Properties

Label 2016.3.e.a.1007.1
Level $2016$
Weight $3$
Character 2016.1007
Analytic conductor $54.932$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1007,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2016.1007
Dual form 2016.3.e.a.1007.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.92820i q^{5} +(-4.89898 - 5.00000i) q^{7} +9.89949i q^{11} +19.5959 q^{13} +6.92820 q^{17} +9.79796i q^{19} +41.0122 q^{23} -23.0000 q^{25} -18.3848 q^{29} +39.1918 q^{31} +(-34.6410 + 33.9411i) q^{35} +26.0000i q^{37} +62.3538 q^{41} -48.0000 q^{43} +27.7128i q^{47} +(-1.00000 + 48.9898i) q^{49} +52.3259 q^{53} +68.5857 q^{55} +69.2820 q^{59} -29.3939 q^{61} -135.765i q^{65} +14.0000 q^{67} -41.0122 q^{71} -29.3939i q^{73} +(49.4975 - 48.4974i) q^{77} -48.0000i q^{79} -110.851 q^{83} -48.0000i q^{85} +145.492 q^{89} +(-96.0000 - 97.9796i) q^{91} +67.8823 q^{95} -166.565i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 184 q^{25} - 384 q^{43} - 8 q^{49} + 112 q^{67} - 768 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.92820i 1.38564i −0.721110 0.692820i \(-0.756368\pi\)
0.721110 0.692820i \(-0.243632\pi\)
\(6\) 0 0
\(7\) −4.89898 5.00000i −0.699854 0.714286i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.89949i 0.899954i 0.893040 + 0.449977i \(0.148568\pi\)
−0.893040 + 0.449977i \(0.851432\pi\)
\(12\) 0 0
\(13\) 19.5959 1.50738 0.753689 0.657231i \(-0.228272\pi\)
0.753689 + 0.657231i \(0.228272\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.92820 0.407541 0.203771 0.979019i \(-0.434680\pi\)
0.203771 + 0.979019i \(0.434680\pi\)
\(18\) 0 0
\(19\) 9.79796i 0.515682i 0.966187 + 0.257841i \(0.0830111\pi\)
−0.966187 + 0.257841i \(0.916989\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 41.0122 1.78314 0.891569 0.452884i \(-0.149605\pi\)
0.891569 + 0.452884i \(0.149605\pi\)
\(24\) 0 0
\(25\) −23.0000 −0.920000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −18.3848 −0.633958 −0.316979 0.948433i \(-0.602668\pi\)
−0.316979 + 0.948433i \(0.602668\pi\)
\(30\) 0 0
\(31\) 39.1918 1.26425 0.632126 0.774865i \(-0.282182\pi\)
0.632126 + 0.774865i \(0.282182\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −34.6410 + 33.9411i −0.989743 + 0.969746i
\(36\) 0 0
\(37\) 26.0000i 0.702703i 0.936244 + 0.351351i \(0.114278\pi\)
−0.936244 + 0.351351i \(0.885722\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 62.3538 1.52083 0.760413 0.649440i \(-0.224997\pi\)
0.760413 + 0.649440i \(0.224997\pi\)
\(42\) 0 0
\(43\) −48.0000 −1.11628 −0.558140 0.829747i \(-0.688485\pi\)
−0.558140 + 0.829747i \(0.688485\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 27.7128i 0.589634i 0.955554 + 0.294817i \(0.0952587\pi\)
−0.955554 + 0.294817i \(0.904741\pi\)
\(48\) 0 0
\(49\) −1.00000 + 48.9898i −0.0204082 + 0.999792i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 52.3259 0.987281 0.493641 0.869666i \(-0.335666\pi\)
0.493641 + 0.869666i \(0.335666\pi\)
\(54\) 0 0
\(55\) 68.5857 1.24701
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 69.2820 1.17427 0.587136 0.809488i \(-0.300255\pi\)
0.587136 + 0.809488i \(0.300255\pi\)
\(60\) 0 0
\(61\) −29.3939 −0.481867 −0.240933 0.970542i \(-0.577454\pi\)
−0.240933 + 0.970542i \(0.577454\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 135.765i 2.08868i
\(66\) 0 0
\(67\) 14.0000 0.208955 0.104478 0.994527i \(-0.466683\pi\)
0.104478 + 0.994527i \(0.466683\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −41.0122 −0.577637 −0.288818 0.957384i \(-0.593262\pi\)
−0.288818 + 0.957384i \(0.593262\pi\)
\(72\) 0 0
\(73\) 29.3939i 0.402656i −0.979524 0.201328i \(-0.935474\pi\)
0.979524 0.201328i \(-0.0645257\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 49.4975 48.4974i 0.642824 0.629837i
\(78\) 0 0
\(79\) 48.0000i 0.607595i −0.952737 0.303797i \(-0.901745\pi\)
0.952737 0.303797i \(-0.0982546\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −110.851 −1.33556 −0.667779 0.744360i \(-0.732755\pi\)
−0.667779 + 0.744360i \(0.732755\pi\)
\(84\) 0 0
\(85\) 48.0000i 0.564706i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 145.492 1.63474 0.817372 0.576110i \(-0.195430\pi\)
