2778 + 30.0005i −0.0315135 + 0.0517251i
\(581\) −618.169 + 545.487i −1.06397 + 0.938876i
\(582\) 0 0
\(583\) 356.054i 0.610728i
\(584\) 149.990 + 161.001i 0.256832 + 0.275686i
\(585\) 0 0
\(586\) −923.923 259.284i −1.57666 0.442464i
\(587\) 395.721 0.674141 0.337071 0.941479i \(-0.390564\pi\)
0.337071 + 0.941479i \(0.390564\pi\)
\(588\) 0 0
\(589\) 904.950i 1.53642i
\(590\) −25.6916 7.20993i −0.0435450 0.0122202i
\(591\) 0 0
\(592\) −922.019 + 475.814i −1.55746 + 0.803740i
\(593\) −488.061 −0.823037 −0.411519 0.911401i \(-0.635001\pi\)
−0.411519 + 0.911401i \(0.635001\pi\)
\(594\) 0 0
\(595\) −63.6275 72.1053i −0.106937 0.121185i
\(596\) 61.5158 + 37.4785i 0.103214 + 0.0628833i
\(597\) 0 0
\(598\) −67.2335 + 239.577i −0.112431 + 0.400631i
\(599\) −215.241 −0.359334 −0.179667 0.983727i \(-0.557502\pi\)
−0.179667 + 0.983727i \(0.557502\pi\)
\(600\) 0 0
\(601\) 810.565i 1.34869i 0.738415 + 0.674347i \(0.235575\pi\)
−0.738415 + 0.674347i \(0.764425\pi\)
\(602\) 289.194 + 599.560i 0.480388 + 0.995946i
\(603\) 0 0
\(604\) −256.796 + 421.496i −0.425159 + 0.697841i
\(605\) 35.5920i 0.0588298i
\(606\) 0 0
\(607\) −621.412 −1.02374 −0.511872 0.859062i \(-0.671048\pi\)
−0.511872 + 0.859062i \(0.671048\pi\)
\(608\) −189.224 920.162i −0.311223 1.51342i
\(609\) 0 0
\(610\) 108.719 + 30.5103i 0.178228 + 0.0500169i
\(611\) 1078.65i 1.76538i
\(612\) 0 0
\(613\) 748.837i 1.22159i 0.791787 + 0.610797i \(0.209151\pi\)
−0.791787 + 0.610797i \(0.790849\pi\)
\(614\) 789.123 + 221.455i 1.28522 + 0.360675i
\(615\) 0 0
\(616\) 387.201 + 37.9778i 0.628574 + 0.0616523i
\(617\) 439.740i 0.712707i −0.934351 0.356353i \(-0.884020\pi\)
0.934351 0.356353i \(-0.115980\pi\)
\(618\) 0 0
\(619\) 598.114i 0.966259i 0.875549 + 0.483129i \(0.160500\pi\)
−0.875549 + 0.483129i \(0.839500\pi\)
\(620\) 31.3941 51.5292i 0.0506357 0.0831116i
\(621\) 0 0
\(622\) −442.083 124.064i −0.710745 0.199459i
\(623\) −184.953 + 163.207i −0.296875 + 0.261970i
\(624\) 0 0
\(625\) 607.097 0.971355
\(626\) −738.199 207.164i −1.17923 0.330932i
\(627\) 0 0
\(628\) −135.027 82.2650i −0.215011 0.130995i
\(629\) 1820.47i 2.89422i
\(630\) 0 0
\(631\) 480.690i 0.761791i 0.924618 + 0.380895i \(0.124384\pi\)
−0.924618 + 0.380895i \(0.875616\pi\)
\(632\) −197.661 212.171i −0.312755 0.335714i
\(633\) 0 0
\(634\) 154.956 552.164i 0.244410 0.870921i
\(635\) 112.721 0.177513
\(636\) 0 0
\(637\) 101.168 806.701i 0.158819 1.26641i
\(638\) −240.098 67.3796i −0.376329 0.105611i
\(639\) 0 0
\(640\) 21.1472 58.9599i 0.0330425 0.0921248i
\(641\) 890.272i 1.38888i 0.719551 + 0.694440i \(0.244348\pi\)
−0.719551 + 0.694440i \(0.755652\pi\)
\(642\) 0 0
