Properties

Label 504.3.e.a.251.2
Level $504$
Weight $3$
Character 504.251
Analytic conductor $13.733$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(251,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.251"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 504.251
Dual form 504.3.e.a.251.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +4.00000i q^{4} +6.92820i q^{5} +(-4.89898 - 5.00000i) q^{7} +(5.65685 - 5.65685i) q^{8} +(9.79796 - 9.79796i) q^{10} -9.89949i q^{11} -19.5959 q^{13} +(-0.142865 + 13.9993i) q^{14} -16.0000 q^{16} +6.92820 q^{17} -9.79796i q^{19} -27.7128 q^{20} +(-14.0000 + 14.0000i) q^{22} +41.0122 q^{23} -23.0000 q^{25} +(27.7128 + 27.7128i) q^{26} +(20.0000 - 19.5959i) q^{28} +18.3848 q^{29} +39.1918 q^{31} +(22.6274 + 22.6274i) q^{32} +(-9.79796 - 9.79796i) q^{34} +(34.6410 - 33.9411i) q^{35} -26.0000i q^{37} +(-13.8564 + 13.8564i) q^{38} +(39.1918 + 39.1918i) q^{40} +62.3538 q^{41} +48.0000 q^{43} +39.5980 q^{44} +(-58.0000 - 58.0000i) q^{46} +27.7128i q^{47} +(-1.00000 + 48.9898i) q^{49} +(32.5269 + 32.5269i) q^{50} -78.3837i q^{52} -52.3259 q^{53} +68.5857 q^{55} +(-55.9971 - 0.571458i) q^{56} +(-26.0000 - 26.0000i) q^{58} -69.2820 q^{59} +29.3939 q^{61} +(-55.4256 - 55.4256i) q^{62} -64.0000i q^{64} -135.765i q^{65} -14.0000 q^{67} +27.7128i q^{68} +(-96.9898 - 0.989795i) q^{70} -41.0122 q^{71} -29.3939i q^{73} +(-36.7696 + 36.7696i) q^{74} +39.1918 q^{76} +(-49.4975 + 48.4974i) q^{77} -48.0000i q^{79} -110.851i q^{80} +(-88.1816 - 88.1816i) q^{82} +110.851 q^{83} +48.0000i q^{85} +(-67.8823 - 67.8823i) q^{86} +(-56.0000 - 56.0000i) q^{88} +145.492 q^{89} +(96.0000 + 97.9796i) q^{91} +164.049i q^{92} +(39.1918 - 39.1918i) q^{94} +67.8823 q^{95} -166.565i q^{97} +(70.6962 - 67.8678i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 128 q^{16} - 112 q^{22} - 184 q^{25} + 160 q^{28} + 384 q^{43} - 464 q^{46} - 8 q^{49} - 208 q^{58} - 112 q^{67} - 384 q^{70} - 448 q^{88} + 768 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.707107 0.707107i
\(3\) 0 0
\(4\) 4.00000i 1.00000i
\(5\) 6.92820i 1.38564i 0.721110 + 0.692820i \(0.243632\pi\)
−0.721110 + 0.692820i \(0.756368\pi\)
\(6\) 0 0
\(7\) −4.89898 5.00000i −0.699854 0.714286i
\(8\) 5.65685 5.65685i 0.707107 0.707107i
\(9\) 0 0
\(10\) 9.79796 9.79796i 0.979796 0.979796i
\(11\) 9.89949i 0.899954i −0.893040 0.449977i \(-0.851432\pi\)
0.893040 0.449977i \(-0.148568\pi\)
\(12\) 0 0
\(13\) −19.5959 −1.50738 −0.753689 0.657231i \(-0.771728\pi\)
−0.753689 + 0.657231i \(0.771728\pi\)
\(14\) −0.142865 + 13.9993i −0.0102046 + 0.999948i
\(15\) 0 0
\(16\) −16.0000 −1.00000
\(17\) 6.92820 0.407541 0.203771 0.979019i \(-0.434680\pi\)
0.203771 + 0.979019i \(0.434680\pi\)
\(18\) 0 0
\(19\) 9.79796i 0.515682i −0.966187 0.257841i \(-0.916989\pi\)
0.966187 0.257841i \(-0.0830111\pi\)
\(20\) −27.7128 −1.38564
\(21\) 0 0
\(22\) −14.0000 + 14.0000i −0.636364 + 0.636364i
\(23\) 41.0122 1.78314 0.891569 0.452884i \(-0.149605\pi\)
0.891569 + 0.452884i \(0.149605\pi\)
\(24\) 0 0
\(25\) −23.0000 −0.920000
\(26\) 27.7128 + 27.7128i 1.06588 + 1.06588i
\(27\) 0 0
\(28\) 20.0000 19.5959i 0.714286 0.699854i
\(29\) 18.3848 0.633958 0.316979 0.948433i \(-0.397332\pi\)
0.316979 + 0.948433i \(0.397332\pi\)
\(30\) 0 0
\(31\) 39.1918 1.26425 0.632126 0.774865i \(-0.282182\pi\)
0.632126 + 0.774865i \(0.282182\pi\)
\(32\) 22.6274 + 22.6274i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) −9.79796 9.79796i −0.288175 0.288175i
\(35\) 34.6410 33.9411i 0.989743 0.969746i
\(36\) 0 0
\(37\) 26.0000i 0.702703i −0.936244 0.351351i \(-0.885722\pi\)
0.936244 0.351351i \(-0.114278\pi\)
\(38\) −13.8564 + 13.8564i −0.364642 + 0.364642i
\(39\) 0 0
\(40\) 39.1918 + 39.1918i 0.979796 + 0.979796i
\(41\) 62.3538 1.52083 0.760413 0.649440i \(-0.224997\pi\)
0.760413 + 0.649440i \(0.224997\pi\)
\(42\) 0 0
\(43\) 48.0000 1.11628 0.558140 0.829747i \(-0.311515\pi\)
0.558140 + 0.829747i \(0.311515\pi\)
\(44\) 39.5980 0.899954
\(45\) 0 0
\(46\) −58.0000 58.0000i −1.26087 1.26087i
\(47\) 27.7128i 0.589634i 0.955554 + 0.294817i \(0.0952587\pi\)
−0.955554 + 0.294817i \(0.904741\pi\)
\(48\) 0 0
\(49\) −1.00000 + 48.9898i −0.0204082 + 0.999792i
\(50\) 32.5269 + 32.5269i 0.650538 + 0.650538i
\(51\) 0 0
\(52\) 78.3837i 1.50738i
\(53\) −52.3259 −0.987281 −0.493641 0.869666i \(-0.664334\pi\)
−0.493641 + 0.869666i \(0.664334\pi\)
\(54\) 0 0
\(55\) 68.5857 1.24701
\(56\) −55.9971 0.571458i −0.999948 0.0102046i
\(57\) 0 0
\(58\) −26.0000 26.0000i −0.448276 0.448276i
\(59\) −69.2820 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(60\) 0 0
\(61\) 29.3939 0.481867 0.240933 0.970542i \(-0.422546\pi\)
0.240933 + 0.970542i \(0.422546\pi\)
\(62\) −55.4256 55.4256i −0.893962 0.893962i
\(63\) 0 0
\(64\) 64.0000i 1.00000i
\(65\) 135.765i 2.08868i
\(66\) 0 0
\(67\) −14.0000 −0.208955 −0.104478 0.994527i \(-0.533317\pi\)
−0.104478 + 0.994527i \(0.533317\pi\)
\(68\) 27.7128i 0.407541i
\(69\) 0 0
\(70\) −96.9898 0.989795i −1.38557 0.0141399i
\(71\) −41.0122 −0.577637 −0.288818 0.957384i \(-0.593262\pi\)
−0.288818 + 0.957384i \(0.593262\pi\)
\(72\) 0 0
\(73\) 29.3939i 0.402656i −0.979524 0.201328i \(-0.935474\pi\)
0.979524 0.201328i \(-0.0645257\pi\)
\(74\) −36.7696 + 36.7696i −0.496886 + 0.496886i
\(75\) 0 0
\(76\) 39.1918 0.515682
\(77\) −49.4975 + 48.4974i −0.642824 + 0.629837i
\(78\) 0 0