0.817372 + 0.576110i \(0.195430\pi\)
\(90\) 0 0
\(91\) −96.0000 97.9796i −1.05495 1.07670i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 67.8823 0.714550
\(96\) 0 0
\(97\) 166.565i 1.71717i −0.512673 0.858584i \(-0.671345\pi\)
0.512673 0.858584i \(-0.328655\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 159.349i 1.57771i 0.614580 + 0.788855i \(0.289326\pi\)
−0.614580 + 0.788855i \(0.710674\pi\)
\(102\) 0 0
\(103\) −97.9796 −0.951258 −0.475629 0.879646i \(-0.657780\pi\)
−0.475629 + 0.879646i \(0.657780\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 57.9828i 0.541895i 0.962594 + 0.270947i \(0.0873370\pi\)
−0.962594 + 0.270947i \(0.912663\pi\)
\(108\) 0 0
\(109\) 122.000i 1.11927i −0.828741 0.559633i \(-0.810942\pi\)
0.828741 0.559633i \(-0.189058\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 66.4680i 0.588213i −0.955773 0.294106i \(-0.904978\pi\)
0.955773 0.294106i \(-0.0950220\pi\)
\(114\) 0 0
\(115\) 284.141i 2.47079i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −33.9411 34.6410i −0.285220 0.291101i
\(120\) 0 0
\(121\) 23.0000 0.190083
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 13.8564i 0.110851i
\(126\) 0 0
\(127\) 240.000i 1.88976i −0.327411 0.944882i \(-0.606176\pi\)
0.327411 0.944882i \(-0.393824\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 27.7128 0.211548 0.105774 0.994390i \(-0.466268\pi\)
0.105774 + 0.994390i \(0.466268\pi\)
\(132\) 0 0
\(133\) 48.9898 48.0000i 0.368344 0.360902i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 35.3553i 0.258068i 0.991640 + 0.129034i \(0.0411877\pi\)
−0.991640 + 0.129034i \(0.958812\pi\)
\(138\) 0 0
\(139\) 19.5959i 0.140978i −0.997513 0.0704889i \(-0.977544\pi\)
0.997513 0.0704889i \(-0.0224559\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 193.990i 1.35657i
\(144\) 0 0
\(145\) 127.373i 0.878438i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −151.321 −1.01558 −0.507788 0.861482i \(-0.669537\pi\)
−0.507788 + 0.861482i \(0.669537\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.0662252i 0.999452 + 0.0331126i \(0.0105420\pi\)
−0.999452 + 0.0331126i \(0.989458\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 271.529i 1.75180i
\(156\) 0 0
\(157\) 205.757 1.31056 0.655278 0.755388i \(-0.272552\pi\)
0.655278 + 0.755388i \(0.272552\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −200.918 205.061i −1.24794 1.27367i
\(162\) 0 0
\(163\) −302.000 −1.85276 −0.926380 0.376589i \(-0.877097\pi\)
−0.926380 + 0.376589i \(0.877097\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 69.2820i 0.414862i −0.978250 0.207431i \(-0.933490\pi\)
0.978250 0.207431i \(-0.0665103\pi\)
\(168\) 0 0
\(169\) 215.000 1.27219
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 297.913i 1.72204i 0.508572 + 0.861019i \(0.330174\pi\)
−0.508572 + 0.861019i \(0.669826\pi\)
\(174\) 0 0
\(175\) 112.677 + 115.000i 0.643866 + 0.657143i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 111.723i 0.624150i −0.950057 0.312075i \(-0.898976\pi\)
0.950057 0.312075i \(-0.101024\pi\)
\(180\) 0 0
\(181\) 235.151 1.29918 0.649588 0.760286i \(-0.274941\pi\)
0.649588 + 0.760286i \(0.274941\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 180.133 0.973693
\(186\) 0 0
\(187\) 68.5857i 0.366769i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 74.9533 0.392426 0.196213 0.980561i \(-0.437136\pi\)
0.196213 + 0.980561i \(0.437136\pi\)
\(192\) 0 0
\(193\) −336.000 −1.74093 −0.870466 0.492228i \(-0.836183\pi\)
−0.870466 + 0.492228i \(0.836183\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 188.090 0.954774 0.477387 0.878693i \(-0.341584\pi\)
0.477387 + 0.878693i \(0.341584\pi\)
\(198\) 0 0
\(199\) 88.1816 0.443124 0.221562 0.975146i \(-0.428885\pi\)
0.221562 + 0.975146i \(0.428885\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 90.0666 + 91.9239i 0.443678 + 0.452827i
\(204\) 0 0
\(205\) 432.000i 2.10732i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −96.9948 −0.464090
\(210\) 0 0
\(211\) −144.000 −0.682464 −0.341232 0.939979i \(-0.610844\pi\)
−0.341232 + 0.939979i \(0.610844\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 332.554i 1.54676i
\(216\) 0 0
