Properties

Label 504.3.e.c.251.22
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.22
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.c.251.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.540392 - 1.92561i) q^{2} +(-3.41595 + 2.08117i) q^{4} +0.489356i q^{5} +(-5.24868 - 4.63156i) q^{7} +(5.85347 + 5.45315i) q^{8} +(0.942310 - 0.264444i) q^{10} +6.94749i q^{11} +16.5922 q^{13} +(-6.08224 + 12.6098i) q^{14} +(7.33748 - 14.2183i) q^{16} -28.0732 q^{17} +29.3568i q^{19} +(-1.01843 - 1.67162i) q^{20} +(13.3782 - 3.75437i) q^{22} +7.49845 q^{23} +24.7605 q^{25} +(-8.96631 - 31.9502i) q^{26} +(27.5683 + 4.89781i) q^{28} +17.9470 q^{29} +30.8259 q^{31} +(-31.3441 - 6.44566i) q^{32} +(15.1705 + 54.0581i) q^{34} +(2.26648 - 2.56848i) q^{35} -64.8471i q^{37} +(56.5297 - 15.8642i) q^{38} +(-2.66853 + 2.86443i) q^{40} +50.7873 q^{41} +47.5472 q^{43} +(-14.4589 - 23.7323i) q^{44} +(-4.05210 - 14.4391i) q^{46} +65.0090i q^{47} +(6.09730 + 48.6192i) q^{49} +(-13.3804 - 47.6791i) q^{50} +(-56.6783 + 34.5312i) q^{52} -51.2494 q^{53} -3.39980 q^{55} +(-5.46641 - 55.7326i) q^{56} +(-9.69841 - 34.5589i) q^{58} +27.2645 q^{59} +115.375 q^{61} +(-16.6581 - 59.3588i) q^{62} +(4.52627 + 63.8397i) q^{64} +8.11952i q^{65} +7.26829 q^{67} +(95.8968 - 58.4251i) q^{68} +(-6.17067 - 2.97638i) q^{70} +91.6063 q^{71} +27.5052i q^{73} +(-124.870 + 35.0428i) q^{74} +(-61.0964 - 100.281i) q^{76} +(32.1777 - 36.4652i) q^{77} -36.2471i q^{79} +(6.95784 + 3.59064i) q^{80} +(-27.4450 - 97.7966i) q^{82} -117.776 q^{83} -13.7378i q^{85} +(-25.6941 - 91.5574i) q^{86} +(-37.8857 + 40.6669i) q^{88} -35.2381 q^{89} +(-87.0874 - 76.8480i) q^{91} +(-25.6144 + 15.6055i) q^{92} +(125.182 - 35.1303i) q^{94} -14.3659 q^{95} +24.7402i q^{97} +(90.3267 - 38.0144i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 144 q^{22} - 336 q^{25} - 232 q^{28} - 384 q^{43} + 736 q^{46} + 368 q^{49} - 432 q^{58} + 480 q^{64} - 896 q^{67} + 264 q^{70} - 48 q^{88} - 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.540392 1.92561i −0.270196 0.962805i
\(3\) 0 0
\(4\) −3.41595 + 2.08117i −0.853988 + 0.520292i
\(5\) 0.489356i 0.0978713i 0.998802 + 0.0489356i \(0.0155829\pi\)
−0.998802 + 0.0489356i \(0.984417\pi\)
\(6\) 0 0
\(7\) −5.24868 4.63156i −0.749812 0.661651i
\(8\) 5.85347 + 5.45315i 0.731684 + 0.681644i
\(9\) 0 0
\(10\) 0.942310 0.264444i 0.0942310 0.0264444i
\(11\) 6.94749i 0.631590i 0.948827 + 0.315795i \(0.102271\pi\)
−0.948827 + 0.315795i \(0.897729\pi\)
\(12\) 0 0
\(13\) 16.5922 1.27633 0.638163 0.769901i \(-0.279695\pi\)
0.638163 + 0.769901i \(0.279695\pi\)
\(14\) −6.08224 + 12.6098i −0.434446 + 0.900698i
\(15\) 0 0
\(16\) 7.33748 14.2183i 0.458593 0.888647i
\(17\) −28.0732 −1.65137 −0.825683 0.564135i \(-0.809210\pi\)
−0.825683 + 0.564135i \(0.809210\pi\)
\(18\) 0 0
\(19\) 29.3568i 1.54509i 0.634958 + 0.772547i \(0.281017\pi\)
−0.634958 + 0.772547i \(0.718983\pi\)
\(20\) −1.01843 1.67162i −0.0509216 0.0835809i
\(21\) 0 0
\(22\) 13.3782 3.75437i 0.608098 0.170653i
\(23\) 7.49845 0.326020 0.163010 0.986624i \(-0.447880\pi\)
0.163010 + 0.986624i \(0.447880\pi\)
\(24\) 0 0
\(25\) 24.7605 0.990421
\(26\) −8.96631 31.9502i −0.344858 1.22885i
\(27\) 0 0
\(28\) 27.5683 + 4.89781i 0.984582 + 0.174922i
\(29\) 17.9470 0.618862 0.309431 0.950922i \(-0.399861\pi\)
0.309431 + 0.950922i \(0.399861\pi\)
\(30\) 0 0
\(31\) 30.8259 0.994385 0.497193 0.867640i \(-0.334364\pi\)
0.497193 + 0.867640i \(0.334364\pi\)
\(32\) −31.3441 6.44566i −0.979504 0.201427i
\(33\) 0 0
\(34\) 15.1705 + 54.0581i 0.446192 + 1.58994i
\(35\) 2.26648 2.56848i 0.0647567 0.0733850i
\(36\) 0 0
\(37\) 64.8471i 1.75262i −0.481744 0.876312i \(-0.659996\pi\)
0.481744 0.876312i \(-0.340004\pi\)
\(38\) 56.5297 15.8642i 1.48762 0.417478i
\(39\) 0 0
\(40\) −2.66853 + 2.86443i −0.0667134 + 0.0716108i
\(41\) 50.7873 1.23871 0.619357 0.785109i \(-0.287393\pi\)
0.619357 + 0.785109i \(0.287393\pi\)
\(42\) 0 0
\(43\) 47.5472 1.10575 0.552875 0.833264i \(-0.313531\pi\)
0.552875 + 0.833264i \(0.313531\pi\)
\(44\) −14.4589 23.7323i −0.328611 0.539371i
\(45\) 0 0
\(46\) −4.05210 14.4391i −0.0880892 0.313894i
\(47\) 65.0090i 1.38317i 0.722295 + 0.691585i \(0.243087\pi\)
−0.722295 + 0.691585i \(0.756913\pi\)
\(48\) 0 0
\(49\) 6.09730 + 48.6192i 0.124435 + 0.992228i
\(50\) −13.3804 47.6791i −0.267608 0.953583i
\(51\) 0 0
\(52\) −56.6783 + 34.5312i −1.08997 + 0.664062i
\(53\) −51.2494 −0.966969 −0.483485 0.875353i \(-0.660629\pi\)
−0.483485 + 0.875353i \(0.660629\pi\)
\(54\) 0 0
\(55\) −3.39980 −0.0618145
\(56\) −5.46641 55.7326i −0.0976144 0.995224i
\(57\) 0 0
\(58\) −9.69841 34.5589i −0.167214 0.595844i
\(59\) 27.2645 0.462110 0.231055 0.972941i \(-0.425782\pi\)
0.231055 + 0.972941i \(0.425782\pi\)
\(60\) 0 0
\(61\) 115.375 1.89140 0.945699 0.325043i \(-0.105379\pi\)
0.945699 + 0.325043i \(0.105379\pi\)
\(62\) −16.6581 59.3588i −0.268679 0.957399i
\(63\) 0 0
\(64\) 4.52627 + 63.8397i 0.0707230 + 0.997496i
\(65\) 8.11952i 0.124916i
\(66\) 0 0
\(67\) 7.26829 0.108482 0.0542409 0.998528i \(-0.482726\pi\)
0.0542409 + 0.998528i \(0.482726\pi\)
\(68\) 95.8968 58.4251i 1.41025 0.859192i
\(69\) 0 0
\(70\) −6.17067 2.97638i −0.0881525 0.0425197i
\(71\) 91.6063 1.29023 0.645115 0.764085i \(-0.276809\pi\)
0.645115 + 0.764085i \(0.276809\pi\)
\(72\) 0 0
\(73\) 27.5052i 0.376783i 0.982094 + 0.188392i \(0.0603274\pi\)
−0.982094 + 0.188392i \(0.939673\pi\)
\(74\) −124.870 + 35.0428i −1.68744 + 0.473552i
\(75\) 0 0
\(76\) −61.0964 100.281i −0.803900 1.31949i
\(77\) 32.1777 36.4652i 0.417892 0.473574i
\(78\) 0 0
\(79\) 36.2471i 0.458824i −0.973329 0.229412i \(-0.926320\pi\)
0.973329 0.229412i \(-0.0736803\pi\)