\(643\) 748.676i 1.16435i 0.813064 + 0.582174i \(0.197798\pi\)
−0.813064 + 0.582174i \(0.802202\pi\)
\(644\) −206.720 + 36.7260i −0.320993 + 0.0570279i
\(645\) 0 0
\(646\) −1586.97 445.358i −2.45661 0.689408i
\(647\) 1011.64i 1.56359i −0.623535 0.781795i \(-0.714304\pi\)
0.623535 0.781795i \(-0.285696\pi\)
\(648\) 0 0
\(649\) 189.420i 0.291864i
\(650\) 222.011 791.104i 0.341555 1.21708i
\(651\) 0 0
\(652\) 18.5393 + 11.2951i 0.0284346 + 0.0173237i
\(653\) 970.047 1.48552 0.742762 0.669556i \(-0.233515\pi\)
0.742762 + 0.669556i \(0.233515\pi\)
\(654\) 0 0
\(655\) 32.1716i 0.0491170i
\(656\) −372.651 722.111i −0.568065 1.10078i
\(657\) 0 0
\(658\) −819.749 + 395.400i −1.24582 + 0.600912i
\(659\) 122.648i 0.186112i −0.995661 0.0930562i \(-0.970336\pi\)
0.995661 0.0930562i \(-0.0296636\pi\)
\(660\) 0 0
\(661\) −550.866 −0.833382 −0.416691 0.909048i \(-0.636810\pi\)
−0.416691 + 0.909048i \(0.636810\pi\)
\(662\) 78.6812 280.370i 0.118854 0.423519i
\(663\) 0 0
\(664\) −689.399 + 642.251i −1.03825 + 0.967245i
\(665\) −75.4022 + 66.5366i −0.113387 + 0.100055i
\(666\) 0 0
\(667\) 134.575 0.201761
\(668\) 324.970 533.395i 0.486483 0.798495i
\(669\) 0 0
\(670\) 6.84898 + 1.92206i 0.0102224 + 0.00286874i
\(671\) 801.569i 1.19459i
\(672\) 0 0
\(673\) −929.335 −1.38088 −0.690442 0.723387i \(-0.742584\pi\)
−0.690442 + 0.723387i \(0.742584\pi\)
\(674\) −62.3136 + 222.046i −0.0924535 + 0.329445i
\(675\) 0 0
\(676\) −363.124 221.233i −0.537166 0.327268i
\(677\) 426.954i 0.630656i 0.948983 + 0.315328i \(0.102115\pi\)
−0.948983 + 0.315328i \(0.897885\pi\)
\(678\) 0 0
\(679\) 114.586 + 129.853i 0.168756 + 0.191242i
\(680\) −74.9143 80.4138i −0.110168 0.118256i
\(681\) 0 0
\(682\) 412.394 + 115.732i 0.604684 + 0.169695i
\(683\) 1012.14i 1.48190i −0.671558 0.740952i \(-0.734375\pi\)
0.671558 0.740952i \(-0.265625\pi\)
\(684\) 0 0
\(685\) −123.288 −0.179982
\(686\) 650.162 218.828i 0.947758 0.318991i
\(687\) 0 0
\(688\) 348.877 + 676.043i 0.507088 + 0.982620i
\(689\) 850.342 1.23417
\(690\) 0 0
\(691\) 637.724i 0.922901i 0.887166 + 0.461450i \(0.152671\pi\)
−0.887166 + 0.461450i \(0.847329\pi\)
\(692\) −308.185 + 505.844i −0.445354 + 0.730988i
\(693\) 0 0
\(694\) −321.285 90.1635i −0.462947 0.129919i
\(695\) 27.0076 0.0388599
\(696\) 0 0
\(697\) −1425.76 −2.04557
\(698\) −35.6283 + 126.956i −0.0510434 + 0.181886i
\(699\) 0 0
\(700\) 682.606 121.272i 0.975151 0.173246i
\(701\) −915.416 −1.30587 −0.652936 0.757413i \(-0.726463\pi\)
−0.652936 + 0.757413i \(0.726463\pi\)
\(702\) 0 0
\(703\) 1903.70 2.70797
\(704\) 443.526 + 31.4462i 0.630009 + 0.0446680i
\(705\) 0 0