\(217\) −192.000 195.959i −0.884793 0.903038i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 135.765 0.614319
\(222\) 0 0
\(223\) 107.778 0.483307 0.241654 0.970363i \(-0.422310\pi\)
0.241654 + 0.970363i \(0.422310\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 166.277 0.732497 0.366249 0.930517i \(-0.380642\pi\)
0.366249 + 0.930517i \(0.380642\pi\)
\(228\) 0 0
\(229\) −78.3837 −0.342287 −0.171143 0.985246i \(-0.554746\pi\)
−0.171143 + 0.985246i \(0.554746\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 100.409i 0.430941i 0.976510 + 0.215470i \(0.0691284\pi\)
−0.976510 + 0.215470i \(0.930872\pi\)
\(234\) 0 0
\(235\) 192.000 0.817021
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 264.458 1.10652 0.553259 0.833009i \(-0.313384\pi\)
0.553259 + 0.833009i \(0.313384\pi\)
\(240\) 0 0
\(241\) 225.353i 0.935075i 0.883973 + 0.467537i \(0.154859\pi\)
−0.883973 + 0.467537i \(0.845141\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 339.411 + 6.92820i 1.38535 + 0.0282784i
\(246\) 0 0
\(247\) 192.000i 0.777328i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.8564 −0.0552048 −0.0276024 0.999619i \(-0.508787\pi\)
−0.0276024 + 0.999619i \(0.508787\pi\)
\(252\) 0 0
\(253\) 406.000i 1.60474i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 242.487 0.943530 0.471765 0.881724i \(-0.343617\pi\)
0.471765 + 0.881724i \(0.343617\pi\)
\(258\) 0 0
\(259\) 130.000 127.373i 0.501931 0.491789i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 94.7523 0.360275 0.180137 0.983641i \(-0.442346\pi\)
0.180137 + 0.983641i \(0.442346\pi\)
\(264\) 0 0
\(265\) 362.524i 1.36802i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 297.913i 1.10748i −0.832689 0.553741i \(-0.813200\pi\)
0.832689 0.553741i \(-0.186800\pi\)
\(270\) 0 0
\(271\) 254.747 0.940026 0.470013 0.882660i \(-0.344249\pi\)
0.470013 + 0.882660i \(0.344249\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 227.688i 0.827958i
\(276\) 0 0
\(277\) 336.000i 1.21300i −0.795085 0.606498i \(-0.792574\pi\)
0.795085 0.606498i \(-0.207426\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 371.938i 1.32362i 0.749670 + 0.661812i \(0.230212\pi\)
−0.749670 + 0.661812i \(0.769788\pi\)
\(282\) 0 0
\(283\) 460.504i 1.62722i 0.581409 + 0.813611i \(0.302502\pi\)
−0.581409 + 0.813611i \(0.697498\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −305.470 311.769i −1.06436 1.08630i
\(288\) 0 0
\(289\) −241.000 −0.833910
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 242.487i 0.827601i −0.910368 0.413801i \(-0.864201\pi\)
0.910368 0.413801i \(-0.135799\pi\)
\(294\) 0 0
\(295\) 480.000i 1.62712i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 803.672 2.68786
\(300\) 0 0
\(301\) 235.151 + 240.000i 0.781233 + 0.797342i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 203.647i 0.667694i
\(306\) 0 0
\(307\) 303.737i 0.989370i −0.869072 0.494685i \(-0.835283\pi\)
0.869072 0.494685i \(-0.164717\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 235.559i 0.757424i −0.925515 0.378712i \(-0.876367\pi\)
0.925515 0.378712i \(-0.123633\pi\)
\(312\) 0 0
\(313\) 333.131i 1.06432i −0.846645 0.532158i \(-0.821381\pi\)
0.846645 0.532158i \(-0.178619\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −222.032 −0.700415 −0.350207 0.936672i \(-0.613889\pi\)
−0.350207 + 0.936672i \(0.613889\pi\)
\(318\) 0 0
\(319\) 182.000i 0.570533i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 67.8823i 0.210162i
\(324\) 0 0
\(325\) −450.706 −1.38679
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 138.564 135.765i 0.421167 0.412658i
\(330\) 0 0
\(331\) −144.000 −0.435045 −0.217523 0.976055i \(-0.569798\pi\)
−0.217523 + 0.976055i \(0.569798\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 96.9948i 0.289537i
\(336\) 0 0
\(337\) −480.000 −1.42433 −0.712166 0.702011i \(-0.752286\pi\)
−0.712166 + 0.702011i \(0.752286\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 387.979i 1.13777i
\(342\) 0 0
\(343\) 249.848 235.000i 0.728420 0.685131i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 213.546i 0.615407i 0.951482 + 0.307704i \(0.0995605\pi\)
−0.951482 + 0.307704i \(0.900440\pi\)
\(348\) 0 0