\(80\) 6.95784 + 3.59064i 0.0869730 + 0.0448830i
\(81\) 0 0
\(82\) −27.4450 97.7966i −0.334695 1.19264i
\(83\) −117.776 −1.41899 −0.709495 0.704711i \(-0.751077\pi\)
−0.709495 + 0.704711i \(0.751077\pi\)
\(84\) 0 0
\(85\) 13.7378i 0.161621i
\(86\) −25.6941 91.5574i −0.298769 1.06462i
\(87\) 0 0
\(88\) −37.8857 + 40.6669i −0.430520 + 0.462124i
\(89\) −35.2381 −0.395933 −0.197967 0.980209i \(-0.563434\pi\)
−0.197967 + 0.980209i \(0.563434\pi\)
\(90\) 0 0
\(91\) −87.0874 76.8480i −0.957004 0.844483i
\(92\) −25.6144 + 15.6055i −0.278417 + 0.169625i
\(93\) 0 0
\(94\) 125.182 35.1303i 1.33172 0.373727i
\(95\) −14.3659 −0.151220
\(96\) 0 0
\(97\) 24.7402i 0.255053i 0.991835 + 0.127527i \(0.0407038\pi\)
−0.991835 + 0.127527i \(0.959296\pi\)
\(98\) 90.3267 38.0144i 0.921701 0.387902i
\(99\) 0 0
\(100\) −84.5808 + 51.5308i −0.845808 + 0.515308i
\(101\) 54.1213i 0.535854i 0.963439 + 0.267927i \(0.0863387\pi\)
−0.963439 + 0.267927i \(0.913661\pi\)
\(102\) 0 0
\(103\) −118.143 −1.14701 −0.573507 0.819200i \(-0.694418\pi\)
−0.573507 + 0.819200i \(0.694418\pi\)
\(104\) 97.1222 + 90.4800i 0.933868 + 0.870000i
\(105\) 0 0
\(106\) 27.6947 + 98.6863i 0.261271 + 0.931003i
\(107\) 85.2840i 0.797046i 0.917158 + 0.398523i \(0.130477\pi\)
−0.917158 + 0.398523i \(0.869523\pi\)
\(108\) 0 0
\(109\) 88.3506i 0.810556i −0.914193 0.405278i \(-0.867175\pi\)
0.914193 0.405278i \(-0.132825\pi\)
\(110\) 1.83722 + 6.54669i 0.0167020 + 0.0595154i
\(111\) 0 0
\(112\) −104.365 + 40.6436i −0.931832 + 0.362889i
\(113\) 113.657i 1.00581i −0.864341 0.502907i \(-0.832264\pi\)
0.864341 0.502907i \(-0.167736\pi\)
\(114\) 0 0
\(115\) 3.66942i 0.0319080i
\(116\) −61.3061 + 37.3507i −0.528501 + 0.321989i
\(117\) 0 0
\(118\) −14.7335 52.5007i −0.124860 0.444922i
\(119\) 147.347 + 130.023i 1.23821 + 1.09263i
\(120\) 0 0
\(121\) 72.7324 0.601094
\(122\) −62.3478 222.168i −0.511048 1.82105i
\(123\) 0 0
\(124\) −105.300 + 64.1540i −0.849194 + 0.517371i
\(125\) 24.3506i 0.194805i
\(126\) 0 0
\(127\) 230.345i 1.81374i 0.421409 + 0.906871i \(0.361536\pi\)
−0.421409 + 0.906871i \(0.638464\pi\)
\(128\) 120.485 43.2143i 0.941285 0.337612i
\(129\) 0 0
\(130\) 15.6350 4.38772i 0.120269 0.0337517i
\(131\) −65.7427 −0.501853 −0.250926 0.968006i \(-0.580735\pi\)
−0.250926 + 0.968006i \(0.580735\pi\)
\(132\) 0 0
\(133\) 135.968 154.084i 1.02231 1.15853i
\(134\) −3.92772 13.9959i −0.0293113 0.104447i
\(135\) 0 0
\(136\) −164.326 153.087i −1.20828 1.12564i
\(137\) 251.938i 1.83896i 0.393131 + 0.919482i \(0.371392\pi\)
−0.393131 + 0.919482i \(0.628608\pi\)
\(138\) 0 0
\(139\) 55.1901i 0.397051i 0.980096 + 0.198526i \(0.0636153\pi\)
−0.980096 + 0.198526i \(0.936385\pi\)
\(140\) −2.39677 + 13.4907i −0.0171198 + 0.0963623i
\(141\) 0 0
\(142\) −49.5033 176.398i −0.348615 1.24224i
\(143\) 115.274i 0.806115i
\(144\) 0 0
\(145\) 8.78248i 0.0605688i
\(146\) 52.9643 14.8636i 0.362769 0.101805i
\(147\) 0 0
\(148\) 134.958 + 221.515i 0.911876 + 1.49672i
\(149\) 18.0084 0.120862 0.0604308 0.998172i \(-0.480753\pi\)
0.0604308 + 0.998172i \(0.480753\pi\)
\(150\) 0 0
\(151\) 123.390i 0.817155i 0.912724 + 0.408578i \(0.133975\pi\)
−0.912724 + 0.408578i \(0.866025\pi\)
\(152\) −160.087 + 171.839i −1.05320 + 1.13052i
\(153\) 0 0
\(154\) −87.6063 42.2563i −0.568872 0.274392i
\(155\) 15.0849i 0.0973217i
\(156\) 0 0
\(157\) 39.5283 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(158\) −69.7978 + 19.5876i −0.441758 + 0.123972i
\(159\) 0 0
\(160\) 3.15422 15.3384i 0.0197139 0.0958653i
\(161\) −39.3570 34.7295i −0.244453 0.215711i
\(162\) 0 0
\(163\) −5.42728 −0.0332962 −0.0166481 0.999861i \(-0.505300\pi\)
−0.0166481 + 0.999861i \(0.505300\pi\)
\(164\) −173.487 + 105.697i −1.05785 + 0.644493i
\(165\) 0 0
\(166\) 63.6452 + 226.791i 0.383405 + 1.36621i
\(167\) 156.148i 0.935019i 0.883988 + 0.467509i \(0.154849\pi\)
−0.883988 + 0.467509i \(0.845151\pi\)
\(168\) 0 0
\(169\) 106.302 0.629009
\(170\) −26.4537 + 7.42379i −0.155610 + 0.0436694i
\(171\) 0 0
\(172\) −162.419 + 98.9538i −0.944297 + 0.575313i
\(173\) 148.083i 0.855970i −0.903786 0.427985i \(-0.859224\pi\)
0.903786 0.427985i \(-0.140776\pi\)
\(174\) 0 0
\(175\) −129.960 114.680i −0.742629 0.655314i
\(176\) 98.7818 + 50.9771i 0.561260 + 0.289642i
\(177\) 0 0
\(178\) 19.0424 + 67.8548i 0.106980 + 0.381207i
\(179\) 146.484i 0.818348i 0.912456 + 0.409174i \(0.134183\pi\)
−0.912456 + 0.409174i \(0.865817\pi\)
\(180\) 0 0
\(181\) 150.952 0.833987 0.416993 0.908910i \(-0.363084\pi\)
0.416993 + 0.908910i \(0.363084\pi\)
\(182\) −100.918 + 209.224i −0.554494 + 1.14958i
\(183\) 0 0
\(184\) 43.8920 + 40.8902i 0.238543 + 0.222229i
\(185\) 31.7333 0.171532
\(186\) 0 0
\(187\) 195.038i 1.04299i
\(188\) −135.295 222.068i −0.719653 1.18121i
\(189\) 0 0
\(190\) 7.76323 + 27.6632i 0.0408591 + 0.145596i
\(191\) 243.251 1.27357 0.636783 0.771043i \(-0.280265\pi\)
0.636783 + 0.771043i \(0.280265\pi\)
\(192\) 0 0
\(193\) −138.025 −0.715158 −0.357579 0.933883i \(-0.616398\pi\)
−0.357579 + 0.933883i \(0.616398\pi\)
\(194\) 47.6399 13.3694i 0.245567 0.0689143i
\(195\) 0 0
\(196\) −122.013 153.391i −0.622514 0.782609i
\(197\) 80.7464 0.409880 0.204940 0.978775i \(-0.434300\pi\)
0.204940 + 0.978775i \(0.434300\pi\)
\(198\) 0 0
\(199\) −230.552 −1.15855 −0.579276 0.815131i \(-0.696665\pi\)
−0.579276 + 0.815131i \(0.696665\pi\)
\(200\) 144.935 + 135.023i 0.724675 + 0.675115i
\(201\) 0 0
\(202\) 104.217 29.2467i 0.515923 0.144786i
\(203\) −94.1981 83.1226i −0.464030 0.409471i
\(204\) 0 0
\(205\) 24.8531i 0.121235i
\(206\) 63.8432 + 227.497i 0.309919 + 1.10435i
\(207\) 0 0
\(208\) 121.745 235.914i 0.585314 1.13420i
\(209\) −203.956 −0.975866