\(706\) −226.236 + 806.161i −0.320448 + 1.14187i
\(707\) −250.666 284.065i −0.354549 0.401790i
\(708\) 0 0
\(709\) 26.7631i 0.0377477i 0.999822 + 0.0188739i \(0.00600809\pi\)
−0.999822 + 0.0188739i \(0.993992\pi\)
\(710\) −86.3216 24.2248i −0.121580 0.0341194i
\(711\) 0 0
\(712\) −206.265 + 192.158i −0.289698 + 0.269886i
\(713\) −231.147 −0.324189
\(714\) 0 0
\(715\) −56.4103 −0.0788955
\(716\) 304.859 500.384i 0.425780 0.698860i
\(717\) 0 0
\(718\) 331.195 1180.17i 0.461274 1.64369i
\(719\) 812.958i 1.13068i −0.824859 0.565339i \(-0.808745\pi\)
0.824859 0.565339i \(-0.191255\pi\)
\(720\) 0 0
\(721\) 620.092 547.184i 0.860045 0.758924i
\(722\) −270.639 + 964.385i −0.374847 + 1.33571i
\(723\) 0 0
\(724\) −515.644 314.156i −0.712215 0.433917i
\(725\) −444.377 −0.612934
\(726\) 0 0
\(727\) 402.292 0.553359 0.276679 0.960962i \(-0.410766\pi\)
0.276679 + 0.960962i \(0.410766\pi\)
\(728\) 90.6999 924.728i 0.124588 1.27023i
\(729\) 0 0
\(730\) 7.27358 25.9184i 0.00996381 0.0355047i
\(731\) 1334.80 1.82600
\(732\) 0 0
\(733\) −707.087 −0.964648 −0.482324 0.875993i \(-0.660207\pi\)
−0.482324 + 0.875993i \(0.660207\pi\)
\(734\) −62.0190 + 220.996i −0.0844946 + 0.301085i
\(735\) 0 0
\(736\) −235.032 + 48.3325i −0.319338 + 0.0656691i
\(737\) 50.4963i 0.0685161i
\(738\) 0 0
\(739\) 1178.59 1.59484 0.797420 0.603425i \(-0.206198\pi\)
0.797420 + 0.603425i \(0.206198\pi\)
\(740\) 108.400 + 66.0424i 0.146486 + 0.0892465i
\(741\) 0 0
\(742\) 311.711 + 646.243i 0.420095 + 0.870947i
\(743\) −227.166 −0.305741 −0.152870 0.988246i \(-0.548852\pi\)
−0.152870 + 0.988246i \(0.548852\pi\)
\(744\) 0 0
\(745\) 8.81251i 0.0118289i
\(746\) −1051.77 295.162i −1.40988 0.395659i
\(747\) 0 0
\(748\) 405.908 666.242i 0.542657 0.890698i
\(749\) −394.998 447.628i −0.527367 0.597635i
\(750\) 0 0
\(751\) 19.6849i 0.0262116i −0.999914 0.0131058i \(-0.995828\pi\)
0.999914 0.0131058i \(-0.00417182\pi\)
\(752\) −924.321 + 477.002i −1.22915 + 0.634312i
\(753\) 0 0
\(754\) −160.918 + 573.410i −0.213420 + 0.760491i
\(755\) 60.3819 0.0799760
\(756\) 0 0
\(757\) 1077.26i 1.42307i 0.702650 + 0.711535i \(0.252000\pi\)
−0.702650 + 0.711535i \(0.748000\pi\)
\(758\) 135.409 482.512i 0.178640 0.636559i
\(759\) 0 0
\(760\) −84.0905 + 78.3396i −0.110645 + 0.103078i
\(761\) 98.7893 0.129815 0.0649075 0.997891i \(-0.479325\pi\)
0.0649075 + 0.997891i \(0.479325\pi\)
\(762\) 0 0
\(763\) −409.201 463.724i −0.536306 0.607764i
\(764\) 830.934 + 506.246i 1.08761 + 0.662626i
\(765\) 0 0
\(766\) −815.884 228.965i −1.06512 0.298910i
\(767\) −452.379 −0.589803
\(768\) 0 0
\(769\) 332.048i 0.431792i −0.976416 0.215896i \(-0.930733\pi\)
0.976416 0.215896i \(-0.0692672\pi\)