\(349\) −68.5857 −0.196521 −0.0982603 0.995161i \(-0.531328\pi\)
−0.0982603 + 0.995161i \(0.531328\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −256.344 −0.726186 −0.363093 0.931753i \(-0.618279\pi\)
−0.363093 + 0.931753i \(0.618279\pi\)
\(354\) 0 0
\(355\) 284.141i 0.800397i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 637.810 1.77663 0.888315 0.459234i \(-0.151876\pi\)
0.888315 + 0.459234i \(0.151876\pi\)
\(360\) 0 0
\(361\) 265.000 0.734072
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −203.647 −0.557936
\(366\) 0 0
\(367\) −499.696 −1.36157 −0.680785 0.732484i \(-0.738361\pi\)
−0.680785 + 0.732484i \(0.738361\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −256.344 261.630i −0.690953 0.705201i
\(372\) 0 0
\(373\) 576.000i 1.54424i 0.635479 + 0.772118i \(0.280803\pi\)
−0.635479 + 0.772118i \(0.719197\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −360.267 −0.955614
\(378\) 0 0
\(379\) −48.0000 −0.126649 −0.0633245 0.997993i \(-0.520170\pi\)
−0.0633245 + 0.997993i \(0.520170\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 221.703i 0.578858i 0.957200 + 0.289429i \(0.0934654\pi\)
−0.957200 + 0.289429i \(0.906535\pi\)
\(384\) 0 0
\(385\) −336.000 342.929i −0.872727 0.890724i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 188.090 0.483523 0.241761 0.970336i \(-0.422275\pi\)
0.241761 + 0.970336i \(0.422275\pi\)
\(390\) 0 0
\(391\) 284.141 0.726703
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −332.554 −0.841908
\(396\) 0 0
\(397\) 127.373 0.320840 0.160420 0.987049i \(-0.448715\pi\)
0.160420 + 0.987049i \(0.448715\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 137.179i 0.342092i −0.985263 0.171046i \(-0.945285\pi\)
0.985263 0.171046i \(-0.0547146\pi\)
\(402\) 0 0
\(403\) 768.000 1.90571
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −257.387 −0.632400
\(408\) 0 0
\(409\) 519.292i 1.26966i −0.772651 0.634831i \(-0.781070\pi\)
0.772651 0.634831i \(-0.218930\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −339.411 346.410i −0.821819 0.838766i
\(414\) 0 0
\(415\) 768.000i 1.85060i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.8564 0.0330702 0.0165351 0.999863i \(-0.494736\pi\)
0.0165351 + 0.999863i \(0.494736\pi\)
\(420\) 0 0
\(421\) 432.000i 1.02613i 0.858350 + 0.513064i \(0.171490\pi\)
−0.858350 + 0.513064i \(0.828510\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −159.349 −0.374938
\(426\) 0 0
\(427\) 144.000 + 146.969i 0.337237 + 0.344191i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.07107 −0.0164062 −0.00820309 0.999966i \(-0.502611\pi\)
−0.00820309 + 0.999966i \(0.502611\pi\)
\(432\) 0 0
\(433\) 764.241i 1.76499i 0.470321 + 0.882495i \(0.344138\pi\)
−0.470321 + 0.882495i \(0.655862\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 401.836i 0.919533i
\(438\) 0 0
\(439\) −656.463 −1.49536 −0.747680 0.664059i \(-0.768832\pi\)
−0.747680 + 0.664059i \(0.768832\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 688.722i 1.55468i −0.629082 0.777339i \(-0.716569\pi\)
0.629082 0.777339i \(-0.283431\pi\)
\(444\) 0 0
\(445\) 1008.00i 2.26517i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 270.115i 0.601592i 0.953689 + 0.300796i \(0.0972523\pi\)
−0.953689 + 0.300796i \(0.902748\pi\)
\(450\) 0 0
\(451\) 617.271i 1.36867i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −678.823 + 665.108i −1.49192 + 1.46177i
\(456\) 0 0
\(457\) 96.0000 0.210066 0.105033 0.994469i \(-0.466505\pi\)
0.105033 + 0.994469i \(0.466505\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.7846i 0.0450859i 0.999746 + 0.0225430i \(0.00717626\pi\)
−0.999746 + 0.0225430i \(0.992824\pi\)
\(462\) 0 0
\(463\) 240.000i 0.518359i −0.965829 0.259179i \(-0.916548\pi\)
0.965829 0.259179i \(-0.0834520\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −152.420 −0.326382 −0.163191 0.986594i \(-0.552179\pi\)
−0.163191 + 0.986594i \(0.552179\pi\)
\(468\) 0 0
\(469\) −68.5857 70.0000i −0.146238 0.149254i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 475.176i 1.00460i
\(474\) 0 0
\(475\) 225.353i 0.474427i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 263.272i 0.549628i 0.961497 + 0.274814i \(0.0886162\pi\)