\(79\) 48.0000i 0.607595i −0.952737 0.303797i \(-0.901745\pi\)
0.952737 0.303797i \(-0.0982546\pi\)
\(80\) 110.851i 1.38564i
\(81\) 0 0
\(82\) −88.1816 88.1816i −1.07539 1.07539i
\(83\) 110.851 1.33556 0.667779 0.744360i \(-0.267245\pi\)
0.667779 + 0.744360i \(0.267245\pi\)
\(84\) 0 0
\(85\) 48.0000i 0.564706i
\(86\) −67.8823 67.8823i −0.789328 0.789328i
\(87\) 0 0
\(88\) −56.0000 56.0000i −0.636364 0.636364i
\(89\) 145.492 1.63474 0.817372 0.576110i \(-0.195430\pi\)
0.817372 + 0.576110i \(0.195430\pi\)
\(90\) 0 0
\(91\) 96.0000 + 97.9796i 1.05495 + 1.07670i
\(92\) 164.049i 1.78314i
\(93\) 0 0
\(94\) 39.1918 39.1918i 0.416934 0.416934i
\(95\) 67.8823 0.714550
\(96\) 0 0
\(97\) 166.565i 1.71717i −0.512673 0.858584i \(-0.671345\pi\)
0.512673 0.858584i \(-0.328655\pi\)
\(98\) 70.6962 67.8678i 0.721390 0.692529i
\(99\) 0 0
\(100\) 92.0000i 0.920000i
\(101\) 159.349i 1.57771i −0.614580 0.788855i \(-0.710674\pi\)
0.614580 0.788855i \(-0.289326\pi\)
\(102\) 0 0
\(103\) −97.9796 −0.951258 −0.475629 0.879646i \(-0.657780\pi\)
−0.475629 + 0.879646i \(0.657780\pi\)
\(104\) −110.851 + 110.851i −1.06588 + 1.06588i
\(105\) 0 0
\(106\) 74.0000 + 74.0000i 0.698113 + 0.698113i
\(107\) 57.9828i 0.541895i −0.962594 0.270947i \(-0.912663\pi\)
0.962594 0.270947i \(-0.0873370\pi\)
\(108\) 0 0
\(109\) 122.000i 1.11927i 0.828741 + 0.559633i \(0.189058\pi\)
−0.828741 + 0.559633i \(0.810942\pi\)
\(110\) −96.9948 96.9948i −0.881771 0.881771i
\(111\) 0 0
\(112\) 78.3837 + 80.0000i 0.699854 + 0.714286i
\(113\) 66.4680i 0.588213i −0.955773 0.294106i \(-0.904978\pi\)
0.955773 0.294106i \(-0.0950220\pi\)
\(114\) 0 0
\(115\) 284.141i 2.47079i
\(116\) 73.5391i 0.633958i
\(117\) 0 0
\(118\) 97.9796 + 97.9796i 0.830336 + 0.830336i
\(119\) −33.9411 34.6410i −0.285220 0.291101i
\(120\) 0 0
\(121\) 23.0000 0.190083
\(122\) −41.5692 41.5692i −0.340731 0.340731i
\(123\) 0 0
\(124\) 156.767i 1.26425i
\(125\) 13.8564i 0.110851i
\(126\) 0 0
\(127\) 240.000i 1.88976i −0.327411 0.944882i \(-0.606176\pi\)
0.327411 0.944882i \(-0.393824\pi\)
\(128\) −90.5097 + 90.5097i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) −192.000 + 192.000i −1.47692 + 1.47692i
\(131\) −27.7128 −0.211548 −0.105774 0.994390i \(-0.533732\pi\)
−0.105774 + 0.994390i \(0.533732\pi\)
\(132\) 0 0
\(133\) −48.9898 + 48.0000i −0.368344 + 0.360902i
\(134\) 19.7990 + 19.7990i 0.147754 + 0.147754i
\(135\) 0 0
\(136\) 39.1918 39.1918i 0.288175 0.288175i
\(137\) 35.3553i 0.258068i 0.991640 + 0.129034i \(0.0411877\pi\)
−0.991640 + 0.129034i \(0.958812\pi\)
\(138\) 0 0
\(139\) 19.5959i 0.140978i 0.997513 + 0.0704889i \(0.0224559\pi\)
−0.997513 + 0.0704889i \(0.977544\pi\)
\(140\) 135.765 + 138.564i 0.969746 + 0.989743i
\(141\) 0 0
\(142\) 58.0000 + 58.0000i 0.408451 + 0.408451i
\(143\) 193.990i 1.35657i
\(144\) 0 0
\(145\) 127.373i 0.878438i
\(146\) −41.5692 + 41.5692i −0.284721 + 0.284721i
\(147\) 0 0
\(148\) 104.000 0.702703
\(149\) 151.321 1.01558 0.507788 0.861482i \(-0.330463\pi\)
0.507788 + 0.861482i \(0.330463\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.0662252i 0.999452 + 0.0331126i \(0.0105420\pi\)
−0.999452 + 0.0331126i \(0.989458\pi\)
\(152\) −55.4256 55.4256i −0.364642 0.364642i
\(153\) 0 0
\(154\) 138.586 + 1.41429i 0.899907 + 0.00918368i
\(155\) 271.529i 1.75180i
\(156\) 0 0
\(157\) −205.757 −1.31056 −0.655278 0.755388i \(-0.727448\pi\)
−0.655278 + 0.755388i \(0.727448\pi\)
\(158\) −67.8823 + 67.8823i −0.429634 + 0.429634i
\(159\) 0 0
\(160\) −156.767 + 156.767i −0.979796 + 0.979796i
\(161\) −200.918 205.061i −1.24794 1.27367i
\(162\) 0 0
\(163\) 302.000 1.85276 0.926380 0.376589i \(-0.122903\pi\)
0.926380 + 0.376589i \(0.122903\pi\)
\(164\) 249.415i 1.52083i
\(165\) 0 0
\(166\) −156.767 156.767i −0.944382 0.944382i
\(167\) 69.2820i 0.414862i −0.978250 0.207431i \(-0.933490\pi\)
0.978250 0.207431i \(-0.0665103\pi\)
\(168\) 0 0
\(169\) 215.000 1.27219
\(170\) 67.8823 67.8823i 0.399307 0.399307i
\(171\) 0 0
\(172\) 192.000i 1.11628i
\(173\) 297.913i 1.72204i −0.508572 0.861019i \(-0.669826\pi\)
0.508572 0.861019i \(-0.330174\pi\)
\(174\) 0 0
\(175\) 112.677 + 115.000i 0.643866 + 0.657143i
\(176\) 158.392i 0.899954i
\(177\) 0 0
\(178\) −205.757 205.757i −1.15594 1.15594i
\(179\) 111.723i 0.624150i 0.950057 + 0.312075i \(0.101024\pi\)
−0.950057 + 0.312075i \(0.898976\pi\)
\(180\) 0 0
\(181\) −235.151 −1.29918 −0.649588 0.760286i \(-0.725059\pi\)
−0.649588 + 0.760286i \(0.725059\pi\)
\(182\) 2.79956 274.329i 0.0153822 1.50730i
\(183\) 0 0
\(184\) 232.000 232.000i 1.26087 1.26087i
\(185\) 180.133 0.973693
\(186\) 0 0
\(187\) 68.5857i 0.366769i
\(188\) −110.851 −0.589634
\(189\) 0 0
\(190\) −96.0000 96.0000i −0.505263 0.505263i
\(191\) 74.9533 0.392426 0.196213 0.980561i \(-0.437136\pi\)
0.196213 + 0.980561i \(0.437136\pi\)
\(192\) 0 0
\(193\) −336.000 −1.74093 −0.870466 0.492228i \(-0.836183\pi\)
−0.870466 + 0.492228i \(0.836183\pi\)
\(194\) −235.559 + 235.559i −1.21422 + 1.21422i
\(195\) 0 0
\(196\) −195.959 4.00000i −0.999792 0.0204082i
\(197\) −188.090 −0.954774 −0.477387 0.878693i \(-0.658416\pi\)
−0.477387 + 0.878693i \(0.658416\pi\)
\(198\) 0 0
\(199\) 88.1816 0.443124 0.221562 0.975146i \(-0.428885\pi\)
0.221562 + 0.975146i \(0.428885\pi\)
\(200\) −130.108 + 130.108i −0.650538 + 0.650538i
\(201\) 0 0
\(202\) −225.353 + 225.353i −1.11561 + 1.11561i
\(203\) −90.0666 91.9239i −0.443678 0.452827i