\(210\) 0 0
\(211\) −10.9675 −0.0519789 −0.0259894 0.999662i \(-0.508274\pi\)
−0.0259894 + 0.999662i \(0.508274\pi\)
\(212\) 175.065 106.659i 0.825780 0.503106i
\(213\) 0 0
\(214\) 164.224 46.0867i 0.767401 0.215359i
\(215\) 23.2675i 0.108221i
\(216\) 0 0
\(217\) −161.796 142.772i −0.745602 0.657936i
\(218\) −170.129 + 47.7439i −0.780408 + 0.219009i
\(219\) 0 0
\(220\) 11.6136 7.07555i 0.0527889 0.0321616i
\(221\) −465.797 −2.10768
\(222\) 0 0
\(223\) −150.911 −0.676730 −0.338365 0.941015i \(-0.609874\pi\)
−0.338365 + 0.941015i \(0.609874\pi\)
\(224\) 134.662 + 179.003i 0.601169 + 0.799122i
\(225\) 0 0
\(226\) −218.859 + 61.4193i −0.968403 + 0.271767i
\(227\) −179.331 −0.790002 −0.395001 0.918681i \(-0.629256\pi\)
−0.395001 + 0.918681i \(0.629256\pi\)
\(228\) 0 0
\(229\) −12.7967 −0.0558808 −0.0279404 0.999610i \(-0.508895\pi\)
−0.0279404 + 0.999610i \(0.508895\pi\)
\(230\) 7.06587 1.98292i 0.0307212 0.00862140i
\(231\) 0 0
\(232\) 105.052 + 97.8677i 0.452812 + 0.421844i
\(233\) 88.7566i 0.380930i −0.981694 0.190465i \(-0.939000\pi\)
0.981694 0.190465i \(-0.0609995\pi\)
\(234\) 0 0
\(235\) −31.8126 −0.135373
\(236\) −93.1342 + 56.7419i −0.394636 + 0.240432i
\(237\) 0 0
\(238\) 170.748 353.997i 0.717428 1.48738i
\(239\) 144.716 0.605506 0.302753 0.953069i \(-0.402094\pi\)
0.302753 + 0.953069i \(0.402094\pi\)
\(240\) 0 0
\(241\) 40.5889i 0.168419i −0.996448 0.0842093i \(-0.973164\pi\)
0.996448 0.0842093i \(-0.0268364\pi\)
\(242\) −39.3040 140.054i −0.162413 0.578737i
\(243\) 0 0
\(244\) −394.117 + 240.115i −1.61523 + 0.984079i
\(245\) −23.7921 + 2.98375i −0.0971106 + 0.0121786i
\(246\) 0 0
\(247\) 487.095i 1.97204i
\(248\) 180.439 + 168.099i 0.727576 + 0.677817i
\(249\) 0 0
\(250\) 46.8898 13.1589i 0.187559 0.0526355i
\(251\) 446.676 1.77959 0.889793 0.456365i \(-0.150849\pi\)
0.889793 + 0.456365i \(0.150849\pi\)
\(252\) 0 0
\(253\) 52.0954i 0.205911i
\(254\) 443.555 124.477i 1.74628 0.490065i
\(255\) 0 0
\(256\) −148.323 208.654i −0.579386 0.815053i
\(257\) 311.679 1.21276 0.606379 0.795176i \(-0.292622\pi\)
0.606379 + 0.795176i \(0.292622\pi\)
\(258\) 0 0
\(259\) −300.343 + 340.362i −1.15963 + 1.31414i
\(260\) −16.8981 27.7359i −0.0649926 0.106677i
\(261\) 0 0
\(262\) 35.5268 + 126.595i 0.135598 + 0.483186i
\(263\) −254.263 −0.966781 −0.483390 0.875405i \(-0.660595\pi\)
−0.483390 + 0.875405i \(0.660595\pi\)
\(264\) 0 0
\(265\) 25.0792i 0.0946385i
\(266\) −370.182 178.555i −1.39166 0.671259i
\(267\) 0 0
\(268\) −24.8281 + 15.1265i −0.0926423 + 0.0564422i
\(269\) 381.909i 1.41974i −0.704335 0.709868i \(-0.748755\pi\)
0.704335 0.709868i \(-0.251245\pi\)
\(270\) 0 0
\(271\) −108.365 −0.399870 −0.199935 0.979809i \(-0.564073\pi\)
−0.199935 + 0.979809i \(0.564073\pi\)
\(272\) −205.987 + 399.155i −0.757304 + 1.46748i
\(273\) 0 0
\(274\) 485.135 136.145i 1.77057 0.496881i
\(275\) 172.024i 0.625540i
\(276\) 0 0
\(277\) 179.094i 0.646547i −0.946306 0.323274i \(-0.895217\pi\)
0.946306 0.323274i \(-0.104783\pi\)
\(278\) 106.275 29.8243i 0.382283 0.107282i
\(279\) 0 0
\(280\) 27.2731 2.67502i 0.0974039 0.00955365i
\(281\) 347.268i 1.23583i −0.786245 0.617915i \(-0.787977\pi\)
0.786245 0.617915i \(-0.212023\pi\)
\(282\) 0 0
\(283\) 155.999i 0.551233i −0.961268 0.275616i \(-0.911118\pi\)
0.961268 0.275616i \(-0.0888819\pi\)
\(284\) −312.923 + 190.648i −1.10184 + 0.671296i
\(285\) 0 0
\(286\) 221.974 62.2933i 0.776132 0.217809i
\(287\) −266.566 235.224i −0.928802 0.819597i
\(288\) 0 0
\(289\) 499.105 1.72701
\(290\) 16.9116 4.74598i 0.0583160 0.0163654i
\(291\) 0 0
\(292\) −57.2429 93.9564i −0.196037 0.321769i
\(293\) 479.808i 1.63757i −0.574101 0.818785i \(-0.694648\pi\)
0.574101 0.818785i \(-0.305352\pi\)
\(294\) 0 0
\(295\) 13.3420i 0.0452272i
\(296\) 353.621 379.581i 1.19467 1.28237i
\(297\) 0 0
\(298\) −9.73158 34.6771i −0.0326563 0.116366i
\(299\) 124.416 0.416108
\(300\) 0 0
\(301\) −249.560 220.218i −0.829104 0.731621i
\(302\) 237.602 66.6792i 0.786762 0.220792i
\(303\) 0 0
\(304\) 417.405 + 215.405i 1.37304 + 0.708568i
\(305\) 56.4596i 0.185114i
\(306\) 0 0
\(307\) 409.804i 1.33487i −0.744670 0.667433i \(-0.767393\pi\)
0.744670 0.667433i \(-0.232607\pi\)
\(308\) −34.0275 + 191.531i −0.110479 + 0.621852i
\(309\) 0 0
\(310\) 29.0476 8.15174i 0.0937019 0.0262959i
\(311\) 229.581i 0.738202i −0.929389 0.369101i \(-0.879666\pi\)
0.929389 0.369101i \(-0.120334\pi\)
\(312\) 0 0
\(313\) 383.358i 1.22479i 0.790553 + 0.612393i \(0.209793\pi\)
−0.790553 + 0.612393i \(0.790207\pi\)
\(314\) −21.3608 76.1161i −0.0680279 0.242408i
\(315\) 0 0
\(316\) 75.4363 + 123.818i 0.238722 + 0.391830i
\(317\) −286.747 −0.904566 −0.452283 0.891874i \(-0.649390\pi\)
−0.452283 + 0.891874i \(0.649390\pi\)
\(318\) 0 0
\(319\) 124.687i 0.390867i
\(320\) −31.2404 + 2.21496i −0.0976262 + 0.00692175i
\(321\) 0 0
\(322\) −45.6074 + 94.5538i −0.141638 + 0.293645i
\(323\) 824.139i 2.55151i
\(324\) 0 0
\(325\) 410.833 1.26410
\(326\) 2.93286 + 10.4508i 0.00899650 + 0.0320578i
\(327\) 0 0
\(328\) 297.282 + 276.951i 0.906348 + 0.844362i
\(329\) 301.093 341.212i 0.915177 1.03712i
\(330\) 0 0
\(331\) 145.600 0.439880 0.219940 0.975513i \(-0.429414\pi\)
0.219940 + 0.975513i \(0.429414\pi\)
\(332\) 402.318 245.112i 1.21180 0.738289i
\(333\) 0 0
\(334\) 300.680 84.3811i 0.900241 0.252638i
\(335\) 3.55678i 0.0106173i
\(336\) 0 0
\(337\) −115.312 −0.342172 −0.171086 0.985256i \(-0.554728\pi\)
−0.171086 + 0.985256i \(0.554728\pi\)
\(338\) −57.4450 204.697i −0.169956 0.605613i
\(339\) 0 0
\(340\) 28.5907 + 46.9277i 0.0840902 + 0.138023i
\(341\) 214.163i 0.628044i
\(342\) 0 0
\(343\) 193.180 283.426i 0.563206 0.826316i
\(344\) 278.316 + 259.282i 0.809059 + 0.753727i