−0.961497 + 0.274814i \(0.911384\pi\)
\(480\) 0 0
\(481\) 509.494i 1.05924i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1154.00 −2.37938
\(486\) 0 0
\(487\) 278.000i 0.570842i 0.958402 + 0.285421i \(0.0921334\pi\)
−0.958402 + 0.285421i \(0.907867\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 77.7817i 0.158415i 0.996858 + 0.0792075i \(0.0252390\pi\)
−0.996858 + 0.0792075i \(0.974761\pi\)
\(492\) 0 0
\(493\) −127.373 −0.258364
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 200.918 + 205.061i 0.404261 + 0.412598i
\(498\) 0 0
\(499\) 528.000 1.05812 0.529058 0.848586i \(-0.322545\pi\)
0.529058 + 0.848586i \(0.322545\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 166.277i 0.330570i −0.986246 0.165285i \(-0.947146\pi\)
0.986246 0.165285i \(-0.0528544\pi\)
\(504\) 0 0
\(505\) 1104.00 2.18614
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 644.323i 1.26586i −0.774209 0.632930i \(-0.781852\pi\)
0.774209 0.632930i \(-0.218148\pi\)
\(510\) 0 0
\(511\) −146.969 + 144.000i −0.287611 + 0.281800i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 678.823i 1.31810i
\(516\) 0 0
\(517\) −274.343 −0.530644
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −187.061 −0.359043 −0.179522 0.983754i \(-0.557455\pi\)
−0.179522 + 0.983754i \(0.557455\pi\)
\(522\) 0 0
\(523\) 548.686i 1.04911i −0.851376 0.524556i \(-0.824231\pi\)
0.851376 0.524556i \(-0.175769\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 271.529 0.515235
\(528\) 0 0
\(529\) 1153.00 2.17958
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1221.88 2.29246
\(534\) 0 0
\(535\) 401.716 0.750872
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −484.974 9.89949i −0.899767 0.0183664i
\(540\) 0 0
\(541\) 432.000i 0.798521i −0.916837 0.399261i \(-0.869267\pi\)
0.916837 0.399261i \(-0.130733\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −845.241 −1.55090
\(546\) 0 0
\(547\) −658.000 −1.20293 −0.601463 0.798901i \(-0.705415\pi\)
−0.601463 + 0.798901i \(0.705415\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 180.133i 0.326921i
\(552\) 0 0
\(553\) −240.000 + 235.151i −0.433996 + 0.425228i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −289.914 −0.520492 −0.260246 0.965542i \(-0.583804\pi\)
−0.260246 + 0.965542i \(0.583804\pi\)
\(558\) 0 0
\(559\) −940.604 −1.68265
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −460.504 −0.815051
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 239.002i 0.420039i 0.977697 + 0.210019i \(0.0673527\pi\)
−0.977697 + 0.210019i \(0.932647\pi\)
\(570\) 0 0
\(571\) 130.000 0.227671 0.113835 0.993500i \(-0.463686\pi\)
0.113835 + 0.993500i \(0.463686\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −943.280 −1.64049
\(576\) 0 0
\(577\) 78.3837i 0.135847i 0.997691 + 0.0679235i \(0.0216374\pi\)
−0.997691 + 0.0679235i \(0.978363\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 543.058 + 554.256i 0.934695 + 0.953969i
\(582\) 0 0
\(583\) 518.000i 0.888508i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 290.985 0.495715 0.247857 0.968797i \(-0.420274\pi\)
0.247857 + 0.968797i \(0.420274\pi\)
\(588\) 0 0
\(589\) 384.000i 0.651952i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 76.2102 0.128516 0.0642582 0.997933i \(-0.479532\pi\)
0.0642582 + 0.997933i \(0.479532\pi\)
\(594\) 0 0
\(595\) −240.000 + 235.151i −0.403361 + 0.395212i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 244.659 0.408446 0.204223 0.978924i \(-0.434533\pi\)
0.204223 + 0.978924i \(0.434533\pi\)
\(600\) 0 0
\(601\) 842.624i 1.40204i 0.713143 + 0.701019i \(0.247271\pi\)
−0.713143 + 0.701019i \(0.752729\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 159.349i 0.263386i
\(606\) 0 0
\(607\) 382.120 0.629523 0.314761 0.949171i \(-0.398075\pi\)
0.314761 + 0.949171i \(0.398075\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 543.058i 0.888802i
\(612\) 0 0
\(613\) 480.000i 0.783034i 0.920171 + 0.391517i \(0.128050\pi\)
−0.920171 + 0.391517i \(0.871950\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 442.649i 0.717421i 0.933449 + 0.358711i \(0.116783\pi\)
−0.933449 + 0.358711i \(0.883217\pi\)