\(204\) 0 0
\(205\) 432.000i 2.10732i
\(206\) 138.564 + 138.564i 0.672641 + 0.672641i
\(207\) 0 0
\(208\) 313.535 1.50738
\(209\) −96.9948 −0.464090
\(210\) 0 0
\(211\) 144.000 0.682464 0.341232 0.939979i \(-0.389156\pi\)
0.341232 + 0.939979i \(0.389156\pi\)
\(212\) 209.304i 0.987281i
\(213\) 0 0
\(214\) −82.0000 + 82.0000i −0.383178 + 0.383178i
\(215\) 332.554i 1.54676i
\(216\) 0 0
\(217\) −192.000 195.959i −0.884793 0.903038i
\(218\) 172.534 172.534i 0.791441 0.791441i
\(219\) 0 0
\(220\) 274.343i 1.24701i
\(221\) −135.765 −0.614319
\(222\) 0 0
\(223\) 107.778 0.483307 0.241654 0.970363i \(-0.422310\pi\)
0.241654 + 0.970363i \(0.422310\pi\)
\(224\) 2.28583 223.988i 0.0102046 0.999948i
\(225\) 0 0
\(226\) −94.0000 + 94.0000i −0.415929 + 0.415929i
\(227\) −166.277 −0.732497 −0.366249 0.930517i \(-0.619358\pi\)
−0.366249 + 0.930517i \(0.619358\pi\)
\(228\) 0 0
\(229\) 78.3837 0.342287 0.171143 0.985246i \(-0.445254\pi\)
0.171143 + 0.985246i \(0.445254\pi\)
\(230\) 401.836 401.836i 1.74711 1.74711i
\(231\) 0 0
\(232\) 104.000 104.000i 0.448276 0.448276i
\(233\) 100.409i 0.430941i 0.976510 + 0.215470i \(0.0691284\pi\)
−0.976510 + 0.215470i \(0.930872\pi\)
\(234\) 0 0
\(235\) −192.000 −0.817021
\(236\) 277.128i 1.17427i
\(237\) 0 0
\(238\) −0.989795 + 96.9898i −0.00415880 + 0.407520i
\(239\) 264.458 1.10652 0.553259 0.833009i \(-0.313384\pi\)
0.553259 + 0.833009i \(0.313384\pi\)
\(240\) 0 0
\(241\) 225.353i 0.935075i 0.883973 + 0.467537i \(0.154859\pi\)
−0.883973 + 0.467537i \(0.845141\pi\)
\(242\) −32.5269 32.5269i −0.134409 0.134409i
\(243\) 0 0
\(244\) 117.576i 0.481867i
\(245\) −339.411 6.92820i −1.38535 0.0282784i
\(246\) 0 0
\(247\) 192.000i 0.777328i
\(248\) 221.703 221.703i 0.893962 0.893962i
\(249\) 0 0
\(250\) 19.5959 19.5959i 0.0783837 0.0783837i
\(251\) 13.8564 0.0552048 0.0276024 0.999619i \(-0.491213\pi\)
0.0276024 + 0.999619i \(0.491213\pi\)
\(252\) 0 0
\(253\) 406.000i 1.60474i
\(254\) −339.411 + 339.411i −1.33626 + 1.33626i
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) 242.487 0.943530 0.471765 0.881724i \(-0.343617\pi\)
0.471765 + 0.881724i \(0.343617\pi\)
\(258\) 0 0
\(259\) −130.000 + 127.373i −0.501931 + 0.491789i
\(260\) 543.058 2.08868
\(261\) 0 0
\(262\) 39.1918 + 39.1918i 0.149587 + 0.149587i
\(263\) 94.7523 0.360275 0.180137 0.983641i \(-0.442346\pi\)
0.180137 + 0.983641i \(0.442346\pi\)
\(264\) 0 0
\(265\) 362.524i 1.36802i
\(266\) 137.164 + 1.39978i 0.515655 + 0.00526234i
\(267\) 0 0
\(268\) 56.0000i 0.208955i
\(269\) 297.913i 1.10748i 0.832689 + 0.553741i \(0.186800\pi\)
−0.832689 + 0.553741i \(0.813200\pi\)
\(270\) 0 0
\(271\) 254.747 0.940026 0.470013 0.882660i \(-0.344249\pi\)
0.470013 + 0.882660i \(0.344249\pi\)
\(272\) −110.851 −0.407541
\(273\) 0 0
\(274\) 50.0000 50.0000i 0.182482 0.182482i
\(275\) 227.688i 0.827958i
\(276\) 0 0
\(277\) 336.000i 1.21300i 0.795085 + 0.606498i \(0.207426\pi\)
−0.795085 + 0.606498i \(0.792574\pi\)
\(278\) 27.7128 27.7128i 0.0996864 0.0996864i
\(279\) 0 0
\(280\) 3.95918 387.959i 0.0141399 1.38557i
\(281\) 371.938i 1.32362i 0.749670 + 0.661812i \(0.230212\pi\)
−0.749670 + 0.661812i \(0.769788\pi\)
\(282\) 0 0
\(283\) 460.504i 1.62722i −0.581409 0.813611i \(-0.697498\pi\)
0.581409 0.813611i \(-0.302502\pi\)
\(284\) 164.049i 0.577637i
\(285\) 0 0
\(286\) 274.343 274.343i 0.959241 0.959241i
\(287\) −305.470 311.769i −1.06436 1.08630i
\(288\) 0 0
\(289\) −241.000 −0.833910
\(290\) 180.133 180.133i 0.621149 0.621149i
\(291\) 0 0
\(292\) 117.576 0.402656
\(293\) 242.487i 0.827601i 0.910368 + 0.413801i \(0.135799\pi\)
−0.910368 + 0.413801i \(0.864201\pi\)
\(294\) 0 0
\(295\) 480.000i 1.62712i
\(296\) −147.078 147.078i −0.496886 0.496886i
\(297\) 0 0
\(298\) −214.000 214.000i −0.718121 0.718121i
\(299\) −803.672 −2.68786
\(300\) 0 0
\(301\) −235.151 240.000i −0.781233 0.797342i
\(302\) 14.1421 14.1421i 0.0468283 0.0468283i
\(303\) 0 0
\(304\) 156.767i 0.515682i
\(305\) 203.647i 0.667694i
\(306\) 0 0
\(307\) 303.737i 0.989370i 0.869072 + 0.494685i \(0.164717\pi\)
−0.869072 + 0.494685i \(0.835283\pi\)
\(308\) −193.990 197.990i −0.629837 0.642824i
\(309\) 0 0
\(310\) 384.000 384.000i 1.23871 1.23871i
\(311\) 235.559i 0.757424i −0.925515 0.378712i \(-0.876367\pi\)
0.925515 0.378712i \(-0.123633\pi\)
\(312\) 0 0
\(313\) 333.131i 1.06432i −0.846645 0.532158i \(-0.821381\pi\)
0.846645 0.532158i \(-0.178619\pi\)
\(314\) 290.985 + 290.985i 0.926702 + 0.926702i
\(315\) 0 0
\(316\) 192.000 0.607595
\(317\) 222.032 0.700415 0.350207 0.936672i \(-0.386111\pi\)
0.350207 + 0.936672i \(0.386111\pi\)
\(318\) 0 0
\(319\) 182.000i 0.570533i
\(320\) 443.405 1.38564
\(321\) 0 0
\(322\) −5.85919 + 574.141i −0.0181962 + 1.78305i
\(323\) 67.8823i 0.210162i
\(324\) 0 0
\(325\) 450.706 1.38679
\(326\) −427.092 427.092i −1.31010 1.31010i
\(327\) 0 0
\(328\) 352.727 352.727i 1.07539 1.07539i
\(329\) 138.564 135.765i 0.421167 0.412658i
\(330\) 0 0
\(331\) 144.000 0.435045 0.217523 0.976055i \(-0.430202\pi\)
0.217523 + 0.976055i \(0.430202\pi\)
\(332\) 443.405i 1.33556i
\(333\) 0 0
\(334\) −97.9796 + 97.9796i −0.293352 + 0.293352i
\(335\) 96.9948i 0.289537i
\(336\) 0 0
\(337\) −480.000 −1.42433 −0.712166 0.702011i \(-0.752286\pi\)
−0.712166 + 0.702011i \(0.752286\pi\)
\(338\) −304.056 304.056i −0.899574 0.899574i
\(339\) 0 0
\(340\) −192.000 −0.564706
