Properties

Label 504.3.by.a.73.2
Level $504$
Weight $3$
Character 504.73
Analytic conductor $13.733$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(73,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.73"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.by (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.126303473664.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 2x^{5} + 92x^{4} + 14x^{3} - 441x^{2} - 686x + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.2
Root \(2.18070 - 1.49818i\) of defining polynomial
Character \(\chi\) \(=\) 504.73
Dual form 504.3.by.a.145.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.425150 - 0.245461i) q^{5} +(-6.25375 + 3.14494i) q^{7} +(5.17890 - 8.97011i) q^{11} +8.96825i q^{13} +(-0.259406 - 0.149768i) q^{17} +(-24.4164 + 14.0968i) q^{19} +(-2.82843 - 4.89898i) q^{23} +(-12.3795 + 21.4419i) q^{25} -25.4340 q^{29} +(-39.5821 - 22.8527i) q^{31} +(-1.88682 + 2.87212i) q^{35} +(5.17174 + 8.95772i) q^{37} +47.6299i q^{41} +6.83830 q^{43} +(-56.4531 + 32.5932i) q^{47} +(29.2187 - 39.3353i) q^{49} +(8.95008 - 15.5020i) q^{53} -5.08486i q^{55} +(42.0210 + 24.2608i) q^{59} +(-30.0000 + 17.3205i) q^{61} +(2.20135 + 3.81285i) q^{65} +(-40.5985 + 70.3186i) q^{67} -133.927 q^{71} +(-5.51407 - 3.18355i) q^{73} +(-4.17706 + 72.3841i) q^{77} +(-26.5241 - 45.9410i) q^{79} -116.065i q^{83} -0.147049 q^{85} +(27.1948 - 15.7009i) q^{89} +(-28.2046 - 56.0852i) q^{91} +(-6.92041 + 11.9865i) q^{95} +54.6836i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} - 4 q^{7} - 14 q^{11} - 12 q^{17} + 78 q^{19} - 6 q^{25} + 4 q^{29} - 24 q^{31} + 156 q^{35} + 50 q^{37} - 20 q^{43} - 12 q^{47} + 220 q^{49} + 50 q^{53} + 186 q^{59} - 240 q^{61} + 148 q^{65}+ \cdots - 144 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.425150 0.245461i 0.0850300 0.0490921i −0.456882 0.889527i \(-0.651034\pi\)
0.541912 + 0.840435i \(0.317701\pi\)
\(6\) 0 0
\(7\) −6.25375 + 3.14494i −0.893393 + 0.449277i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.17890 8.97011i 0.470809 0.815465i −0.528634 0.848850i \(-0.677295\pi\)
0.999443 + 0.0333851i \(0.0106288\pi\)
\(12\) 0 0
\(13\) 8.96825i 0.689865i 0.938627 + 0.344933i \(0.112098\pi\)
−0.938627 + 0.344933i \(0.887902\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.259406 0.149768i −0.0152592 0.00880990i 0.492351 0.870397i \(-0.336138\pi\)
−0.507610 + 0.861587i \(0.669471\pi\)
\(18\) 0 0
\(19\) −24.4164 + 14.0968i −1.28507 + 0.741936i −0.977771 0.209676i \(-0.932759\pi\)
−0.307301 + 0.951612i \(0.599426\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.82843 4.89898i −0.122975 0.212999i 0.797965 0.602704i \(-0.205910\pi\)
−0.920940 + 0.389705i \(0.872577\pi\)
\(24\) 0 0
\(25\) −12.3795 + 21.4419i −0.495180 + 0.857677i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −25.4340 −0.877033 −0.438517 0.898723i \(-0.644496\pi\)
−0.438517 + 0.898723i \(0.644496\pi\)
\(30\) 0 0
\(31\) −39.5821 22.8527i −1.27684 0.737185i −0.300576 0.953758i \(-0.597179\pi\)
−0.976266 + 0.216573i \(0.930512\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.88682 + 2.87212i −0.0539092 + 0.0820606i
\(36\) 0 0
\(37\) 5.17174 + 8.95772i 0.139777 + 0.242101i 0.927412 0.374041i \(-0.122028\pi\)
−0.787635 + 0.616142i \(0.788695\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 47.6299i 1.16171i 0.814009 + 0.580853i \(0.197281\pi\)
−0.814009 + 0.580853i \(0.802719\pi\)
\(42\) 0 0
\(43\) 6.83830 0.159030 0.0795151 0.996834i \(-0.474663\pi\)
0.0795151 + 0.996834i \(0.474663\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −56.4531 + 32.5932i −1.20113 + 0.693472i −0.960806 0.277221i \(-0.910587\pi\)
−0.240323 + 0.970693i \(0.577253\pi\)
\(48\) 0 0
\(49\) 29.2187 39.3353i 0.596300 0.802761i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.95008 15.5020i 0.168870 0.292491i −0.769153 0.639064i \(-0.779322\pi\)
0.938023 + 0.346574i \(0.112655\pi\)
\(54\) 0 0
\(55\) 5.08486i 0.0924520i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 42.0210 + 24.2608i 0.712220 + 0.411200i 0.811882 0.583821i \(-0.198443\pi\)
−0.0996628 + 0.995021i \(0.531776\pi\)