\(618\) 0 0
\(619\) 529.090i 0.854749i −0.904075 0.427375i \(-0.859439\pi\)
0.904075 0.427375i \(-0.140561\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −712.764 727.461i −1.14408 1.16767i
\(624\) 0 0
\(625\) −671.000 −1.07360
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 180.133i 0.286380i
\(630\) 0 0
\(631\) 48.0000i 0.0760697i −0.999276 0.0380349i \(-0.987890\pi\)
0.999276 0.0380349i \(-0.0121098\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1662.77 −2.61853
\(636\) 0 0
\(637\) −19.5959 + 960.000i −0.0307628 + 1.50706i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.41421i 0.00220626i 0.999999 + 0.00110313i \(0.000351137\pi\)
−0.999999 + 0.00110313i \(0.999649\pi\)
\(642\) 0 0
\(643\) 793.635i 1.23427i 0.786858 + 0.617134i \(0.211706\pi\)
−0.786858 + 0.617134i \(0.788294\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1274.79i 1.97031i −0.171672 0.985154i \(-0.554917\pi\)
0.171672 0.985154i \(-0.445083\pi\)
\(648\) 0 0
\(649\) 685.857i 1.05679i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1172.38 −1.79538 −0.897690 0.440628i \(-0.854756\pi\)
−0.897690 + 0.440628i \(0.854756\pi\)
\(654\) 0 0
\(655\) 192.000i 0.293130i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 634.982i 0.963554i 0.876294 + 0.481777i \(0.160008\pi\)
−0.876294 + 0.481777i \(0.839992\pi\)
\(660\) 0 0
\(661\) 342.929 0.518803 0.259401 0.965770i \(-0.416475\pi\)
0.259401 + 0.965770i \(0.416475\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −332.554 339.411i −0.500081 0.510393i
\(666\) 0 0
\(667\) −754.000 −1.13043
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 290.985i 0.433658i
\(672\) 0 0
\(673\) 912.000 1.35513 0.677563 0.735465i \(-0.263036\pi\)
0.677563 + 0.735465i \(0.263036\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 256.344i 0.378646i −0.981915 0.189323i \(-0.939371\pi\)
0.981915 0.189323i \(-0.0606294\pi\)
\(678\) 0 0
\(679\) −832.827 + 816.000i −1.22655 + 1.20177i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1299.66i 1.90287i 0.307845 + 0.951437i \(0.400392\pi\)
−0.307845 + 0.951437i \(0.599608\pi\)
\(684\) 0 0
\(685\) 244.949 0.357590
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1025.37 1.48821
\(690\) 0 0
\(691\) 117.576i 0.170153i −0.996374 0.0850763i \(-0.972887\pi\)
0.996374 0.0850763i \(-0.0271134\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −135.765 −0.195345
\(696\) 0 0
\(697\) 432.000 0.619799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −49.4975 −0.0706098 −0.0353049 0.999377i \(-0.511240\pi\)
−0.0353049 + 0.999377i \(0.511240\pi\)
\(702\) 0 0
\(703\) −254.747 −0.362371
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 796.743 780.646i 1.12694 1.10417i
\(708\) 0 0
\(709\) 502.000i 0.708039i 0.935238 + 0.354020i \(0.115185\pi\)
−0.935238 + 0.354020i \(0.884815\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1607.34 2.25434
\(714\) 0 0
\(715\) 1344.00 1.87972
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1344.07i 1.86936i −0.355487 0.934681i \(-0.615685\pi\)
0.355487 0.934681i \(-0.384315\pi\)
\(720\) 0 0
\(721\) 480.000 + 489.898i 0.665742 + 0.679470i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 422.850 0.583241
\(726\) 0 0
\(727\) 470.302 0.646908 0.323454 0.946244i \(-0.395156\pi\)
0.323454 + 0.946244i \(0.395156\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −332.554 −0.454930
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 138.593i 0.188050i
\(738\) 0 0
\(739\) −274.000 −0.370771 −0.185386 0.982666i \(-0.559353\pi\)
−0.185386 + 0.982666i \(0.559353\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 298.399 0.401614 0.200807 0.979631i \(-0.435644\pi\)
0.200807 + 0.979631i \(0.435644\pi\)
\(744\) 0 0
\(745\) 1048.38i 1.40722i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 289.914 284.056i 0.387068 0.379247i
\(750\) 0 0
\(751\) 1094.00i 1.45672i 0.685192 + 0.728362i \(0.259718\pi\)
−0.685192 + 0.728362i \(0.740282\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 69.2820 0.0917643
\(756\) 0 0
\(757\) 118.000i 0.155878i −0.996958 0.0779392i \(-0.975166\pi\)