\(345\) 0 0
\(346\) −285.150 + 80.0227i −0.824132 + 0.231279i
\(347\) 166.848i 0.480831i −0.970670 0.240416i \(-0.922716\pi\)
0.970670 0.240416i \(-0.0772838\pi\)
\(348\) 0 0
\(349\) −65.9305 −0.188913 −0.0944563 0.995529i \(-0.530111\pi\)
−0.0944563 + 0.995529i \(0.530111\pi\)
\(350\) −150.599 + 312.225i −0.430284 + 0.892070i
\(351\) 0 0
\(352\) 44.7811 217.763i 0.127219 0.618645i
\(353\) 418.652 1.18598 0.592992 0.805209i \(-0.297947\pi\)
0.592992 + 0.805209i \(0.297947\pi\)
\(354\) 0 0
\(355\) 44.8281i 0.126276i
\(356\) 120.372 73.3363i 0.338122 0.206001i
\(357\) 0 0
\(358\) 282.072 79.1589i 0.787910 0.221114i
\(359\) −612.879 −1.70718 −0.853592 0.520942i \(-0.825581\pi\)
−0.853592 + 0.520942i \(0.825581\pi\)
\(360\) 0 0
\(361\) −500.820 −1.38731
\(362\) −81.5730 290.674i −0.225340 0.802967i
\(363\) 0 0
\(364\) 457.420 + 81.2656i 1.25665 + 0.223257i
\(365\) −13.4598 −0.0368763
\(366\) 0 0
\(367\) −114.767 −0.312716 −0.156358 0.987700i \(-0.549975\pi\)
−0.156358 + 0.987700i \(0.549975\pi\)
\(368\) 55.0198 106.616i 0.149510 0.289716i
\(369\) 0 0
\(370\) −17.1484 61.1061i −0.0463471 0.165152i
\(371\) 268.992 + 237.364i 0.725045 + 0.639796i
\(372\) 0 0
\(373\) 546.200i 1.46434i 0.681120 + 0.732171i \(0.261493\pi\)
−0.681120 + 0.732171i \(0.738507\pi\)
\(374\) −375.568 + 105.397i −1.00419 + 0.281810i
\(375\) 0 0
\(376\) −354.504 + 380.528i −0.942830 + 1.01204i
\(377\) 297.781 0.789870
\(378\) 0 0
\(379\) 250.576 0.661150 0.330575 0.943780i \(-0.392757\pi\)
0.330575 + 0.943780i \(0.392757\pi\)
\(380\) 49.0733 29.8979i 0.129140 0.0786787i
\(381\) 0 0
\(382\) −131.451 468.407i −0.344112 1.22620i
\(383\) 423.702i 1.10627i −0.833092 0.553135i \(-0.813431\pi\)
0.833092 0.553135i \(-0.186569\pi\)
\(384\) 0 0
\(385\) 17.8445 + 15.7464i 0.0463492 + 0.0408997i
\(386\) 74.5878 + 265.783i 0.193233 + 0.688558i
\(387\) 0 0
\(388\) −51.4884 84.5113i −0.132702 0.217813i
\(389\) −27.1194 −0.0697157 −0.0348578 0.999392i \(-0.511098\pi\)
−0.0348578 + 0.999392i \(0.511098\pi\)
\(390\) 0 0
\(391\) −210.506 −0.538378
\(392\) −229.437 + 317.840i −0.585299 + 0.810817i
\(393\) 0 0
\(394\) −43.6347 155.486i −0.110748 0.394635i
\(395\) 17.7377 0.0449057
\(396\) 0 0
\(397\) −215.658 −0.543220 −0.271610 0.962407i \(-0.587556\pi\)
−0.271610 + 0.962407i \(0.587556\pi\)
\(398\) 124.588 + 443.953i 0.313036 + 1.11546i
\(399\) 0 0
\(400\) 181.680 352.054i 0.454200 0.880135i
\(401\) 423.953i 1.05724i 0.848859 + 0.528620i \(0.177290\pi\)
−0.848859 + 0.528620i \(0.822710\pi\)
\(402\) 0 0
\(403\) 511.471 1.26916
\(404\) −112.635 184.876i −0.278801 0.457613i
\(405\) 0 0
\(406\) −109.158 + 226.308i −0.268862 + 0.557408i
\(407\) 450.525 1.10694
\(408\) 0 0
\(409\) 51.8874i 0.126864i 0.997986 + 0.0634320i \(0.0202046\pi\)
−0.997986 + 0.0634320i \(0.979795\pi\)
\(410\) 47.8574 13.4304i 0.116725 0.0327571i
\(411\) 0 0
\(412\) 403.569 245.874i 0.979537 0.596783i
\(413\) −143.102 126.277i −0.346495 0.305755i
\(414\) 0 0
\(415\) 57.6345i 0.138878i
\(416\) −520.069 106.948i −1.25017 0.257086i
\(417\) 0 0
\(418\) 110.216 + 392.740i 0.263675 + 0.939569i
\(419\) −418.176 −0.998034 −0.499017 0.866592i \(-0.666306\pi\)
−0.499017 + 0.866592i \(0.666306\pi\)
\(420\) 0 0
\(421\) 48.3444i 0.114832i −0.998350 0.0574161i \(-0.981714\pi\)
0.998350 0.0574161i \(-0.0182862\pi\)
\(422\) 5.92677 + 21.1192i 0.0140445 + 0.0500456i
\(423\) 0 0
\(424\) −299.987 279.471i −0.707516 0.659129i
\(425\) −695.107 −1.63555
\(426\) 0 0
\(427\) −605.568 534.368i −1.41819 1.25145i
\(428\) −177.490 291.326i −0.414697 0.680668i
\(429\) 0 0
\(430\) 44.8042 12.5736i 0.104196 0.0292409i
\(431\) 106.413 0.246898 0.123449 0.992351i \(-0.460604\pi\)
0.123449 + 0.992351i \(0.460604\pi\)
\(432\) 0 0
\(433\) 261.405i 0.603707i 0.953354 + 0.301854i \(0.0976054\pi\)
−0.953354 + 0.301854i \(0.902395\pi\)
\(434\) −187.491 + 388.708i −0.432006 + 0.895641i
\(435\) 0 0
\(436\) 183.872 + 301.802i 0.421726 + 0.692205i
\(437\) 220.130i 0.503731i
\(438\) 0 0
\(439\) 611.541 1.39303 0.696517 0.717541i \(-0.254732\pi\)
0.696517 + 0.717541i \(0.254732\pi\)
\(440\) −19.9006 18.5396i −0.0452287 0.0421355i
\(441\) 0 0
\(442\) 251.713 + 896.944i 0.569486 + 2.02929i
\(443\) 695.830i 1.57072i 0.619038 + 0.785361i \(0.287523\pi\)
−0.619038 + 0.785361i \(0.712477\pi\)
\(444\) 0 0
\(445\) 17.2440i 0.0387505i
\(446\) 81.5509 + 290.595i 0.182849 + 0.651559i
\(447\) 0 0
\(448\) 271.921 356.038i 0.606966 0.794728i
\(449\) 45.4904i 0.101315i −0.998716 0.0506574i \(-0.983868\pi\)
0.998716 0.0506574i \(-0.0161317\pi\)
\(450\) 0 0
\(451\) 352.844i 0.782360i
\(452\) 236.539 + 388.247i 0.523317 + 0.858953i
\(453\) 0 0
\(454\) 96.9087 + 345.321i 0.213455 + 0.760619i
\(455\) 37.6060 42.6168i 0.0826506 0.0936632i
\(456\) 0 0
\(457\) 567.174 1.24108 0.620540 0.784175i \(-0.286913\pi\)
0.620540 + 0.784175i \(0.286913\pi\)
\(458\) 6.91523 + 24.6415i 0.0150988 + 0.0538023i
\(459\) 0 0
\(460\) −7.63667 12.5346i −0.0166015 0.0272490i
\(461\) 166.006i 0.360099i 0.983658 + 0.180050i \(0.0576258\pi\)
−0.983658 + 0.180050i \(0.942374\pi\)
\(462\) 0 0
\(463\) 194.577i 0.420254i 0.977674 + 0.210127i \(0.0673877\pi\)
−0.977674 + 0.210127i \(0.932612\pi\)
\(464\) 131.686 255.177i 0.283806 0.549950i
\(465\) 0 0
\(466\) −170.911 + 47.9633i −0.366761 + 0.102926i
\(467\) 86.2300 0.184647 0.0923234 0.995729i \(-0.470571\pi\)
0.0923234 + 0.995729i \(0.470571\pi\)
\(468\) 0 0
\(469\) −38.1489 33.6635i −0.0813410 0.0717772i
\(470\) 17.1912 + 61.2586i 0.0365771 + 0.130338i
\(471\) 0 0
\(472\) 159.592 + 148.677i 0.338118 + 0.314994i
\(473\) 330.334i 0.698380i
\(474\) 0 0
\(475\) 726.889i 1.53029i
\(476\) −773.931 137.497i −1.62590 0.288860i