\(770\) −20.6784 42.8707i −0.0268550 0.0556762i
\(771\) 0 0
\(772\) 471.489 + 287.254i 0.610737 + 0.372091i
\(773\) 1460.93i 1.88995i 0.327149 + 0.944973i \(0.393912\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(774\) 0 0
\(775\) 763.267 0.984860
\(776\) 134.912 + 144.816i 0.173856 + 0.186618i
\(777\) 0 0
\(778\) 14.6551 52.2214i 0.0188369 0.0671226i
\(779\) 1490.95i 1.91393i
\(780\) 0 0
\(781\) 636.434i 0.814897i
\(782\) −113.755 + 405.352i −0.145467 + 0.518353i
\(783\) 0 0
\(784\) 736.023 270.049i 0.938805 0.344450i
\(785\) 19.3434i 0.0246413i
\(786\) 0 0
\(787\) 889.382i 1.13009i −0.825059 0.565046i \(-0.808858\pi\)
0.825059 0.565046i \(-0.191142\pi\)
\(788\) 275.826 + 168.047i 0.350033 + 0.213257i
\(789\) 0 0
\(790\) −9.58533 + 34.1560i −0.0121333 + 0.0432354i
\(791\) 526.409 + 596.549i 0.665498 + 0.754171i
\(792\) 0 0
\(793\) 1914.33 2.41404
\(794\) −116.540 + 415.274i −0.146776 + 0.523015i
\(795\) 0 0
\(796\) 787.555 + 479.817i 0.989390 + 0.602785i
\(797\) 1370.49i 1.71956i −0.510662 0.859782i \(-0.670600\pi\)
0.510662 0.859782i \(-0.329400\pi\)
\(798\) 0 0
\(799\) 1825.01i 2.28412i
\(800\) 776.097 159.598i 0.970121 0.199497i
\(801\) 0 0
\(802\) 816.369 + 229.101i 1.01792 + 0.285662i
\(803\) 191.092 0.237973
\(804\) 0 0
\(805\) 16.9951 + 19.2596i 0.0211120 + 0.0239250i
\(806\) 276.395 984.895i 0.342922 1.22195i
\(807\) 0 0
\(808\) −295.132 316.797i −0.365262 0.392076i
\(809\) 1096.60i 1.35550i 0.735291 + 0.677751i \(0.237045\pi\)
−0.735291 + 0.677751i \(0.762955\pi\)
\(810\) 0 0
\(811\) 1357.90i 1.67436i −0.546929 0.837179i \(-0.684203\pi\)
0.546929 0.837179i \(-0.315797\pi\)
\(812\) −494.769 + 87.9010i −0.609321 + 0.108252i
\(813\) 0 0
\(814\) −243.460 + 867.535i −0.299091 + 1.06577i
\(815\) 2.65587i 0.00325874i
\(816\) 0 0
\(817\) 1395.83i 1.70849i
\(818\) −99.9149 28.0395i −0.122145 0.0342781i
\(819\) 0 0
\(820\) −51.7234 + 84.8970i −0.0630774 + 0.103533i
\(821\) −936.137 −1.14024 −0.570120 0.821561i \(-0.693103\pi\)
−0.570120 + 0.821561i \(0.693103\pi\)
\(822\) 0 0
\(823\) 129.080i 0.156841i −0.996920 0.0784207i \(-0.975012\pi\)
0.996920 0.0784207i \(-0.0249877\pi\)
\(824\) 691.544 644.249i 0.839252 0.781856i
\(825\) 0 0
\(826\) −165.829 343.799i −0.200761 0.416221i
\(827\) 22.8284i 0.0276039i −0.999905 0.0138020i \(-0.995607\pi\)
0.999905 0.0138020i \(-0.00439344\pi\)
\(828\) 0 0
\(829\) −630.043 −0.760004 −0.380002 0.924986i \(-0.624077\pi\)
−0.380002 + 0.924986i \(0.624077\pi\)
\(830\) 110.982 + 31.1452i 0.133713 + 0.0375243i
\(831\) 0 0
\(832\) 75.1010 1059.24i 0.0902656 1.27313i
\(833\) 171.171 1364.90i 0.205487 1.63853i