\(341\) 387.979i 1.13777i
\(342\) 0 0
\(343\) 249.848 235.000i 0.728420 0.685131i
\(344\) 271.529 271.529i 0.789328 0.789328i
\(345\) 0 0
\(346\) −421.312 + 421.312i −1.21767 + 1.21767i
\(347\) 213.546i 0.615407i −0.951482 0.307704i \(-0.900440\pi\)
0.951482 0.307704i \(-0.0995605\pi\)
\(348\) 0 0
\(349\) 68.5857 0.196521 0.0982603 0.995161i \(-0.468672\pi\)
0.0982603 + 0.995161i \(0.468672\pi\)
\(350\) 3.28589 321.983i 0.00938824 0.919952i
\(351\) 0 0
\(352\) 224.000 224.000i 0.636364 0.636364i
\(353\) −256.344 −0.726186 −0.363093 0.931753i \(-0.618279\pi\)
−0.363093 + 0.931753i \(0.618279\pi\)
\(354\) 0 0
\(355\) 284.141i 0.800397i
\(356\) 581.969i 1.63474i
\(357\) 0 0
\(358\) 158.000 158.000i 0.441341 0.441341i
\(359\) 637.810 1.77663 0.888315 0.459234i \(-0.151876\pi\)
0.888315 + 0.459234i \(0.151876\pi\)
\(360\) 0 0
\(361\) 265.000 0.734072
\(362\) 332.554 + 332.554i 0.918657 + 0.918657i
\(363\) 0 0
\(364\) −391.918 + 384.000i −1.07670 + 1.05495i
\(365\) 203.647 0.557936
\(366\) 0 0
\(367\) −499.696 −1.36157 −0.680785 0.732484i \(-0.738361\pi\)
−0.680785 + 0.732484i \(0.738361\pi\)
\(368\) −656.195 −1.78314
\(369\) 0 0
\(370\) −254.747 254.747i −0.688505 0.688505i
\(371\) 256.344 + 261.630i 0.690953 + 0.705201i
\(372\) 0 0
\(373\) 576.000i 1.54424i −0.635479 0.772118i \(-0.719197\pi\)
0.635479 0.772118i \(-0.280803\pi\)
\(374\) −96.9948 + 96.9948i −0.259345 + 0.259345i
\(375\) 0 0
\(376\) 156.767 + 156.767i 0.416934 + 0.416934i
\(377\) −360.267 −0.955614
\(378\) 0 0
\(379\) 48.0000 0.126649 0.0633245 0.997993i \(-0.479830\pi\)
0.0633245 + 0.997993i \(0.479830\pi\)
\(380\) 271.529i 0.714550i
\(381\) 0 0
\(382\) −106.000 106.000i −0.277487 0.277487i
\(383\) 221.703i 0.578858i 0.957200 + 0.289429i \(0.0934654\pi\)
−0.957200 + 0.289429i \(0.906535\pi\)
\(384\) 0 0
\(385\) −336.000 342.929i −0.872727 0.890724i
\(386\) 475.176 + 475.176i 1.23103 + 1.23103i
\(387\) 0 0
\(388\) 666.261 1.71717
\(389\) −188.090 −0.483523 −0.241761 0.970336i \(-0.577725\pi\)
−0.241761 + 0.970336i \(0.577725\pi\)
\(390\) 0 0
\(391\) 284.141 0.726703
\(392\) 271.471 + 282.785i 0.692529 + 0.721390i
\(393\) 0 0
\(394\) 266.000 + 266.000i 0.675127 + 0.675127i
\(395\) 332.554 0.841908
\(396\) 0 0
\(397\) −127.373 −0.320840 −0.160420 0.987049i \(-0.551285\pi\)
−0.160420 + 0.987049i \(0.551285\pi\)
\(398\) −124.708 124.708i −0.313336 0.313336i
\(399\) 0 0
\(400\) 368.000 0.920000
\(401\) 137.179i 0.342092i −0.985263 0.171046i \(-0.945285\pi\)
0.985263 0.171046i \(-0.0547146\pi\)
\(402\) 0 0
\(403\) −768.000 −1.90571
\(404\) 637.395 1.57771
\(405\) 0 0
\(406\) −2.62653 + 257.373i −0.00646929 + 0.633925i
\(407\) −257.387 −0.632400
\(408\) 0 0
\(409\) 519.292i 1.26966i −0.772651 0.634831i \(-0.781070\pi\)
0.772651 0.634831i \(-0.218930\pi\)
\(410\) 610.940 610.940i 1.49010 1.49010i
\(411\) 0 0
\(412\) 391.918i 0.951258i
\(413\) 339.411 + 346.410i 0.821819 + 0.838766i
\(414\) 0 0
\(415\) 768.000i 1.85060i
\(416\) −443.405 443.405i −1.06588 1.06588i
\(417\) 0 0
\(418\) 137.171 + 137.171i 0.328161 + 0.328161i
\(419\) −13.8564 −0.0330702 −0.0165351 0.999863i \(-0.505264\pi\)
−0.0165351 + 0.999863i \(0.505264\pi\)
\(420\) 0 0
\(421\) 432.000i 1.02613i −0.858350 0.513064i \(-0.828510\pi\)
0.858350 0.513064i \(-0.171490\pi\)
\(422\) −203.647 203.647i −0.482575 0.482575i
\(423\) 0 0
\(424\) −296.000 + 296.000i −0.698113 + 0.698113i
\(425\) −159.349 −0.374938
\(426\) 0 0
\(427\) −144.000 146.969i −0.337237 0.344191i
\(428\) 231.931 0.541895
\(429\) 0 0
\(430\) 470.302 470.302i 1.09373 1.09373i
\(431\) −7.07107 −0.0164062 −0.00820309 0.999966i \(-0.502611\pi\)
−0.00820309 + 0.999966i \(0.502611\pi\)
\(432\) 0 0
\(433\) 764.241i 1.76499i 0.470321 + 0.882495i \(0.344138\pi\)
−0.470321 + 0.882495i \(0.655862\pi\)
\(434\) −5.59913 + 548.657i −0.0129012 + 1.26419i
\(435\) 0 0
\(436\) −488.000 −1.11927
\(437\) 401.836i 0.919533i
\(438\) 0 0
\(439\) −656.463 −1.49536 −0.747680 0.664059i \(-0.768832\pi\)
−0.747680 + 0.664059i \(0.768832\pi\)
\(440\) 387.979 387.979i 0.881771 0.881771i
\(441\) 0 0
\(442\) 192.000 + 192.000i 0.434389 + 0.434389i
\(443\) 688.722i 1.55468i 0.629082 + 0.777339i \(0.283431\pi\)
−0.629082 + 0.777339i \(0.716569\pi\)
\(444\) 0 0
\(445\) 1008.00i 2.26517i
\(446\) −152.420 152.420i −0.341750 0.341750i
\(447\) 0 0
\(448\) −320.000 + 313.535i −0.714286 + 0.699854i
\(449\) 270.115i 0.601592i 0.953689 + 0.300796i \(0.0972523\pi\)
−0.953689 + 0.300796i \(0.902748\pi\)
\(450\) 0 0
\(451\) 617.271i 1.36867i
\(452\) 265.872 0.588213
\(453\) 0 0
\(454\) 235.151 + 235.151i 0.517954 + 0.517954i
\(455\) −678.823 + 665.108i −1.49192 + 1.46177i
\(456\) 0 0
\(457\) 96.0000 0.210066 0.105033 0.994469i \(-0.466505\pi\)
0.105033 + 0.994469i \(0.466505\pi\)
\(458\) −110.851 110.851i −0.242033 0.242033i
\(459\) 0 0
\(460\) −1136.56 −2.47079
\(461\) 20.7846i 0.0450859i −0.999746 0.0225430i \(-0.992824\pi\)
0.999746 0.0225430i \(-0.00717626\pi\)
\(462\) 0 0
\(463\) 240.000i 0.518359i −0.965829 0.259179i \(-0.916548\pi\)
0.965829 0.259179i \(-0.0834520\pi\)
\(464\) −294.156 −0.633958
\(465\) 0 0
\(466\) 142.000 142.000i 0.304721 0.304721i
\(467\) 152.420 0.326382 0.163191 0.986594i \(-0.447821\pi\)
0.163191 + 0.986594i \(0.447821\pi\)
\(468\) 0 0
\(469\) 68.5857 + 70.0000i 0.146238 + 0.149254i
\(470\) 271.529 + 271.529i 0.577721 + 0.577721i
\(471\) 0 0