\(477\) 0 0
\(478\) −78.2033 278.667i −0.163605 0.582984i
\(479\) 574.253i 1.19886i 0.800428 + 0.599429i \(0.204606\pi\)
−0.800428 + 0.599429i \(0.795394\pi\)
\(480\) 0 0
\(481\) 1075.96i 2.23692i
\(482\) −78.1584 + 21.9339i −0.162154 + 0.0455060i
\(483\) 0 0
\(484\) −248.450 + 151.368i −0.513327 + 0.312744i
\(485\) −12.1068 −0.0249624
\(486\) 0 0
\(487\) 595.755i 1.22332i −0.791122 0.611658i \(-0.790503\pi\)
0.791122 0.611658i \(-0.209497\pi\)
\(488\) 675.346 + 629.159i 1.38391 + 1.28926i
\(489\) 0 0
\(490\) 18.6026 + 44.2019i 0.0379645 + 0.0902080i
\(491\) 571.410i 1.16377i −0.813272 0.581883i \(-0.802316\pi\)
0.813272 0.581883i \(-0.197684\pi\)
\(492\) 0 0
\(493\) −503.830 −1.02197
\(494\) 937.955 263.222i 1.89869 0.532838i
\(495\) 0 0
\(496\) 226.185 438.294i 0.456018 0.883657i
\(497\) −480.812 424.280i −0.967429 0.853683i
\(498\) 0 0
\(499\) −22.8477 −0.0457870 −0.0228935 0.999738i \(-0.507288\pi\)
−0.0228935 + 0.999738i \(0.507288\pi\)
\(500\) −50.6778 83.1806i −0.101356 0.166361i
\(501\) 0 0
\(502\) −241.380 860.124i −0.480837 1.71339i
\(503\) 688.951i 1.36968i −0.728692 0.684842i \(-0.759871\pi\)
0.728692 0.684842i \(-0.240129\pi\)
\(504\) 0 0
\(505\) −26.4846 −0.0524447
\(506\) 100.316 28.1519i 0.198252 0.0556362i
\(507\) 0 0
\(508\) −479.387 786.848i −0.943675 1.54891i
\(509\) 62.9269i 0.123628i −0.998088 0.0618142i \(-0.980311\pi\)
0.998088 0.0618142i \(-0.0196886\pi\)
\(510\) 0 0
\(511\) 127.392 144.366i 0.249299 0.282516i
\(512\) −321.633 + 398.367i −0.628190 + 0.778060i
\(513\) 0 0
\(514\) −168.429 600.172i −0.327682 1.16765i
\(515\) 57.8138i 0.112260i
\(516\) 0 0
\(517\) −451.650 −0.873597
\(518\) 817.707 + 394.416i 1.57859 + 0.761420i
\(519\) 0 0
\(520\) −44.2770 + 47.5274i −0.0851480 + 0.0913988i
\(521\) −612.508 −1.17564 −0.587820 0.808992i \(-0.700014\pi\)
−0.587820 + 0.808992i \(0.700014\pi\)
\(522\) 0 0
\(523\) 692.859i 1.32478i 0.749160 + 0.662389i \(0.230458\pi\)
−0.749160 + 0.662389i \(0.769542\pi\)
\(524\) 224.574 136.822i 0.428576 0.261110i
\(525\) 0 0
\(526\) 137.402 + 489.612i 0.261220 + 0.930822i
\(527\) −865.383 −1.64209
\(528\) 0 0
\(529\) −472.773 −0.893711
\(530\) −48.2928 + 13.5526i −0.0911184 + 0.0255709i
\(531\) 0 0
\(532\) −143.784 + 809.317i −0.270270 + 1.52127i
\(533\) 842.675 1.58100
\(534\) 0 0
\(535\) −41.7343 −0.0780079
\(536\) 42.5447 + 39.6351i 0.0793745 + 0.0739460i
\(537\) 0 0
\(538\) −735.408 + 206.380i −1.36693 + 0.383607i
\(539\) −337.781 + 42.3609i −0.626681 + 0.0785917i
\(540\) 0 0
\(541\) 634.171i 1.17222i 0.810232 + 0.586110i \(0.199341\pi\)
−0.810232 + 0.586110i \(0.800659\pi\)
\(542\) 58.5594 + 208.668i 0.108043 + 0.384997i
\(543\) 0 0
\(544\) 879.930 + 180.950i 1.61752 + 0.332629i
\(545\) 43.2349 0.0793301
\(546\) 0 0
\(547\) −361.551 −0.660971 −0.330486 0.943811i \(-0.607213\pi\)
−0.330486 + 0.943811i \(0.607213\pi\)
\(548\) −524.326 860.609i −0.956799 1.57045i
\(549\) 0 0
\(550\) 331.250 92.9601i 0.602273 0.169018i
\(551\) 526.866i 0.956200i
\(552\) 0 0
\(553\) −167.881 + 190.249i −0.303581 + 0.344031i
\(554\) −344.865 + 96.7807i −0.622499 + 0.174694i
\(555\) 0 0
\(556\) −114.860 188.527i −0.206583 0.339077i
\(557\) 687.553 1.23439 0.617193 0.786812i \(-0.288270\pi\)
0.617193 + 0.786812i \(0.288270\pi\)
\(558\) 0 0
\(559\) 788.915 1.41130
\(560\) −19.8892 51.0718i −0.0355164 0.0911996i
\(561\) 0 0
\(562\) −668.704 + 187.661i −1.18986 + 0.333916i
\(563\) 960.105 1.70534 0.852669 0.522452i \(-0.174983\pi\)
0.852669 + 0.522452i \(0.174983\pi\)
\(564\) 0 0
\(565\) 55.6187 0.0984403
\(566\) −300.393 + 84.3005i −0.530730 + 0.148941i
\(567\) 0 0
\(568\) 536.215 + 499.543i 0.944041 + 0.879478i
\(569\) 569.590i 1.00104i 0.865726 + 0.500518i \(0.166857\pi\)
−0.865726 + 0.500518i \(0.833143\pi\)
\(570\) 0 0
\(571\) 413.155 0.723564 0.361782 0.932263i \(-0.382168\pi\)
0.361782 + 0.932263i \(0.382168\pi\)
\(572\) −239.905 393.772i −0.419415 0.688413i
\(573\) 0 0
\(574\) −308.900 + 640.416i −0.538154 + 1.11571i
\(575\) 185.666 0.322897
\(576\) 0 0
\(577\) 21.1560i 0.0366654i 0.999832 + 0.0183327i \(0.00583581\pi\)
−0.999832 + 0.0183327i \(0.994164\pi\)
\(578\) −269.712 961.082i −0.466630 1.66277i
\(579\) 0 0
\(580\) −18.2778 30.0005i −0.0315135 0.0517251i
\(581\) 618.169 + 545.487i 1.06397 + 0.938876i
\(582\) 0 0
\(583\) 356.054i 0.610728i
\(584\) −149.990 + 161.001i −0.256832 + 0.275686i
\(585\) 0 0
\(586\) −923.923 + 259.284i −1.57666 + 0.442464i
\(587\) −395.721 −0.674141 −0.337071 0.941479i \(-0.609436\pi\)
−0.337071 + 0.941479i \(0.609436\pi\)
\(588\) 0 0
\(589\) 904.950i 1.53642i
\(590\) 25.6916 7.20993i 0.0435450 0.0122202i
\(591\) 0 0
\(592\) −922.019 475.814i −1.55746 0.803740i
\(593\) 488.061 0.823037 0.411519 0.911401i \(-0.364999\pi\)
0.411519 + 0.911401i \(0.364999\pi\)
\(594\) 0 0
\(595\) −63.6275 + 72.1053i −0.106937 + 0.121185i
\(596\) −61.5158 + 37.4785i −0.103214 + 0.0628833i
\(597\) 0 0
\(598\) −67.2335 239.577i −0.112431 0.400631i
\(599\) 215.241 0.359334 0.179667 0.983727i \(-0.442498\pi\)
0.179667 + 0.983727i \(0.442498\pi\)
\(600\) 0 0
\(601\) 810.565i 1.34869i −0.738415 0.674347i \(-0.764425\pi\)
0.738415 0.674347i \(-0.235575\pi\)
\(602\) −289.194 + 599.560i −0.480388 + 0.995946i
\(603\) 0 0
\(604\) −256.796 421.496i −0.425159 0.697841i
\(605\) 35.5920i 0.0588298i
\(606\) 0 0
\(607\) −621.412 −1.02374 −0.511872 0.859062i \(-0.671048\pi\)
−0.511872 + 0.859062i \(0.671048\pi\)
\(608\) 189.224 920.162i 0.311223 1.51342i
\(609\) 0 0
\(610\) 108.719 30.5103i 0.178228 0.0500169i
\(611\) 1078.65i 1.76538i
\(612\) 0 0
\(613\) 748.837i 1.22159i −0.791787 0.610797i \(-0.790849\pi\)
0.791787 0.610797i \(-0.209151\pi\)