\(834\) 0 0
\(835\) −76.4121 −0.0915115
\(836\) −696.704 424.467i −0.833378 0.507735i
\(837\) 0 0
\(838\) 225.979 805.245i 0.269665 0.960913i
\(839\) 265.666i 0.316647i −0.987387 0.158323i \(-0.949391\pi\)
0.987387 0.158323i \(-0.0506088\pi\)
\(840\) 0 0
\(841\) −518.905 −0.617010
\(842\) 93.0924 + 26.1249i 0.110561 + 0.0310272i
\(843\) 0 0
\(844\) 37.4646 + 22.8253i 0.0443894 + 0.0270442i
\(845\) 52.0198i 0.0615619i
\(846\) 0 0
\(847\) −381.749 + 336.864i −0.450707 + 0.397715i
\(848\) 376.041 + 728.681i 0.443445 + 0.859294i
\(849\) 0 0
\(850\) 375.630 1338.51i 0.441918 1.57471i
\(851\) 486.253i 0.571390i
\(852\) 0 0
\(853\) 760.591 0.891665 0.445833 0.895116i \(-0.352908\pi\)
0.445833 + 0.895116i \(0.352908\pi\)
\(854\) 701.740 + 1454.86i 0.821710 + 1.70358i
\(855\) 0 0
\(856\) −465.066 499.207i −0.543302 0.583186i
\(857\) −962.482 −1.12308 −0.561542 0.827449i \(-0.689792\pi\)
−0.561542 + 0.827449i \(0.689792\pi\)
\(858\) 0 0
\(859\) 160.713i 0.187093i −0.995615 0.0935466i \(-0.970180\pi\)
0.995615 0.0935466i \(-0.0298204\pi\)
\(860\) 48.4236 79.4808i 0.0563066 0.0924196i
\(861\) 0 0
\(862\) −57.5047 + 204.910i −0.0667108 + 0.237715i
\(863\) 1275.31 1.47777 0.738884 0.673832i \(-0.235353\pi\)
0.738884 + 0.673832i \(0.235353\pi\)
\(864\) 0 0
\(865\) 72.4652 0.0837748
\(866\) −503.365 141.261i −0.581253 0.163119i
\(867\) 0 0
\(868\) 849.819 150.980i 0.979054 0.173940i
\(869\) −251.826 −0.289789
\(870\) 0 0
\(871\) 120.597 0.138458
\(872\) −481.789 517.158i −0.552511 0.593071i
\(873\) 0 0
\(874\) 423.886 + 118.957i 0.484995 + 0.136106i
\(875\) −112.781 127.809i −0.128893 0.146067i
\(876\) 0 0
\(877\) 1148.72i 1.30983i −0.755704 0.654913i \(-0.772705\pi\)
0.755704 0.654913i \(-0.227295\pi\)
\(878\) 330.472 1177.59i 0.376392 1.34122i
\(879\) 0 0
\(880\) −24.9460 48.3395i −0.0283477 0.0549313i
\(881\) 1589.04 1.80368 0.901840 0.432070i \(-0.142217\pi\)
0.901840 + 0.432070i \(0.142217\pi\)
\(882\) 0 0
\(883\) 523.232 0.592561 0.296281 0.955101i \(-0.404254\pi\)
0.296281 + 0.955101i \(0.404254\pi\)
\(884\) −1591.14 969.403i −1.79993 1.09661i
\(885\) 0 0
\(886\) 1339.90 + 376.021i 1.51230 + 0.424403i
\(887\) 1190.80i 1.34250i 0.741231 + 0.671250i \(0.234242\pi\)
−0.741231 + 0.671250i \(0.765758\pi\)
\(888\) 0 0
\(889\) 1066.86 + 1209.01i 1.20006 + 1.35996i
\(890\) 33.2052 + 9.31850i 0.0373092 + 0.0104702i
\(891\) 0 0
\(892\) 515.504 + 314.070i 0.577919 + 0.352097i
\(893\) 1908.46 2.13713
\(894\) 0 0
\(895\) −71.6831 −0.0800928
\(896\) 832.535 331.213i 0.929168 0.369658i
\(897\) 0 0
\(898\) −87.5967 24.5826i −0.0975465 0.0273748i
\(899\) −553.233 −0.615387
\(900\) 0 0