\(472\) −391.918 + 391.918i −0.830336 + 0.830336i
\(473\) 475.176i 1.00460i
\(474\) 0 0
\(475\) 225.353i 0.474427i
\(476\) 138.564 135.765i 0.291101 0.285220i
\(477\) 0 0
\(478\) −374.000 374.000i −0.782427 0.782427i
\(479\) 263.272i 0.549628i 0.961497 + 0.274814i \(0.0886162\pi\)
−0.961497 + 0.274814i \(0.911384\pi\)
\(480\) 0 0
\(481\) 509.494i 1.05924i
\(482\) 318.697 318.697i 0.661198 0.661198i
\(483\) 0 0
\(484\) 92.0000i 0.190083i
\(485\) 1154.00 2.37938
\(486\) 0 0
\(487\) 278.000i 0.570842i 0.958402 + 0.285421i \(0.0921334\pi\)
−0.958402 + 0.285421i \(0.907867\pi\)
\(488\) 166.277 166.277i 0.340731 0.340731i
\(489\) 0 0
\(490\) 470.202 + 489.798i 0.959596 + 0.999588i
\(491\) 77.7817i 0.158415i −0.996858 0.0792075i \(-0.974761\pi\)
0.996858 0.0792075i \(-0.0252390\pi\)
\(492\) 0 0
\(493\) 127.373 0.258364
\(494\) 271.529 271.529i 0.549654 0.549654i
\(495\) 0 0
\(496\) −627.069 −1.26425
\(497\) 200.918 + 205.061i 0.404261 + 0.412598i
\(498\) 0 0
\(499\) −528.000 −1.05812 −0.529058 0.848586i \(-0.677455\pi\)
−0.529058 + 0.848586i \(0.677455\pi\)
\(500\) −55.4256 −0.110851
\(501\) 0 0
\(502\) −19.5959 19.5959i −0.0390357 0.0390357i
\(503\) 166.277i 0.330570i −0.986246 0.165285i \(-0.947146\pi\)
0.986246 0.165285i \(-0.0528544\pi\)
\(504\) 0 0
\(505\) 1104.00 2.18614
\(506\) −574.171 + 574.171i −1.13472 + 1.13472i
\(507\) 0 0
\(508\) 960.000 1.88976
\(509\) 644.323i 1.26586i 0.774209 + 0.632930i \(0.218148\pi\)
−0.774209 + 0.632930i \(0.781852\pi\)
\(510\) 0 0
\(511\) −146.969 + 144.000i −0.287611 + 0.281800i
\(512\) −362.039 362.039i −0.707107 0.707107i
\(513\) 0 0
\(514\) −342.929 342.929i −0.667176 0.667176i
\(515\) 678.823i 1.31810i
\(516\) 0 0
\(517\) 274.343 0.530644
\(518\) 363.981 + 3.71448i 0.702666 + 0.00717081i
\(519\) 0 0
\(520\) −768.000 768.000i −1.47692 1.47692i
\(521\) −187.061 −0.359043 −0.179522 0.983754i \(-0.557455\pi\)
−0.179522 + 0.983754i \(0.557455\pi\)
\(522\) 0 0
\(523\) 548.686i 1.04911i 0.851376 + 0.524556i \(0.175769\pi\)
−0.851376 + 0.524556i \(0.824231\pi\)
\(524\) 110.851i 0.211548i
\(525\) 0 0
\(526\) −134.000 134.000i −0.254753 0.254753i
\(527\) 271.529 0.515235
\(528\) 0 0
\(529\) 1153.00 2.17958
\(530\) −512.687 + 512.687i −0.967334 + 0.967334i
\(531\) 0 0
\(532\) −192.000 195.959i −0.360902 0.368344i
\(533\) −1221.88 −2.29246
\(534\) 0 0
\(535\) 401.716 0.750872
\(536\) −79.1960 + 79.1960i −0.147754 + 0.147754i
\(537\) 0 0
\(538\) 421.312 421.312i 0.783108 0.783108i
\(539\) 484.974 + 9.89949i 0.899767 + 0.0183664i
\(540\) 0 0
\(541\) 432.000i 0.798521i 0.916837 + 0.399261i \(0.130733\pi\)
−0.916837 + 0.399261i \(0.869267\pi\)
\(542\) −360.267 360.267i −0.664698 0.664698i
\(543\) 0 0
\(544\) 156.767 + 156.767i 0.288175 + 0.288175i
\(545\) −845.241 −1.55090
\(546\) 0 0
\(547\) 658.000 1.20293 0.601463 0.798901i \(-0.294585\pi\)
0.601463 + 0.798901i \(0.294585\pi\)
\(548\) −141.421 −0.258068
\(549\) 0 0
\(550\) 322.000 322.000i 0.585455 0.585455i
\(551\) 180.133i 0.326921i
\(552\) 0 0
\(553\) −240.000 + 235.151i −0.433996 + 0.425228i
\(554\) 475.176 475.176i 0.857718 0.857718i
\(555\) 0 0
\(556\) −78.3837 −0.140978
\(557\) 289.914 0.520492 0.260246 0.965542i \(-0.416196\pi\)
0.260246 + 0.965542i \(0.416196\pi\)
\(558\) 0 0
\(559\) −940.604 −1.68265
\(560\) −554.256 + 543.058i −0.989743 + 0.969746i
\(561\) 0 0
\(562\) 526.000 526.000i 0.935943 0.935943i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 460.504 0.815051
\(566\) −651.251 + 651.251i −1.15062 + 1.15062i
\(567\) 0 0
\(568\) −232.000 + 232.000i −0.408451 + 0.408451i
\(569\) 239.002i 0.420039i 0.977697 + 0.210019i \(0.0673527\pi\)
−0.977697 + 0.210019i \(0.932647\pi\)
\(570\) 0 0
\(571\) −130.000 −0.227671 −0.113835 0.993500i \(-0.536314\pi\)
−0.113835 + 0.993500i \(0.536314\pi\)
\(572\) −775.959 −1.35657
\(573\) 0 0
\(574\) −8.90815 + 872.908i −0.0155194 + 1.52075i
\(575\) −943.280 −1.64049
\(576\) 0 0
\(577\) 78.3837i 0.135847i 0.997691 + 0.0679235i \(0.0216374\pi\)
−0.997691 + 0.0679235i \(0.978363\pi\)
\(578\) 340.825 + 340.825i 0.589663 + 0.589663i
\(579\) 0 0
\(580\) −509.494 −0.878438
\(581\) −543.058 554.256i −0.934695 0.953969i
\(582\) 0 0
\(583\) 518.000i 0.888508i
\(584\) −166.277 166.277i −0.284721 0.284721i
\(585\) 0 0
\(586\) 342.929 342.929i 0.585202 0.585202i
\(587\) −290.985 −0.495715 −0.247857 0.968797i \(-0.579726\pi\)
−0.247857 + 0.968797i \(0.579726\pi\)
\(588\) 0 0
\(589\) 384.000i 0.651952i
\(590\) −678.823 + 678.823i −1.15055 + 1.15055i
\(591\) 0 0
\(592\) 416.000i 0.702703i
\(593\) 76.2102 0.128516 0.0642582 0.997933i \(-0.479532\pi\)
0.0642582 + 0.997933i \(0.479532\pi\)
\(594\) 0 0
\(595\) 240.000 235.151i 0.403361 0.395212i
\(596\) 605.283i 1.01558i
\(597\) 0 0
\(598\) 1136.56 + 1136.56i 1.90061 + 1.90061i
\(599\) 244.659 0.408446 0.204223 0.978924i \(-0.434533\pi\)
0.204223 + 0.978924i \(0.434533\pi\)
\(600\) 0 0
\(601\) 842.624i 1.40204i 0.713143 + 0.701019i \(0.247271\pi\)
−0.713143 + 0.701019i \(0.752729\pi\)
\(602\) −6.85750 + 671.965i −0.0113912 + 1.11622i
\(603\) 0 0
\(604\) −40.0000 −0.0662252
\(605\) 159.349i 0.263386i
\(606\) 0 0
\(607\) 382.120 0.629523 0.314761 0.949171i \(-0.398075\pi\)
0.314761 + 0.949171i \(0.398075\pi\)
\(608\) 221.703 221.703i 0.364642 0.364642i
\(609\) 0 0
\(610\) 288.000 288.000i 0.472131 0.472131i
\(611\) 543.058i 0.888802i
\(612\) 0 0
\(613\) 480.000i 0.783034i −0.920171 0.391517i \(-0.871950\pi\)