\(60\) 0 0
\(61\) −30.0000 + 17.3205i −0.491803 + 0.283943i −0.725322 0.688409i \(-0.758309\pi\)
0.233519 + 0.972352i \(0.424976\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.20135 + 3.81285i 0.0338669 + 0.0586593i
\(66\) 0 0
\(67\) −40.5985 + 70.3186i −0.605948 + 1.04953i 0.385953 + 0.922518i \(0.373873\pi\)
−0.991901 + 0.127014i \(0.959461\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −133.927 −1.88630 −0.943150 0.332366i \(-0.892153\pi\)
−0.943150 + 0.332366i \(0.892153\pi\)
\(72\) 0 0
\(73\) −5.51407 3.18355i −0.0755352 0.0436103i 0.461757 0.887007i \(-0.347219\pi\)
−0.537292 + 0.843396i \(0.680553\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.17706 + 72.3841i −0.0542475 + 0.940054i
\(78\) 0 0
\(79\) −26.5241 45.9410i −0.335747 0.581532i 0.647881 0.761742i \(-0.275656\pi\)
−0.983628 + 0.180210i \(0.942322\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 116.065i 1.39837i −0.714940 0.699186i \(-0.753546\pi\)
0.714940 0.699186i \(-0.246454\pi\)
\(84\) 0 0
\(85\) −0.147049 −0.00172999
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 27.1948 15.7009i 0.305560 0.176415i −0.339378 0.940650i \(-0.610217\pi\)
0.644938 + 0.764235i \(0.276883\pi\)
\(90\) 0 0
\(91\) −28.2046 56.0852i −0.309941 0.616320i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.92041 + 11.9865i −0.0728464 + 0.126174i
\(96\) 0 0
\(97\) 54.6836i 0.563749i 0.959451 + 0.281874i \(0.0909562\pi\)
−0.959451 + 0.281874i \(0.909044\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 129.836 + 74.9610i 1.28551 + 0.742188i 0.977850 0.209309i \(-0.0671214\pi\)
0.307658 + 0.951497i \(0.400455\pi\)
\(102\) 0 0
\(103\) 39.3881 22.7407i 0.382409 0.220784i −0.296457 0.955046i \(-0.595805\pi\)
0.678866 + 0.734262i \(0.262472\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −93.8988 162.637i −0.877559 1.51998i −0.854012 0.520254i \(-0.825837\pi\)
−0.0235469 0.999723i \(-0.507496\pi\)
\(108\) 0 0
\(109\) −72.6347 + 125.807i −0.666373 + 1.15419i 0.312538 + 0.949905i \(0.398821\pi\)
−0.978911 + 0.204287i \(0.934512\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 198.397 1.75572 0.877862 0.478913i \(-0.158969\pi\)
0.877862 + 0.478913i \(0.158969\pi\)
\(114\) 0 0
\(115\) −2.40501 1.38853i −0.0209131 0.0120742i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.09327 + 0.120796i 0.0175905 + 0.00101509i
\(120\) 0 0
\(121\) 6.85803 + 11.8785i 0.0566780 + 0.0981691i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.4277i 0.195422i
\(126\) 0 0
\(127\) 231.421 1.82221 0.911107 0.412170i \(-0.135229\pi\)
0.911107 + 0.412170i \(0.135229\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.8508 + 10.8835i −0.143899 + 0.0830802i −0.570221 0.821491i \(-0.693142\pi\)
0.426322 + 0.904572i \(0.359809\pi\)
\(132\) 0 0
\(133\) 108.360 164.946i 0.814738 1.24019i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 120.880 209.371i 0.882339 1.52826i 0.0336062 0.999435i \(-0.489301\pi\)
0.848733 0.528821i \(-0.177366\pi\)
\(138\) 0 0
\(139\) 186.378i 1.34085i 0.741978 + 0.670424i \(0.233888\pi\)
−0.741978 + 0.670424i \(0.766112\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 80.4462 + 46.4456i 0.562561 + 0.324795i
\(144\) 0 0
\(145\) −10.8133 + 6.24304i −0.0745742 + 0.0430554i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −31.8090 55.0948i −0.213483 0.369764i 0.739319 0.673355i \(-0.235148\pi\)
−0.952802 + 0.303591i \(0.901814\pi\)
\(150\) 0 0
\(151\) 39.6384 68.6557i 0.262506 0.454673i −0.704401 0.709802i \(-0.748784\pi\)
0.966907 + 0.255129i \(0.0821178\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −22.4378 −0.144760
\(156\) 0 0
\(157\) 81.9060 + 47.2884i 0.521694 + 0.301200i 0.737628 0.675208i \(-0.235946\pi\)
−0.215933 + 0.976408i \(0.569279\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 33.0953 + 21.7418i 0.205561 + 0.135042i
\(162\) 0 0
\(163\) −86.7846 150.315i −0.532421 0.922180i −0.999283 0.0378503i \(-0.987949\pi\)
0.466862 0.884330i \(-0.345384\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 63.2343i 0.378649i −0.981915 0.189324i \(-0.939370\pi\)
0.981915 0.189324i \(-0.0606298\pi\)
\(168\) 0 0