\(614\) −789.123 + 221.455i −1.28522 + 0.360675i
\(615\) 0 0
\(616\) 387.201 37.9778i 0.628574 0.0616523i
\(617\) 439.740i 0.712707i −0.934351 0.356353i \(-0.884020\pi\)
0.934351 0.356353i \(-0.115980\pi\)
\(618\) 0 0
\(619\) 598.114i 0.966259i −0.875549 0.483129i \(-0.839500\pi\)
0.875549 0.483129i \(-0.160500\pi\)
\(620\) −31.3941 51.5292i −0.0506357 0.0831116i
\(621\) 0 0
\(622\) −442.083 + 124.064i −0.710745 + 0.199459i
\(623\) 184.953 + 163.207i 0.296875 + 0.261970i
\(624\) 0 0
\(625\) 607.097 0.971355
\(626\) 738.199 207.164i 1.17923 0.330932i
\(627\) 0 0
\(628\) −135.027 + 82.2650i −0.215011 + 0.130995i
\(629\) 1820.47i 2.89422i
\(630\) 0 0
\(631\) 480.690i 0.761791i −0.924618 0.380895i \(-0.875616\pi\)
0.924618 0.380895i \(-0.124384\pi\)
\(632\) 197.661 212.171i 0.312755 0.335714i
\(633\) 0 0
\(634\) 154.956 + 552.164i 0.244410 + 0.870921i
\(635\) −112.721 −0.177513
\(636\) 0 0
\(637\) 101.168 + 806.701i 0.158819 + 1.26641i
\(638\) 240.098 67.3796i 0.376329 0.105611i
\(639\) 0 0
\(640\) 21.1472 + 58.9599i 0.0330425 + 0.0921248i
\(641\) 890.272i 1.38888i 0.719551 + 0.694440i \(0.244348\pi\)
−0.719551 + 0.694440i \(0.755652\pi\)
\(642\) 0 0
\(643\) 748.676i 1.16435i −0.813064 0.582174i \(-0.802202\pi\)
0.813064 0.582174i \(-0.197798\pi\)
\(644\) 206.720 + 36.7260i 0.320993 + 0.0570279i
\(645\) 0 0
\(646\) −1586.97 + 445.358i −2.45661 + 0.689408i
\(647\) 1011.64i 1.56359i −0.623535 0.781795i \(-0.714304\pi\)
0.623535 0.781795i \(-0.285696\pi\)
\(648\) 0 0
\(649\) 189.420i 0.291864i
\(650\) −222.011 791.104i −0.341555 1.21708i
\(651\) 0 0
\(652\) 18.5393 11.2951i 0.0284346 0.0173237i
\(653\) −970.047 −1.48552 −0.742762 0.669556i \(-0.766485\pi\)
−0.742762 + 0.669556i \(0.766485\pi\)
\(654\) 0 0
\(655\) 32.1716i 0.0491170i
\(656\) 372.651 722.111i 0.568065 1.10078i
\(657\) 0 0
\(658\) −819.749 395.400i −1.24582 0.600912i
\(659\) 122.648i 0.186112i −0.995661 0.0930562i \(-0.970336\pi\)
0.995661 0.0930562i \(-0.0296636\pi\)
\(660\) 0 0
\(661\) −550.866 −0.833382 −0.416691 0.909048i \(-0.636810\pi\)
−0.416691 + 0.909048i \(0.636810\pi\)
\(662\) −78.6812 280.370i −0.118854 0.423519i
\(663\) 0 0
\(664\) −689.399 642.251i −1.03825 0.967245i
\(665\) 75.4022 + 66.5366i 0.113387 + 0.100055i
\(666\) 0 0
\(667\) 134.575 0.201761
\(668\) −324.970 533.395i −0.486483 0.798495i
\(669\) 0 0
\(670\) 6.84898 1.92206i 0.0102224 0.00286874i
\(671\) 801.569i 1.19459i
\(672\) 0 0
\(673\) −929.335 −1.38088 −0.690442 0.723387i \(-0.742584\pi\)
−0.690442 + 0.723387i \(0.742584\pi\)
\(674\) 62.3136 + 222.046i 0.0924535 + 0.329445i
\(675\) 0 0
\(676\) −363.124 + 221.233i −0.537166 + 0.327268i
\(677\) 426.954i 0.630656i 0.948983 + 0.315328i \(0.102115\pi\)
−0.948983 + 0.315328i \(0.897885\pi\)
\(678\) 0 0
\(679\) 114.586 129.853i 0.168756 0.191242i
\(680\) 74.9143 80.4138i 0.110168 0.118256i
\(681\) 0 0
\(682\) 412.394 115.732i 0.604684 0.169695i
\(683\) 1012.14i 1.48190i −0.671558 0.740952i \(-0.734375\pi\)
0.671558 0.740952i \(-0.265625\pi\)
\(684\) 0 0
\(685\) −123.288 −0.179982
\(686\) −650.162 218.828i −0.947758 0.318991i
\(687\) 0 0
\(688\) 348.877 676.043i 0.507088 0.982620i
\(689\) −850.342 −1.23417
\(690\) 0 0
\(691\) 637.724i 0.922901i −0.887166 0.461450i \(-0.847329\pi\)
0.887166 0.461450i \(-0.152671\pi\)
\(692\) 308.185 + 505.844i 0.445354 + 0.730988i
\(693\) 0 0
\(694\) −321.285 + 90.1635i −0.462947 + 0.129919i
\(695\) −27.0076 −0.0388599
\(696\) 0 0
\(697\) −1425.76 −2.04557
\(698\) 35.6283 + 126.956i 0.0510434 + 0.181886i
\(699\) 0 0
\(700\) 682.606 + 121.272i 0.975151 + 0.173246i
\(701\) 915.416 1.30587 0.652936 0.757413i \(-0.273537\pi\)
0.652936 + 0.757413i \(0.273537\pi\)
\(702\) 0 0
\(703\) 1903.70 2.70797
\(704\) −443.526 + 31.4462i −0.630009 + 0.0446680i
\(705\) 0 0
\(706\) −226.236 806.161i −0.320448 1.14187i
\(707\) 250.666 284.065i 0.354549 0.401790i
\(708\) 0 0
\(709\) 26.7631i 0.0377477i −0.999822 0.0188739i \(-0.993992\pi\)
0.999822 0.0188739i \(-0.00600809\pi\)
\(710\) 86.3216 24.2248i 0.121580 0.0341194i
\(711\) 0 0
\(712\) −206.265 192.158i −0.289698 0.269886i
\(713\) 231.147 0.324189
\(714\) 0 0
\(715\) −56.4103 −0.0788955
\(716\) −304.859 500.384i −0.425780 0.698860i
\(717\) 0 0
\(718\) 331.195 + 1180.17i 0.461274 + 1.64369i
\(719\) 812.958i 1.13068i −0.824859 0.565339i \(-0.808745\pi\)
0.824859 0.565339i \(-0.191255\pi\)
\(720\) 0 0
\(721\) 620.092 + 547.184i 0.860045 + 0.758924i
\(722\) 270.639 + 964.385i 0.374847 + 1.33571i
\(723\) 0 0
\(724\) −515.644 + 314.156i −0.712215 + 0.433917i
\(725\) 444.377 0.612934
\(726\) 0 0
\(727\) 402.292 0.553359 0.276679 0.960962i \(-0.410766\pi\)
0.276679 + 0.960962i \(0.410766\pi\)
\(728\) −90.6999 924.728i −0.124588 1.27023i
\(729\) 0 0
\(730\) 7.27358 + 25.9184i 0.00996381 + 0.0355047i
\(731\) −1334.80 −1.82600
\(732\) 0 0
\(733\) −707.087 −0.964648 −0.482324 0.875993i \(-0.660207\pi\)
−0.482324 + 0.875993i \(0.660207\pi\)
\(734\) 62.0190 + 220.996i 0.0844946 + 0.301085i
\(735\) 0 0
\(736\) −235.032 48.3325i −0.319338 0.0656691i
\(737\) 50.4963i 0.0685161i
\(738\) 0 0
\(739\) 1178.59 1.59484 0.797420 0.603425i \(-0.206198\pi\)
0.797420 + 0.603425i \(0.206198\pi\)
\(740\) −108.400 + 66.0424i −0.146486 + 0.0892465i
\(741\) 0 0
\(742\) 311.711 646.243i 0.420095 0.870947i
\(743\) 227.166 0.305741 0.152870 0.988246i \(-0.451148\pi\)
0.152870 + 0.988246i \(0.451148\pi\)
\(744\) 0 0
\(745\) 8.81251i 0.0118289i
\(746\) 1051.77 295.162i 1.40988 0.395659i
\(747\) 0 0
\(748\) 405.908 + 666.242i 0.542657 + 0.890698i
\(749\) 394.998 447.628i 0.527367 0.597635i
\(750\) 0 0
\(751\) 19.6849i 0.0262116i 0.999914 + 0.0131058i \(0.00417182\pi\)