0.920171 0.391517i \(-0.128050\pi\)
\(614\) 429.549 429.549i 0.699591 0.699591i
\(615\) 0 0
\(616\) −5.65715 + 554.343i −0.00918368 + 0.899907i
\(617\) 442.649i 0.717421i 0.933449 + 0.358711i \(0.116783\pi\)
−0.933449 + 0.358711i \(0.883217\pi\)
\(618\) 0 0
\(619\) 529.090i 0.854749i 0.904075 + 0.427375i \(0.140561\pi\)
−0.904075 + 0.427375i \(0.859439\pi\)
\(620\) −1086.12 −1.75180
\(621\) 0 0
\(622\) −333.131 + 333.131i −0.535580 + 0.535580i
\(623\) −712.764 727.461i −1.14408 1.16767i
\(624\) 0 0
\(625\) −671.000 −1.07360
\(626\) −471.118 + 471.118i −0.752584 + 0.752584i
\(627\) 0 0
\(628\) 823.029i 1.31056i
\(629\) 180.133i 0.286380i
\(630\) 0 0
\(631\) 48.0000i 0.0760697i −0.999276 0.0380349i \(-0.987890\pi\)
0.999276 0.0380349i \(-0.0121098\pi\)
\(632\) −271.529 271.529i −0.429634 0.429634i
\(633\) 0 0
\(634\) −314.000 314.000i −0.495268 0.495268i
\(635\) 1662.77 2.61853
\(636\) 0 0
\(637\) 19.5959 960.000i 0.0307628 1.50706i
\(638\) −257.387 + 257.387i −0.403428 + 0.403428i
\(639\) 0 0
\(640\) −627.069 627.069i −0.979796 0.979796i
\(641\) 1.41421i 0.00220626i 0.999999 + 0.00110313i \(0.000351137\pi\)
−0.999999 + 0.00110313i \(0.999649\pi\)
\(642\) 0 0
\(643\) 793.635i 1.23427i −0.786858 0.617134i \(-0.788294\pi\)
0.786858 0.617134i \(-0.211706\pi\)
\(644\) 820.244 803.672i 1.27367 1.24794i
\(645\) 0 0
\(646\) −96.0000 + 96.0000i −0.148607 + 0.148607i
\(647\) 1274.79i 1.97031i −0.171672 0.985154i \(-0.554917\pi\)
0.171672 0.985154i \(-0.445083\pi\)
\(648\) 0 0
\(649\) 685.857i 1.05679i
\(650\) −637.395 637.395i −0.980607 0.980607i
\(651\) 0 0
\(652\) 1208.00i 1.85276i
\(653\) 1172.38 1.79538 0.897690 0.440628i \(-0.145244\pi\)
0.897690 + 0.440628i \(0.145244\pi\)
\(654\) 0 0
\(655\) 192.000i 0.293130i
\(656\) −997.661 −1.52083
\(657\) 0 0
\(658\) −387.959 3.95918i −0.589604 0.00601699i
\(659\) 634.982i 0.963554i −0.876294 0.481777i \(-0.839992\pi\)
0.876294 0.481777i \(-0.160008\pi\)
\(660\) 0 0
\(661\) −342.929 −0.518803 −0.259401 0.965770i \(-0.583525\pi\)
−0.259401 + 0.965770i \(0.583525\pi\)
\(662\) −203.647 203.647i −0.307623 0.307623i
\(663\) 0 0
\(664\) 627.069 627.069i 0.944382 0.944382i
\(665\) −332.554 339.411i −0.500081 0.510393i
\(666\) 0 0
\(667\) 754.000 1.13043
\(668\) 277.128 0.414862
\(669\) 0 0
\(670\) −137.171 + 137.171i −0.204733 + 0.204733i
\(671\) 290.985i 0.433658i
\(672\) 0 0
\(673\) 912.000 1.35513 0.677563 0.735465i \(-0.263036\pi\)
0.677563 + 0.735465i \(0.263036\pi\)
\(674\) 678.823 + 678.823i 1.00716 + 1.00716i
\(675\) 0 0
\(676\) 860.000i 1.27219i
\(677\) 256.344i 0.378646i 0.981915 + 0.189323i \(0.0606294\pi\)
−0.981915 + 0.189323i \(0.939371\pi\)
\(678\) 0 0
\(679\) −832.827 + 816.000i −1.22655 + 1.20177i
\(680\) 271.529 + 271.529i 0.399307 + 0.399307i
\(681\) 0 0
\(682\) −548.686 + 548.686i −0.804524 + 0.804524i
\(683\) 1299.66i 1.90287i −0.307845 0.951437i \(-0.599608\pi\)
0.307845 0.951437i \(-0.400392\pi\)
\(684\) 0 0
\(685\) −244.949 −0.357590
\(686\) −685.679 20.9982i −0.999531 0.0306096i
\(687\) 0 0
\(688\) −768.000 −1.11628
\(689\) 1025.37 1.48821
\(690\) 0 0
\(691\) 117.576i 0.170153i 0.996374 + 0.0850763i \(0.0271134\pi\)
−0.996374 + 0.0850763i \(0.972887\pi\)
\(692\) 1191.65 1.72204
\(693\) 0 0
\(694\) −302.000 + 302.000i −0.435159 + 0.435159i
\(695\) −135.765 −0.195345
\(696\) 0 0
\(697\) 432.000 0.619799
\(698\) −96.9948 96.9948i −0.138961 0.138961i
\(699\) 0 0
\(700\) −460.000 + 450.706i −0.657143 + 0.643866i
\(701\) 49.4975 0.0706098 0.0353049 0.999377i \(-0.488760\pi\)
0.0353049 + 0.999377i \(0.488760\pi\)
\(702\) 0 0
\(703\) −254.747 −0.362371
\(704\) −633.568 −0.899954
\(705\) 0 0
\(706\) 362.524 + 362.524i 0.513491 + 0.513491i
\(707\) −796.743 + 780.646i −1.12694 + 1.10417i
\(708\) 0 0
\(709\) 502.000i 0.708039i −0.935238 0.354020i \(-0.884815\pi\)
0.935238 0.354020i \(-0.115185\pi\)
\(710\) −401.836 + 401.836i −0.565966 + 0.565966i
\(711\) 0 0
\(712\) 823.029 823.029i 1.15594 1.15594i
\(713\) 1607.34 2.25434
\(714\) 0 0
\(715\) −1344.00 −1.87972
\(716\) −446.891 −0.624150
\(717\) 0 0
\(718\) −902.000 902.000i −1.25627 1.25627i
\(719\) 1344.07i 1.86936i −0.355487 0.934681i \(-0.615685\pi\)
0.355487 0.934681i \(-0.384315\pi\)
\(720\) 0 0
\(721\) 480.000 + 489.898i 0.665742 + 0.679470i
\(722\) −374.767 374.767i −0.519067 0.519067i
\(723\) 0 0
\(724\) 940.604i 1.29918i
\(725\) −422.850 −0.583241
\(726\) 0 0
\(727\) 470.302 0.646908 0.323454 0.946244i \(-0.395156\pi\)
0.323454 + 0.946244i \(0.395156\pi\)
\(728\) 1097.31 + 11.1983i 1.50730 + 0.0153822i
\(729\) 0 0
\(730\) −288.000 288.000i −0.394521 0.394521i
\(731\) 332.554 0.454930
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 706.677 + 706.677i 0.962775 + 0.962775i
\(735\) 0 0
\(736\) 928.000 + 928.000i 1.26087 + 1.26087i
\(737\) 138.593i 0.188050i
\(738\) 0 0
\(739\) 274.000 0.370771 0.185386 0.982666i \(-0.440647\pi\)
0.185386 + 0.982666i \(0.440647\pi\)
\(740\) 720.533i 0.973693i
\(741\) 0 0
\(742\) 7.47552 732.524i 0.0100748 0.987230i
\(743\) 298.399 0.401614 0.200807 0.979631i \(-0.435644\pi\)
0.200807 + 0.979631i \(0.435644\pi\)
\(744\) 0 0
\(745\) 1048.38i 1.40722i
\(746\) −814.587 + 814.587i −1.09194 + 1.09194i
\(747\) 0 0
\(748\) 274.343 0.366769
\(749\) −289.914 + 284.056i −0.387068 + 0.379247i
\(750\) 0 0
\(751\) 1094.00i 1.45672i 0.685192 + 0.728362i \(0.259718\pi\)