\(901\) 1438.73 1.59682
\(902\) −679.441 190.674i −0.753260 0.211390i
\(903\) 0 0
\(904\) 619.789 + 665.288i 0.685607 + 0.735938i
\(905\) 73.8691i 0.0816233i
\(906\) 0 0
\(907\) 1762.93 1.94369 0.971845 0.235623i \(-0.0757129\pi\)
0.971845 + 0.235623i \(0.0757129\pi\)
\(908\) −612.585 373.217i −0.674653 0.411032i
\(909\) 0 0
\(910\) −102.385 + 49.3848i −0.112511 + 0.0542691i
\(911\) 49.2079 0.0540152 0.0270076 0.999635i \(-0.491402\pi\)
0.0270076 + 0.999635i \(0.491402\pi\)
\(912\) 0 0
\(913\) 818.248i 0.896219i
\(914\) 306.496 1092.16i 0.335335 1.19492i
\(915\) 0 0
\(916\) 43.7129 + 26.6321i 0.0477216 + 0.0290743i
\(917\) −345.062 + 304.491i −0.376295 + 0.332052i
\(918\) 0 0
\(919\) 685.900i 0.746355i 0.927760 + 0.373177i \(0.121732\pi\)
−0.927760 + 0.373177i \(0.878268\pi\)
\(920\) 20.0099 + 21.4788i 0.0217499 + 0.0233465i
\(921\) 0 0
\(922\) 319.662 + 89.7081i 0.346705 + 0.0972973i
\(923\) −1519.95 −1.64675
\(924\) 0 0
\(925\) 1605.65i 1.73584i
\(926\) −374.680 105.148i −0.404623 0.113551i
\(927\) 0 0
\(928\) −562.533 + 115.680i −0.606178 + 0.124655i
\(929\) −194.049 −0.208880 −0.104440 0.994531i \(-0.533305\pi\)
−0.104440 + 0.994531i \(0.533305\pi\)
\(930\) 0 0
\(931\) −1427.30 178.997i −1.53308 0.192263i
\(932\) −184.717 + 303.189i −0.198195 + 0.325310i
\(933\) 0 0
\(934\) −46.5980 + 166.045i −0.0498908 + 0.177779i
\(935\) −95.4432 −0.102078
\(936\) 0 0
\(937\) 523.728i 0.558942i −0.960154 0.279471i \(-0.909841\pi\)
0.960154 0.279471i \(-0.0901590\pi\)
\(938\) 44.2075 + 91.6514i 0.0471295 + 0.0977094i
\(939\) 0 0
\(940\) 108.670 + 66.2073i 0.115607 + 0.0704333i
\(941\) 144.646i 0.153716i −0.997042 0.0768578i \(-0.975511\pi\)
0.997042 0.0768578i \(-0.0244887\pi\)
\(942\) 0 0
\(943\) 380.826 0.403845
\(944\) −200.052 387.656i −0.211920 0.410652i
\(945\) 0 0
\(946\) 636.095 + 178.510i 0.672404 + 0.188699i
\(947\) 177.497i 0.187431i 0.995599 + 0.0937155i \(0.0298744\pi\)
−0.995599 + 0.0937155i \(0.970126\pi\)
\(948\) 0 0
\(949\) 456.373i 0.480898i
\(950\) −1399.71 392.805i −1.47337 0.413479i
\(951\) 0 0
\(952\) 153.460 1564.59i 0.161197 1.64348i
\(953\) 59.3443i 0.0622710i −0.999515 0.0311355i \(-0.990088\pi\)
0.999515 0.0311355i \(-0.00991234\pi\)
\(954\) 0 0
\(955\) 119.036i 0.124645i
\(956\) 494.343 + 301.178i 0.517095 + 0.315040i
\(957\) 0 0
\(958\) 1105.79 + 310.322i 1.15427 + 0.323926i
\(959\) −1166.87 1322.34i −1.21675 1.37888i
\(960\) 0 0
\(961\) −10.7613 −0.0111980
\(962\) 2071.88 + 581.439i 2.15372 + 0.604407i
\(963\) 0 0
\(964\) 84.4723 138.650i 0.0876269 0.143828i
\(965\) 67.5436i 0.0699934i
\(966\) 0 0
\(967\) 1022.00i 1.05687i −0.848973 0.528437i \(-0.822778\pi\)