−0.999914 + 0.0131058i \(0.995828\pi\)
\(752\) 924.321 + 477.002i 1.22915 + 0.634312i
\(753\) 0 0
\(754\) −160.918 573.410i −0.213420 0.760491i
\(755\) −60.3819 −0.0799760
\(756\) 0 0
\(757\) 1077.26i 1.42307i −0.702650 0.711535i \(-0.748000\pi\)
0.702650 0.711535i \(-0.252000\pi\)
\(758\) −135.409 482.512i −0.178640 0.636559i
\(759\) 0 0
\(760\) −84.0905 78.3396i −0.110645 0.103078i
\(761\) −98.7893 −0.129815 −0.0649075 0.997891i \(-0.520675\pi\)
−0.0649075 + 0.997891i \(0.520675\pi\)
\(762\) 0 0
\(763\) −409.201 + 463.724i −0.536306 + 0.607764i
\(764\) −830.934 + 506.246i −1.08761 + 0.662626i
\(765\) 0 0
\(766\) −815.884 + 228.965i −1.06512 + 0.298910i
\(767\) 452.379 0.589803
\(768\) 0 0
\(769\) 332.048i 0.431792i 0.976416 + 0.215896i \(0.0692672\pi\)
−0.976416 + 0.215896i \(0.930733\pi\)
\(770\) 20.6784 42.8707i 0.0268550 0.0556762i
\(771\) 0 0
\(772\) 471.489 287.254i 0.610737 0.372091i
\(773\) 1460.93i 1.88995i 0.327149 + 0.944973i \(0.393912\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(774\) 0 0
\(775\) 763.267 0.984860
\(776\) −134.912 + 144.816i −0.173856 + 0.186618i
\(777\) 0 0
\(778\) 14.6551 + 52.2214i 0.0188369 + 0.0671226i
\(779\) 1490.95i 1.91393i
\(780\) 0 0
\(781\) 636.434i 0.814897i
\(782\) 113.755 + 405.352i 0.145467 + 0.518353i
\(783\) 0 0
\(784\) 736.023 + 270.049i 0.938805 + 0.344450i
\(785\) 19.3434i 0.0246413i
\(786\) 0 0
\(787\) 889.382i 1.13009i 0.825059 + 0.565046i \(0.191142\pi\)
−0.825059 + 0.565046i \(0.808858\pi\)
\(788\) −275.826 + 168.047i −0.350033 + 0.213257i
\(789\) 0 0
\(790\) −9.58533 34.1560i −0.0121333 0.0432354i
\(791\) −526.409 + 596.549i −0.665498 + 0.754171i
\(792\) 0 0
\(793\) 1914.33 2.41404
\(794\) 116.540 + 415.274i 0.146776 + 0.523015i
\(795\) 0 0
\(796\) 787.555 479.817i 0.989390 0.602785i
\(797\) 1370.49i 1.71956i −0.510662 0.859782i \(-0.670600\pi\)
0.510662 0.859782i \(-0.329400\pi\)
\(798\) 0 0
\(799\) 1825.01i 2.28412i
\(800\) −776.097 159.598i −0.970121 0.199497i
\(801\) 0 0
\(802\) 816.369 229.101i 1.01792 0.285662i
\(803\) −191.092 −0.237973
\(804\) 0 0
\(805\) 16.9951 19.2596i 0.0211120 0.0239250i
\(806\) −276.395 984.895i −0.342922 1.22195i
\(807\) 0 0
\(808\) −295.132 + 316.797i −0.365262 + 0.392076i
\(809\) 1096.60i 1.35550i 0.735291 + 0.677751i \(0.237045\pi\)
−0.735291 + 0.677751i \(0.762955\pi\)
\(810\) 0 0
\(811\) 1357.90i 1.67436i 0.546929 + 0.837179i \(0.315797\pi\)
−0.546929 + 0.837179i \(0.684203\pi\)
\(812\) 494.769 + 87.9010i 0.609321 + 0.108252i
\(813\) 0 0
\(814\) −243.460 867.535i −0.299091 1.06577i
\(815\) 2.65587i 0.00325874i
\(816\) 0 0
\(817\) 1395.83i 1.70849i
\(818\) 99.9149 28.0395i 0.122145 0.0342781i
\(819\) 0 0
\(820\) −51.7234 84.8970i −0.0630774 0.103533i
\(821\) 936.137 1.14024 0.570120 0.821561i \(-0.306897\pi\)
0.570120 + 0.821561i \(0.306897\pi\)
\(822\) 0 0
\(823\) 129.080i 0.156841i 0.996920 + 0.0784207i \(0.0249877\pi\)
−0.996920 + 0.0784207i \(0.975012\pi\)
\(824\) −691.544 644.249i −0.839252 0.781856i
\(825\) 0 0
\(826\) −165.829 + 343.799i −0.200761 + 0.416221i
\(827\) 22.8284i 0.0276039i −0.999905 0.0138020i \(-0.995607\pi\)
0.999905 0.0138020i \(-0.00439344\pi\)
\(828\) 0 0
\(829\) −630.043 −0.760004 −0.380002 0.924986i \(-0.624077\pi\)
−0.380002 + 0.924986i \(0.624077\pi\)
\(830\) −110.982 + 31.1452i −0.133713 + 0.0375243i
\(831\) 0 0
\(832\) 75.1010 + 1059.24i 0.0902656 + 1.27313i
\(833\) −171.171 1364.90i −0.205487 1.63853i
\(834\) 0 0
\(835\) −76.4121 −0.0915115
\(836\) 696.704 424.467i 0.833378 0.507735i
\(837\) 0 0
\(838\) 225.979 + 805.245i 0.269665 + 0.960913i
\(839\) 265.666i 0.316647i −0.987387 0.158323i \(-0.949391\pi\)
0.987387 0.158323i \(-0.0506088\pi\)
\(840\) 0 0
\(841\) −518.905 −0.617010
\(842\) −93.0924 + 26.1249i −0.110561 + 0.0310272i
\(843\) 0 0
\(844\) 37.4646 22.8253i 0.0443894 0.0270442i
\(845\) 52.0198i 0.0615619i
\(846\) 0 0
\(847\) −381.749 336.864i −0.450707 0.397715i
\(848\) −376.041 + 728.681i −0.443445 + 0.859294i
\(849\) 0 0
\(850\) 375.630 + 1338.51i 0.441918 + 1.57471i
\(851\) 486.253i 0.571390i
\(852\) 0 0
\(853\) 760.591 0.891665 0.445833 0.895116i \(-0.352908\pi\)
0.445833 + 0.895116i \(0.352908\pi\)
\(854\) −701.740 + 1454.86i −0.821710 + 1.70358i
\(855\) 0 0
\(856\) −465.066 + 499.207i −0.543302 + 0.583186i
\(857\) 962.482 1.12308 0.561542 0.827449i \(-0.310208\pi\)
0.561542 + 0.827449i \(0.310208\pi\)
\(858\) 0 0
\(859\) 160.713i 0.187093i 0.995615 + 0.0935466i \(0.0298204\pi\)
−0.995615 + 0.0935466i \(0.970180\pi\)
\(860\) −48.4236 79.4808i −0.0563066 0.0924196i
\(861\) 0 0
\(862\) −57.5047 204.910i −0.0667108 0.237715i
\(863\) −1275.31 −1.47777 −0.738884 0.673832i \(-0.764647\pi\)
−0.738884 + 0.673832i \(0.764647\pi\)
\(864\) 0 0
\(865\) 72.4652 0.0837748
\(866\) 503.365 141.261i 0.581253 0.163119i
\(867\) 0 0
\(868\) 849.819 + 150.980i 0.979054 + 0.173940i
\(869\) 251.826 0.289789
\(870\) 0 0
\(871\) 120.597 0.138458
\(872\) 481.789 517.158i 0.552511 0.593071i
\(873\) 0 0
\(874\) 423.886 118.957i 0.484995 0.136106i
\(875\) 112.781 127.809i 0.128893 0.146067i
\(876\) 0 0
\(877\) 1148.72i 1.30983i 0.755704 + 0.654913i \(0.227295\pi\)
−0.755704 + 0.654913i \(0.772705\pi\)
\(878\) −330.472 1177.59i −0.376392 1.34122i
\(879\) 0 0
\(880\) −24.9460 + 48.3395i −0.0283477 + 0.0549313i
\(881\) −1589.04 −1.80368 −0.901840 0.432070i \(-0.857783\pi\)
−0.901840 + 0.432070i \(0.857783\pi\)
\(882\) 0 0
\(883\) 523.232 0.592561 0.296281 0.955101i \(-0.404254\pi\)
0.296281 + 0.955101i \(0.404254\pi\)
\(884\) 1591.14 969.403i 1.79993 1.09661i
\(885\) 0 0
\(886\) 1339.90 376.021i 1.51230 0.424403i
\(887\) 1190.80i 1.34250i 0.741231 + 0.671250i \(0.234242\pi\)