−0.685192 + 0.728362i \(0.740282\pi\)
\(752\) 443.405i 0.589634i
\(753\) 0 0
\(754\) 509.494 + 509.494i 0.675721 + 0.675721i
\(755\) −69.2820 −0.0917643
\(756\) 0 0
\(757\) 118.000i 0.155878i 0.996958 + 0.0779392i \(0.0248340\pi\)
−0.996958 + 0.0779392i \(0.975166\pi\)
\(758\) −67.8823 67.8823i −0.0895544 0.0895544i
\(759\) 0 0
\(760\) 384.000 384.000i 0.505263 0.505263i
\(761\) −547.328 −0.719222 −0.359611 0.933102i \(-0.617091\pi\)
−0.359611 + 0.933102i \(0.617091\pi\)
\(762\) 0 0
\(763\) 610.000 597.675i 0.799476 0.783323i
\(764\) 299.813i 0.392426i
\(765\) 0 0
\(766\) 313.535 313.535i 0.409314 0.409314i
\(767\) 1357.65 1.77007
\(768\) 0 0
\(769\) 803.433i 1.04478i −0.852708 0.522388i \(-0.825041\pi\)
0.852708 0.522388i \(-0.174959\pi\)
\(770\) −9.79847 + 960.150i −0.0127253 + 1.24695i
\(771\) 0 0
\(772\) 1344.00i 1.74093i
\(773\) 561.184i 0.725982i 0.931793 + 0.362991i \(0.118245\pi\)
−0.931793 + 0.362991i \(0.881755\pi\)
\(774\) 0 0
\(775\) −901.412 −1.16311
\(776\) −942.236 942.236i −1.21422 1.21422i
\(777\) 0 0
\(778\) 266.000 + 266.000i 0.341902 + 0.341902i
\(779\) 610.940i 0.784262i
\(780\) 0 0
\(781\) 406.000i 0.519846i
\(782\) −401.836 401.836i −0.513857 0.513857i
\(783\) 0 0
\(784\) 16.0000 783.837i 0.0204082 0.999792i
\(785\) 1425.53i 1.81596i
\(786\) 0 0
\(787\) 823.029i 1.04578i 0.852400 + 0.522890i \(0.175146\pi\)
−0.852400 + 0.522890i \(0.824854\pi\)
\(788\) 752.362i 0.954774i
\(789\) 0 0
\(790\) −470.302 470.302i −0.595319 0.595319i
\(791\) −332.340 + 325.626i −0.420152 + 0.411663i
\(792\) 0 0
\(793\) −576.000 −0.726356
\(794\) 180.133 + 180.133i 0.226868 + 0.226868i
\(795\) 0 0
\(796\) 352.727i 0.443124i
\(797\) 630.466i 0.791050i 0.918455 + 0.395525i \(0.129437\pi\)
−0.918455 + 0.395525i \(0.870563\pi\)
\(798\) 0 0
\(799\) 192.000i 0.240300i
\(800\) −520.431 520.431i −0.650538 0.650538i
\(801\) 0 0
\(802\) −194.000 + 194.000i −0.241895 + 0.241895i
\(803\) −290.985 −0.362372
\(804\) 0 0
\(805\) 1420.70 1392.00i 1.76485 1.72919i
\(806\) 1086.12 + 1086.12i 1.34754 + 1.34754i
\(807\) 0 0
\(808\) −901.412 901.412i −1.11561 1.11561i
\(809\) 1458.05i 1.80229i 0.433516 + 0.901146i \(0.357273\pi\)
−0.433516 + 0.901146i \(0.642727\pi\)
\(810\) 0 0
\(811\) 293.939i 0.362440i 0.983443 + 0.181220i \(0.0580046\pi\)
−0.983443 + 0.181220i \(0.941995\pi\)
\(812\) 367.696 360.267i 0.452827 0.443678i
\(813\) 0 0
\(814\) 364.000 + 364.000i 0.447174 + 0.447174i
\(815\) 2092.32i 2.56726i
\(816\) 0 0
\(817\) 470.302i 0.575645i
\(818\) −734.390 + 734.390i −0.897787 + 0.897787i
\(819\) 0 0
\(820\) −1728.00 −2.10732
\(821\) 595.384 0.725194 0.362597 0.931946i \(-0.381890\pi\)
0.362597 + 0.931946i \(0.381890\pi\)
\(822\) 0 0
\(823\) 1296.00i 1.57473i −0.616489 0.787363i \(-0.711446\pi\)
0.616489 0.787363i \(-0.288554\pi\)
\(824\) −554.256 + 554.256i −0.672641 + 0.672641i
\(825\) 0 0
\(826\) 9.89795 969.898i 0.0119830 1.17421i
\(827\) 485.075i 0.586548i −0.956028 0.293274i \(-0.905255\pi\)
0.956028 0.293274i \(-0.0947448\pi\)
\(828\) 0 0
\(829\) −293.939 −0.354570 −0.177285 0.984160i \(-0.556731\pi\)
−0.177285 + 0.984160i \(0.556731\pi\)
\(830\) 1086.12 1086.12i 1.30857 1.30857i
\(831\) 0 0
\(832\) 1254.14i 1.50738i
\(833\) −6.92820 + 339.411i −0.00831717 + 0.407456i
\(834\) 0 0
\(835\) 480.000 0.574850
\(836\) 387.979i 0.464090i
\(837\) 0 0
\(838\) 19.5959 + 19.5959i 0.0233842 + 0.0233842i
\(839\) 1371.78i 1.63502i 0.575912 + 0.817511i \(0.304647\pi\)
−0.575912 + 0.817511i \(0.695353\pi\)
\(840\) 0 0
\(841\) −503.000 −0.598098
\(842\) −610.940 + 610.940i −0.725582 + 0.725582i
\(843\) 0 0
\(844\) 576.000i 0.682464i
\(845\) 1489.56i 1.76280i
\(846\) 0 0
\(847\) −112.677 115.000i −0.133030 0.135773i
\(848\) 837.214 0.987281
\(849\) 0 0
\(850\) 225.353 + 225.353i 0.265121 + 0.265121i
\(851\) 1066.32i 1.25302i
\(852\) 0 0
\(853\) 1185.55 1.38986 0.694931 0.719076i \(-0.255435\pi\)
0.694931 + 0.719076i \(0.255435\pi\)
\(854\) −4.19934 + 411.493i −0.00491726 + 0.481842i
\(855\) 0 0
\(856\) −328.000 328.000i −0.383178 0.383178i
\(857\) −519.615 −0.606319 −0.303159 0.952940i \(-0.598041\pi\)
−0.303159 + 0.952940i \(0.598041\pi\)
\(858\) 0 0
\(859\) 1459.90i 1.69953i −0.527162 0.849765i \(-0.676744\pi\)
0.527162 0.849765i \(-0.323256\pi\)
\(860\) −1330.22 −1.54676
\(861\) 0 0
\(862\) 10.0000 + 10.0000i 0.0116009 + 0.0116009i
\(863\) 60.8112 0.0704649 0.0352324 0.999379i \(-0.488783\pi\)
0.0352324 + 0.999379i \(0.488783\pi\)
\(864\) 0 0
\(865\) 2064.00 2.38613
\(866\) 1080.80 1080.80i 1.24804 1.24804i
\(867\) 0 0
\(868\) 783.837 768.000i 0.903038 0.884793i
\(869\) −475.176 −0.546808
\(870\) 0 0
\(871\) 274.343 0.314975
\(872\) 690.136 + 690.136i 0.791441 + 0.791441i
\(873\) 0 0
\(874\) −568.282 + 568.282i −0.650208 + 0.650208i
\(875\) 69.2820 67.8823i 0.0791795 0.0775797i
\(876\) 0 0
\(877\) 672.000i 0.766249i 0.923697 + 0.383124i \(0.125152\pi\)
−0.923697 + 0.383124i \(0.874848\pi\)
\(878\) 928.379 + 928.379i 1.05738 + 1.05738i
\(879\) 0 0
\(880\) −1097.37 −1.24701
\(881\) 1364.86 1.54921 0.774606 0.632444i \(-0.217948\pi\)
0.774606 + 0.632444i \(0.217948\pi\)
\(882\) 0 0
\(883\) −1392.00 −1.57644 −0.788222 0.615391i \(-0.788998\pi\)
−0.788222 + 0.615391i \(0.788998\pi\)
\(884\) 543.058i 0.614319i
\(885\) 0 0
\(886\) 974.000 974.000i 1.09932 1.09932i
\(887\) 956.092i 1.07789i −0.842340 0.538947i \(-0.818822\pi\)