0.996958 0.0779392i \(-0.0248340\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −547.328 −0.719222 −0.359611 0.933102i \(-0.617091\pi\)
−0.359611 + 0.933102i \(0.617091\pi\)
\(762\) 0 0
\(763\) −610.000 + 597.675i −0.799476 + 0.783323i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1357.65 1.77007
\(768\) 0 0
\(769\) 803.433i 1.04478i −0.852708 0.522388i \(-0.825041\pi\)
0.852708 0.522388i \(-0.174959\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 561.184i 0.725982i −0.931793 0.362991i \(-0.881755\pi\)
0.931793 0.362991i \(-0.118245\pi\)
\(774\) 0 0
\(775\) −901.412 −1.16311
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 610.940i 0.784262i
\(780\) 0 0
\(781\) 406.000i 0.519846i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1425.53i 1.81596i
\(786\) 0 0
\(787\) 823.029i 1.04578i −0.852400 0.522890i \(-0.824854\pi\)
0.852400 0.522890i \(-0.175146\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −332.340 + 325.626i −0.420152 + 0.411663i
\(792\) 0 0
\(793\) −576.000 −0.726356
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 630.466i 0.791050i −0.918455 0.395525i \(-0.870563\pi\)
0.918455 0.395525i \(-0.129437\pi\)
\(798\) 0 0
\(799\) 192.000i 0.240300i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 290.985 0.362372
\(804\) 0 0
\(805\) −1420.70 + 1392.00i −1.76485 + 1.72919i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1458.05i 1.80229i 0.433516 + 0.901146i \(0.357273\pi\)
−0.433516 + 0.901146i \(0.642727\pi\)
\(810\) 0 0
\(811\) 293.939i 0.362440i −0.983443 0.181220i \(-0.941995\pi\)
0.983443 0.181220i \(-0.0580046\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2092.32i 2.56726i
\(816\) 0 0
\(817\) 470.302i 0.575645i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −595.384 −0.725194 −0.362597 0.931946i \(-0.618110\pi\)
−0.362597 + 0.931946i \(0.618110\pi\)
\(822\) 0 0
\(823\) 1296.00i 1.57473i −0.616489 0.787363i \(-0.711446\pi\)
0.616489 0.787363i \(-0.288554\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 485.075i 0.586548i 0.956028 + 0.293274i \(0.0947448\pi\)
−0.956028 + 0.293274i \(0.905255\pi\)
\(828\) 0 0
\(829\) 293.939 0.354570 0.177285 0.984160i \(-0.443269\pi\)
0.177285 + 0.984160i \(0.443269\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.92820 + 339.411i −0.00831717 + 0.407456i
\(834\) 0 0
\(835\) −480.000 −0.574850
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1371.78i 1.63502i 0.575912 + 0.817511i \(0.304647\pi\)
−0.575912 + 0.817511i \(0.695353\pi\)
\(840\) 0 0
\(841\) −503.000 −0.598098
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1489.56i 1.76280i
\(846\) 0 0
\(847\) −112.677 115.000i −0.133030 0.135773i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1066.32i 1.25302i
\(852\) 0 0
\(853\) −1185.55 −1.38986 −0.694931 0.719076i \(-0.744565\pi\)
−0.694931 + 0.719076i \(0.744565\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −519.615 −0.606319 −0.303159 0.952940i \(-0.598041\pi\)
−0.303159 + 0.952940i \(0.598041\pi\)
\(858\) 0 0
\(859\) 1459.90i 1.69953i 0.527162 + 0.849765i \(0.323256\pi\)
−0.527162 + 0.849765i \(0.676744\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 60.8112 0.0704649 0.0352324 0.999379i \(-0.488783\pi\)
0.0352324 + 0.999379i \(0.488783\pi\)
\(864\) 0 0
\(865\) 2064.00 2.38613
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 475.176 0.546808
\(870\) 0 0
\(871\) 274.343 0.314975
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −69.2820 + 67.8823i −0.0791795 + 0.0775797i
\(876\) 0 0
\(877\) 672.000i 0.766249i −0.923697 0.383124i \(-0.874848\pi\)
0.923697 0.383124i \(-0.125152\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1364.86 1.54921 0.774606 0.632444i \(-0.217948\pi\)
0.774606 + 0.632444i \(0.217948\pi\)
\(882\) 0 0
\(883\) 1392.00 1.57644 0.788222 0.615391i \(-0.211002\pi\)
0.788222 + 0.615391i \(0.211002\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 956.092i 1.07789i −0.842340 0.538947i \(-0.818822\pi\)
0.842340 0.538947i \(-0.181178\pi\)
\(888\) 0 0
\(889\) −1200.00 + 1175.76i −1.34983 + 1.32256i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −271.529 −0.304064
\(894\) 0 0
\(895\) −774.039 −0.864848
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −720.533 −0.801483