−0.741231 + 0.671250i \(0.765758\pi\)
\(888\) 0 0
\(889\) 1066.86 1209.01i 1.20006 1.35996i
\(890\) −33.2052 + 9.31850i −0.0373092 + 0.0104702i
\(891\) 0 0
\(892\) 515.504 314.070i 0.577919 0.352097i
\(893\) −1908.46 −2.13713
\(894\) 0 0
\(895\) −71.6831 −0.0800928
\(896\) −832.535 331.213i −0.929168 0.369658i
\(897\) 0 0
\(898\) −87.5967 + 24.5826i −0.0975465 + 0.0273748i
\(899\) 553.233 0.615387
\(900\) 0 0
\(901\) 1438.73 1.59682
\(902\) 679.441 190.674i 0.753260 0.211390i
\(903\) 0 0
\(904\) 619.789 665.288i 0.685607 0.735938i
\(905\) 73.8691i 0.0816233i
\(906\) 0 0
\(907\) 1762.93 1.94369 0.971845 0.235623i \(-0.0757129\pi\)
0.971845 + 0.235623i \(0.0757129\pi\)
\(908\) 612.585 373.217i 0.674653 0.411032i
\(909\) 0 0
\(910\) −102.385 49.3848i −0.112511 0.0542691i
\(911\) −49.2079 −0.0540152 −0.0270076 0.999635i \(-0.508598\pi\)
−0.0270076 + 0.999635i \(0.508598\pi\)
\(912\) 0 0
\(913\) 818.248i 0.896219i
\(914\) −306.496 1092.16i −0.335335 1.19492i
\(915\) 0 0
\(916\) 43.7129 26.6321i 0.0477216 0.0290743i
\(917\) 345.062 + 304.491i 0.376295 + 0.332052i
\(918\) 0 0
\(919\) 685.900i 0.746355i −0.927760 0.373177i \(-0.878268\pi\)
0.927760 0.373177i \(-0.121732\pi\)
\(920\) −20.0099 + 21.4788i −0.0217499 + 0.0233465i
\(921\) 0 0
\(922\) 319.662 89.7081i 0.346705 0.0972973i
\(923\) 1519.95 1.64675
\(924\) 0 0
\(925\) 1605.65i 1.73584i
\(926\) 374.680 105.148i 0.404623 0.113551i
\(927\) 0 0
\(928\) −562.533 115.680i −0.606178 0.124655i
\(929\) 194.049 0.208880 0.104440 0.994531i \(-0.466695\pi\)
0.104440 + 0.994531i \(0.466695\pi\)
\(930\) 0 0
\(931\) −1427.30 + 178.997i −1.53308 + 0.192263i
\(932\) 184.717 + 303.189i 0.198195 + 0.325310i
\(933\) 0 0
\(934\) −46.5980 166.045i −0.0498908 0.177779i
\(935\) 95.4432 0.102078
\(936\) 0 0
\(937\) 523.728i 0.558942i 0.960154 + 0.279471i \(0.0901590\pi\)
−0.960154 + 0.279471i \(0.909841\pi\)
\(938\) −44.2075 + 91.6514i −0.0471295 + 0.0977094i
\(939\) 0 0
\(940\) 108.670 66.2073i 0.115607 0.0704333i
\(941\) 144.646i 0.153716i −0.997042 0.0768578i \(-0.975511\pi\)
0.997042 0.0768578i \(-0.0244887\pi\)
\(942\) 0 0
\(943\) 380.826 0.403845
\(944\) 200.052 387.656i 0.211920 0.410652i
\(945\) 0 0
\(946\) 636.095 178.510i 0.672404 0.188699i
\(947\) 177.497i 0.187431i 0.995599 + 0.0937155i \(0.0298744\pi\)
−0.995599 + 0.0937155i \(0.970126\pi\)
\(948\) 0 0
\(949\) 456.373i 0.480898i
\(950\) 1399.71 392.805i 1.47337 0.413479i
\(951\) 0 0
\(952\) 153.460 + 1564.59i 0.161197 + 1.64348i
\(953\) 59.3443i 0.0622710i −0.999515 0.0311355i \(-0.990088\pi\)
0.999515 0.0311355i \(-0.00991234\pi\)
\(954\) 0 0
\(955\) 119.036i 0.124645i
\(956\) −494.343 + 301.178i −0.517095 + 0.315040i
\(957\) 0 0
\(958\) 1105.79 310.322i 1.15427 0.323926i
\(959\) 1166.87 1322.34i 1.21675 1.37888i
\(960\) 0 0
\(961\) −10.7613 −0.0111980
\(962\) −2071.88 + 581.439i −2.15372 + 0.604407i
\(963\) 0 0
\(964\) 84.4723 + 138.650i 0.0876269 + 0.143828i
\(965\) 67.5436i 0.0699934i
\(966\) 0 0
\(967\) 1022.00i 1.05687i 0.848973 + 0.528437i \(0.177222\pi\)
−0.848973 + 0.528437i \(0.822778\pi\)
\(968\) 425.737 + 396.621i 0.439811 + 0.409732i
\(969\) 0 0
\(970\) 6.54239 + 23.3129i 0.00674473 + 0.0240339i
\(971\) −121.308 −0.124931 −0.0624654 0.998047i \(-0.519896\pi\)
−0.0624654 + 0.998047i \(0.519896\pi\)
\(972\) 0 0
\(973\) 255.616 289.675i 0.262710 0.297714i
\(974\) −1147.19 + 321.941i −1.17782 + 0.330535i
\(975\) 0 0
\(976\) 846.564 1640.45i 0.867381 1.68078i
\(977\) 485.885i 0.497323i 0.968590 + 0.248662i \(0.0799907\pi\)
−0.968590 + 0.248662i \(0.920009\pi\)
\(978\) 0 0
\(979\) 244.816i 0.250068i
\(980\) 75.0630 59.7077i 0.0765949 0.0609262i
\(981\) 0 0
\(982\) −1100.31 + 308.785i −1.12048 + 0.314445i
\(983\) 258.044i 0.262507i −0.991349 0.131253i \(-0.958100\pi\)
0.991349 0.131253i \(-0.0419001\pi\)
\(984\) 0 0
\(985\) 39.5138i 0.0401155i
\(986\) 272.265 + 970.180i 0.276131 + 0.983956i
\(987\) 0 0
\(988\) −1013.73 1663.89i −1.02604 1.68410i
\(989\) 356.531 0.360496
\(990\) 0 0
\(991\) 679.844i 0.686019i 0.939332 + 0.343009i \(0.111446\pi\)
−0.939332 + 0.343009i \(0.888554\pi\)
\(992\) −966.212 198.693i −0.974004 0.200296i
\(993\) 0 0
\(994\) −557.172 + 1155.14i −0.560535 + 1.16211i
\(995\) 112.822i 0.113389i
\(996\) 0 0
\(997\) 982.612 0.985569 0.492784 0.870152i \(-0.335979\pi\)
0.492784 + 0.870152i \(0.335979\pi\)
\(998\) 12.3467 + 43.9958i 0.0123715 + 0.0440840i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.c.251.22 yes 48
3.2 odd 2 inner 504.3.e.c.251.27 yes 48
4.3 odd 2 2016.3.e.c.1007.48 48
7.6 odd 2 inner 504.3.e.c.251.21 48
8.3 odd 2 inner 504.3.e.c.251.26 yes 48
8.5 even 2 2016.3.e.c.1007.19 48
12.11 even 2 2016.3.e.c.1007.13 48
21.20 even 2 inner 504.3.e.c.251.28 yes 48
24.5 odd 2 2016.3.e.c.1007.46 48
24.11 even 2 inner 504.3.e.c.251.23 yes 48
28.27 even 2 2016.3.e.c.1007.45 48
56.13 odd 2 2016.3.e.c.1007.14 48
56.27 even 2 inner 504.3.e.c.251.25 yes 48
84.83 odd 2 2016.3.e.c.1007.20 48
168.83 odd 2 inner 504.3.e.c.251.24 yes 48
168.125 even 2 2016.3.e.c.1007.47 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.21 48 7.6 odd 2 inner
504.3.e.c.251.22 yes 48 1.1 even 1 trivial
504.3.e.c.251.23 yes 48 24.11 even 2 inner
504.3.e.c.251.24 yes 48 168.83 odd 2 inner
504.3.e.c.251.25 yes 48 56.27 even 2 inner
504.3.e.c.251.26 yes 48 8.3 odd 2 inner
504.3.e.c.251.27 yes 48 3.2 odd 2 inner
504.3.e.c.251.28 yes 48 21.20 even 2 inner
2016.3.e.c.1007.13 48 12.11 even 2
2016.3.e.c.1007.14 48 56.13 odd 2
2016.3.e.c.1007.19 48 8.5 even 2
2016.3.e.c.1007.20 48 84.83 odd 2
2016.3.e.c.1007.45 48 28.27 even 2
2016.3.e.c.1007.46 48 24.5 odd 2
2016.3.e.c.1007.47 48 168.125 even 2
2016.3.e.c.1007.48 48 4.3 odd 2