0.848973 0.528437i \(-0.177222\pi\)
\(968\) −425.737 + 396.621i −0.439811 + 0.409732i
\(969\) 0 0
\(970\) 6.54239 23.3129i 0.00674473 0.0240339i
\(971\) 121.308 0.124931 0.0624654 0.998047i \(-0.480104\pi\)
0.0624654 + 0.998047i \(0.480104\pi\)
\(972\) 0 0
\(973\) 255.616 + 289.675i 0.262710 + 0.297714i
\(974\) 1147.19 + 321.941i 1.17782 + 0.330535i
\(975\) 0 0
\(976\) 846.564 + 1640.45i 0.867381 + 1.68078i
\(977\) 485.885i 0.497323i 0.968590 + 0.248662i \(0.0799907\pi\)
−0.968590 + 0.248662i \(0.920009\pi\)
\(978\) 0 0
\(979\) 244.816i 0.250068i
\(980\) −75.0630 59.7077i −0.0765949 0.0609262i
\(981\) 0 0
\(982\) −1100.31 308.785i −1.12048 0.314445i
\(983\) 258.044i 0.262507i −0.991349 0.131253i \(-0.958100\pi\)
0.991349 0.131253i \(-0.0419001\pi\)
\(984\) 0 0
\(985\) 39.5138i 0.0401155i
\(986\) −272.265 + 970.180i −0.276131 + 0.983956i
\(987\) 0 0
\(988\) −1013.73 + 1663.89i −1.02604 + 1.68410i
\(989\) −356.531 −0.360496
\(990\) 0 0
\(991\) 679.844i 0.686019i −0.939332 0.343009i \(-0.888554\pi\)
0.939332 0.343009i \(-0.111446\pi\)
\(992\) 966.212 198.693i 0.974004 0.200296i
\(993\) 0 0
\(994\) −557.172 1155.14i −0.560535 1.16211i
\(995\) 112.822i 0.113389i
\(996\) 0 0
\(997\) 982.612 0.985569 0.492784 0.870152i \(-0.335979\pi\)
0.492784 + 0.870152i \(0.335979\pi\)
\(998\) −12.3467 + 43.9958i −0.0123715 + 0.0440840i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.c.251.25 yes 48
3.2 odd 2 inner 504.3.e.c.251.24 yes 48
4.3 odd 2 2016.3.e.c.1007.14 48
7.6 odd 2 inner 504.3.e.c.251.26 yes 48
8.3 odd 2 inner 504.3.e.c.251.21 48
8.5 even 2 2016.3.e.c.1007.45 48
12.11 even 2 2016.3.e.c.1007.47 48
21.20 even 2 inner 504.3.e.c.251.23 yes 48
24.5 odd 2 2016.3.e.c.1007.20 48
24.11 even 2 inner 504.3.e.c.251.28 yes 48
28.27 even 2 2016.3.e.c.1007.19 48
56.13 odd 2 2016.3.e.c.1007.48 48
56.27 even 2 inner 504.3.e.c.251.22 yes 48
84.83 odd 2 2016.3.e.c.1007.46 48
168.83 odd 2 inner 504.3.e.c.251.27 yes 48
168.125 even 2 2016.3.e.c.1007.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.21 48 8.3 odd 2 inner
504.3.e.c.251.22 yes 48 56.27 even 2 inner
504.3.e.c.251.23 yes 48 21.20 even 2 inner
504.3.e.c.251.24 yes 48 3.2 odd 2 inner
504.3.e.c.251.25 yes 48 1.1 even 1 trivial
504.3.e.c.251.26 yes 48 7.6 odd 2 inner
504.3.e.c.251.27 yes 48 168.83 odd 2 inner
504.3.e.c.251.28 yes 48 24.11 even 2 inner
2016.3.e.c.1007.13 48 168.125 even 2
2016.3.e.c.1007.14 48 4.3 odd 2
2016.3.e.c.1007.19 48 28.27 even 2
2016.3.e.c.1007.20 48 24.5 odd 2
2016.3.e.c.1007.45 48 8.5 even 2
2016.3.e.c.1007.46 48 84.83 odd 2
2016.3.e.c.1007.47 48 12.11 even 2
2016.3.e.c.1007.48 48 56.13 odd 2