\(900\) 0 0
\(901\) 362.524 0.402358
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1629.17i 1.80019i
\(906\) 0 0
\(907\) 1392.00 1.53473 0.767365 0.641211i \(-0.221568\pi\)
0.767365 + 0.641211i \(0.221568\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −875.398 −0.960920 −0.480460 0.877017i \(-0.659530\pi\)
−0.480460 + 0.877017i \(0.659530\pi\)
\(912\) 0 0
\(913\) 1097.37i 1.20194i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −135.765 138.564i −0.148053 0.151106i
\(918\) 0 0
\(919\) 1738.00i 1.89119i 0.325352 + 0.945593i \(0.394517\pi\)
−0.325352 + 0.945593i \(0.605483\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −803.672 −0.870717
\(924\) 0 0
\(925\) 598.000i 0.646486i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1600.41 −1.72273 −0.861364 0.507988i \(-0.830390\pi\)
−0.861364 + 0.507988i \(0.830390\pi\)
\(930\) 0 0
\(931\) −480.000 9.79796i −0.515575 0.0105241i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 475.176 0.508209
\(936\) 0 0
\(937\) 19.5959i 0.0209135i −0.999945 0.0104567i \(-0.996671\pi\)
0.999945 0.0104567i \(-0.00332854\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 284.056i 0.301866i −0.988544 0.150933i \(-0.951772\pi\)
0.988544 0.150933i \(-0.0482278\pi\)
\(942\) 0 0
\(943\) 2557.27 2.71184
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1788.98i 1.88910i −0.328364 0.944551i \(-0.606497\pi\)
0.328364 0.944551i \(-0.393503\pi\)
\(948\) 0 0
\(949\) 576.000i 0.606955i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.5269i 0.0341311i −0.999854 0.0170655i \(-0.994568\pi\)
0.999854 0.0170655i \(-0.00543239\pi\)
\(954\) 0 0
\(955\) 519.292i 0.543761i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 176.777 173.205i 0.184334 0.180610i
\(960\) 0 0
\(961\) 575.000 0.598335
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2327.88i 2.41231i
\(966\) 0 0
\(967\) 816.000i 0.843847i −0.906631 0.421923i \(-0.861355\pi\)
0.906631 0.421923i \(-0.138645\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1163.94 −1.19870 −0.599350 0.800487i \(-0.704574\pi\)
−0.599350 + 0.800487i \(0.704574\pi\)
\(972\) 0 0
\(973\) −97.9796 + 96.0000i −0.100698 + 0.0986639i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1424.11i 1.45764i 0.684706 + 0.728819i \(0.259931\pi\)
−0.684706 + 0.728819i \(0.740069\pi\)
\(978\) 0 0
\(979\) 1440.30i 1.47120i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 900.666i 0.916243i −0.888890 0.458121i \(-0.848523\pi\)
0.888890 0.458121i \(-0.151477\pi\)
\(984\) 0 0
\(985\) 1303.13i 1.32297i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1968.59 −1.99048
\(990\) 0 0
\(991\) 1306.00i 1.31786i −0.752204 0.658930i \(-0.771009\pi\)
0.752204 0.658930i \(-0.228991\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 610.940i 0.614010i
\(996\) 0 0
\(997\) −107.778 −0.108102 −0.0540509 0.998538i \(-0.517213\pi\)
−0.0540509 + 0.998538i \(0.517213\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.e.a.1007.1 8
3.2 odd 2 inner 2016.3.e.a.1007.5 8
4.3 odd 2 504.3.e.a.251.5 yes 8
7.6 odd 2 inner 2016.3.e.a.1007.7 8
8.3 odd 2 inner 2016.3.e.a.1007.8 8
8.5 even 2 504.3.e.a.251.2 yes 8
12.11 even 2 504.3.e.a.251.4 yes 8
21.20 even 2 inner 2016.3.e.a.1007.3 8
24.5 odd 2 504.3.e.a.251.7 yes 8
24.11 even 2 inner 2016.3.e.a.1007.4 8
28.27 even 2 504.3.e.a.251.6 yes 8
56.13 odd 2 504.3.e.a.251.1 8
56.27 even 2 inner 2016.3.e.a.1007.2 8
84.83 odd 2 504.3.e.a.251.3 yes 8
168.83 odd 2 inner 2016.3.e.a.1007.6 8
168.125 even 2 504.3.e.a.251.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.a.251.1 8 56.13 odd 2
504.3.e.a.251.2 yes 8 8.5 even 2
504.3.e.a.251.3 yes 8 84.83 odd 2
504.3.e.a.251.4 yes 8 12.11 even 2
504.3.e.a.251.5 yes 8 4.3 odd 2
504.3.e.a.251.6 yes 8 28.27 even 2
504.3.e.a.251.7 yes 8 24.5 odd 2
504.3.e.a.251.8 yes 8 168.125 even 2
2016.3.e.a.1007.1 8 1.1 even 1 trivial
2016.3.e.a.1007.2 8 56.27 even 2 inner
2016.3.e.a.1007.3 8 21.20 even 2 inner
2016.3.e.a.1007.4 8 24.11 even 2 inner
2016.3.e.a.1007.5 8 3.2 odd 2 inner
2016.3.e.a.1007.6 8 168.83 odd 2 inner
2016.3.e.a.1007.7 8 7.6 odd 2 inner
2016.3.e.a.1007.8 8 8.3 odd 2 inner