0.842340 0.538947i \(-0.181178\pi\)
\(888\) 0 0
\(889\) −1200.00 + 1175.76i −1.34983 + 1.32256i
\(890\) 1425.53 1425.53i 1.60172 1.60172i
\(891\) 0 0
\(892\) 431.110i 0.483307i
\(893\) 271.529 0.304064
\(894\) 0 0
\(895\) −774.039 −0.864848
\(896\) 895.953 + 9.14333i 0.999948 + 0.0102046i
\(897\) 0 0
\(898\) 382.000 382.000i 0.425390 0.425390i
\(899\) 720.533 0.801483
\(900\) 0 0
\(901\) −362.524 −0.402358
\(902\) −872.954 + 872.954i −0.967798 + 0.967798i
\(903\) 0 0
\(904\) −376.000 376.000i −0.415929 0.415929i
\(905\) 1629.17i 1.80019i
\(906\) 0 0
\(907\) −1392.00 −1.53473 −0.767365 0.641211i \(-0.778432\pi\)
−0.767365 + 0.641211i \(0.778432\pi\)
\(908\) 665.108i 0.732497i
\(909\) 0 0
\(910\) 1900.60 + 19.3959i 2.08858 + 0.0213142i
\(911\) −875.398 −0.960920 −0.480460 0.877017i \(-0.659530\pi\)
−0.480460 + 0.877017i \(0.659530\pi\)
\(912\) 0 0
\(913\) 1097.37i 1.20194i
\(914\) −135.765 135.765i −0.148539 0.148539i
\(915\) 0 0
\(916\) 313.535i 0.342287i
\(917\) 135.765 + 138.564i 0.148053 + 0.151106i
\(918\) 0 0
\(919\) 1738.00i 1.89119i 0.325352 + 0.945593i \(0.394517\pi\)
−0.325352 + 0.945593i \(0.605483\pi\)
\(920\) 1607.34 + 1607.34i 1.74711 + 1.74711i
\(921\) 0 0
\(922\) −29.3939 + 29.3939i −0.0318806 + 0.0318806i
\(923\) 803.672 0.870717
\(924\) 0 0
\(925\) 598.000i 0.646486i
\(926\) −339.411 + 339.411i −0.366535 + 0.366535i
\(927\) 0 0
\(928\) 416.000 + 416.000i 0.448276 + 0.448276i
\(929\) −1600.41 −1.72273 −0.861364 0.507988i \(-0.830390\pi\)
−0.861364 + 0.507988i \(0.830390\pi\)
\(930\) 0 0
\(931\) 480.000 + 9.79796i 0.515575 + 0.0105241i
\(932\) −401.637 −0.430941
\(933\) 0 0
\(934\) −215.555 215.555i −0.230787 0.230787i
\(935\) 475.176 0.508209
\(936\) 0 0
\(937\) 19.5959i 0.0209135i −0.999945 0.0104567i \(-0.996671\pi\)
0.999945 0.0104567i \(-0.00332854\pi\)
\(938\) 2.00010 195.990i 0.00213231 0.208944i
\(939\) 0 0
\(940\) 768.000i 0.817021i
\(941\) 284.056i 0.301866i 0.988544 + 0.150933i \(0.0482278\pi\)
−0.988544 + 0.150933i \(0.951772\pi\)
\(942\) 0 0
\(943\) 2557.27 2.71184
\(944\) 1108.51 1.17427
\(945\) 0 0
\(946\) −672.000 + 672.000i −0.710359 + 0.710359i
\(947\) 1788.98i 1.88910i 0.328364 + 0.944551i \(0.393503\pi\)
−0.328364 + 0.944551i \(0.606497\pi\)
\(948\) 0 0
\(949\) 576.000i 0.606955i
\(950\) 318.697 318.697i 0.335471 0.335471i
\(951\) 0 0
\(952\) −387.959 3.95918i −0.407520 0.00415880i
\(953\) 32.5269i 0.0341311i −0.999854 0.0170655i \(-0.994568\pi\)
0.999854 0.0170655i \(-0.00543239\pi\)
\(954\) 0 0
\(955\) 519.292i 0.543761i
\(956\) 1057.83i 1.10652i
\(957\) 0 0
\(958\) 372.322 372.322i 0.388646 0.388646i
\(959\) 176.777 173.205i 0.184334 0.180610i
\(960\) 0 0
\(961\) 575.000 0.598335
\(962\) 720.533 720.533i 0.748995 0.748995i
\(963\) 0 0
\(964\) −901.412 −0.935075
\(965\) 2327.88i 2.41231i
\(966\) 0 0
\(967\) 816.000i 0.843847i −0.906631 0.421923i \(-0.861355\pi\)
0.906631 0.421923i \(-0.138645\pi\)
\(968\) 130.108 130.108i 0.134409 0.134409i
\(969\) 0 0
\(970\) −1632.00 1632.00i −1.68247 1.68247i
\(971\) 1163.94 1.19870 0.599350 0.800487i \(-0.295426\pi\)
0.599350 + 0.800487i \(0.295426\pi\)
\(972\) 0 0
\(973\) 97.9796 96.0000i 0.100698 0.0986639i
\(974\) 393.151 393.151i 0.403646 0.403646i
\(975\) 0 0
\(976\) −470.302 −0.481867
\(977\) 1424.11i 1.45764i 0.684706 + 0.728819i \(0.259931\pi\)
−0.684706 + 0.728819i \(0.740069\pi\)
\(978\) 0 0
\(979\) 1440.30i 1.47120i
\(980\) 27.7128 1357.65i 0.0282784 1.38535i
\(981\) 0 0
\(982\) −110.000 + 110.000i −0.112016 + 0.112016i
\(983\) 900.666i 0.916243i −0.888890 0.458121i \(-0.848523\pi\)
0.888890 0.458121i \(-0.151477\pi\)
\(984\) 0 0
\(985\) 1303.13i 1.32297i
\(986\) −180.133 180.133i −0.182691 0.182691i
\(987\) 0 0
\(988\) −768.000 −0.777328
\(989\) 1968.59 1.99048
\(990\) 0 0
\(991\) 1306.00i 1.31786i −0.752204 0.658930i \(-0.771009\pi\)
0.752204 0.658930i \(-0.228991\pi\)
\(992\) 886.810 + 886.810i 0.893962 + 0.893962i
\(993\) 0 0
\(994\) 5.85919 574.141i 0.00589456 0.577606i
\(995\) 610.940i 0.614010i
\(996\) 0 0
\(997\) 107.778 0.108102 0.0540509 0.998538i \(-0.482787\pi\)
0.0540509 + 0.998538i \(0.482787\pi\)
\(998\) 746.705 + 746.705i 0.748201 + 0.748201i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.e.a.251.2 yes 8
3.2 odd 2 inner 504.3.e.a.251.7 yes 8
4.3 odd 2 2016.3.e.a.1007.8 8
7.6 odd 2 inner 504.3.e.a.251.1 8
8.3 odd 2 inner 504.3.e.a.251.5 yes 8
8.5 even 2 2016.3.e.a.1007.1 8
12.11 even 2 2016.3.e.a.1007.4 8
21.20 even 2 inner 504.3.e.a.251.8 yes 8
24.5 odd 2 2016.3.e.a.1007.5 8
24.11 even 2 inner 504.3.e.a.251.4 yes 8
28.27 even 2 2016.3.e.a.1007.2 8
56.13 odd 2 2016.3.e.a.1007.7 8
56.27 even 2 inner 504.3.e.a.251.6 yes 8
84.83 odd 2 2016.3.e.a.1007.6 8
168.83 odd 2 inner 504.3.e.a.251.3 yes 8
168.125 even 2 2016.3.e.a.1007.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.a.251.1 8 7.6 odd 2 inner
504.3.e.a.251.2 yes 8 1.1 even 1 trivial
504.3.e.a.251.3 yes 8 168.83 odd 2 inner
504.3.e.a.251.4 yes 8 24.11 even 2 inner
504.3.e.a.251.5 yes 8 8.3 odd 2 inner
504.3.e.a.251.6 yes 8 56.27 even 2 inner
504.3.e.a.251.7 yes 8 3.2 odd 2 inner
504.3.e.a.251.8 yes 8 21.20 even 2 inner
2016.3.e.a.1007.1 8 8.5 even 2
2016.3.e.a.1007.2 8 28.27 even 2
2016.3.e.a.1007.3 8 168.125 even 2
2016.3.e.a.1007.4 8 12.11 even 2
2016.3.e.a.1007.5 8 24.5 odd 2
2016.3.e.a.1007.6 8 84.83 odd 2
2016.3.e.a.1007.7 8 56.13 odd 2
2016.3.e.a.1007.8 8 4.3 odd 2