\(169\) 88.5705 0.524086
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −190.268 + 109.851i −1.09981 + 0.634977i −0.936172 0.351543i \(-0.885657\pi\)
−0.163641 + 0.986520i \(0.552324\pi\)
\(174\) 0 0
\(175\) 9.98473 173.025i 0.0570556 0.988715i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −37.5698 + 65.0728i −0.209887 + 0.363535i −0.951679 0.307095i \(-0.900643\pi\)
0.741792 + 0.670630i \(0.233976\pi\)
\(180\) 0 0
\(181\) 188.584i 1.04190i −0.853587 0.520950i \(-0.825578\pi\)
0.853587 0.520950i \(-0.174422\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.39753 + 2.53892i 0.0237705 + 0.0137239i
\(186\) 0 0
\(187\) −2.68688 + 1.55127i −0.0143683 + 0.00829556i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 106.725 + 184.853i 0.558770 + 0.967818i 0.997599 + 0.0692478i \(0.0220599\pi\)
−0.438829 + 0.898570i \(0.644607\pi\)
\(192\) 0 0
\(193\) 129.565 224.413i 0.671320 1.16276i −0.306211 0.951964i \(-0.599061\pi\)
0.977530 0.210796i \(-0.0676055\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −174.822 −0.887424 −0.443712 0.896170i \(-0.646339\pi\)
−0.443712 + 0.896170i \(0.646339\pi\)
\(198\) 0 0
\(199\) 118.111 + 68.1912i 0.593521 + 0.342669i 0.766488 0.642258i \(-0.222002\pi\)
−0.172968 + 0.984928i \(0.555336\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 159.058 79.9883i 0.783535 0.394031i
\(204\) 0 0
\(205\) 11.6913 + 20.2499i 0.0570306 + 0.0987798i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 292.023i 1.39724i
\(210\) 0 0
\(211\) 78.7551 0.373247 0.186623 0.982432i \(-0.440246\pi\)
0.186623 + 0.982432i \(0.440246\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.90730 1.67853i 0.0135223 0.00780713i
\(216\) 0 0
\(217\) 319.407 + 18.4320i 1.47192 + 0.0849400i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.34316 2.32642i 0.00607764 0.0105268i
\(222\) 0 0
\(223\) 13.4235i 0.0601952i 0.999547 + 0.0300976i \(0.00958181\pi\)
−0.999547 + 0.0300976i \(0.990418\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 170.282 + 98.3125i 0.750142 + 0.433095i 0.825745 0.564043i \(-0.190755\pi\)
−0.0756031 + 0.997138i \(0.524088\pi\)
\(228\) 0 0
\(229\) −175.428 + 101.283i −0.766062 + 0.442286i −0.831468 0.555573i \(-0.812499\pi\)
0.0654062 + 0.997859i \(0.479166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −190.078 329.224i −0.815783 1.41298i −0.908764 0.417310i \(-0.862973\pi\)
0.0929805 0.995668i \(-0.470361\pi\)
\(234\) 0 0
\(235\) −16.0007 + 27.7140i −0.0680880 + 0.117932i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 85.8505 0.359207 0.179604 0.983739i \(-0.442518\pi\)
0.179604 + 0.983739i \(0.442518\pi\)
\(240\) 0 0
\(241\) 128.636 + 74.2679i 0.533758 + 0.308165i 0.742546 0.669796i \(-0.233618\pi\)
−0.208787 + 0.977961i \(0.566952\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.76708 23.8955i 0.0112942 0.0975325i
\(246\) 0 0
\(247\) −126.424 218.972i −0.511836 0.886526i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 149.761i 0.596659i −0.954463 0.298329i \(-0.903571\pi\)
0.954463 0.298329i \(-0.0964294\pi\)
\(252\) 0 0
\(253\) −58.5925 −0.231591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 61.7360 35.6433i 0.240218 0.138690i −0.375059 0.927001i \(-0.622378\pi\)
0.615277 + 0.788311i \(0.289044\pi\)
\(258\) 0 0
\(259\) −60.5143 39.7545i −0.233646 0.153492i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −29.6583 + 51.3696i −0.112769 + 0.195322i −0.916886 0.399150i \(-0.869305\pi\)
0.804117 + 0.594472i \(0.202639\pi\)
\(264\) 0 0
\(265\) 8.78757i 0.0331606i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −430.588 248.600i −1.60070 0.924165i −0.991347 0.131266i \(-0.958096\pi\)
−0.609353 0.792899i \(-0.708571\pi\)
\(270\) 0 0
\(271\) −435.450 + 251.407i −1.60683 + 0.927702i −0.616753 + 0.787157i \(0.711552\pi\)
−0.990074 + 0.140546i \(0.955114\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 128.224 + 222.091i 0.466270 + 0.807604i
\(276\) 0 0
\(277\) −185.233 + 320.833i −0.668712 + 1.15824i 0.309553 + 0.950882i \(0.399821\pi\)
−0.978265 + 0.207360i \(0.933513\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 288.212 1.02566 0.512832 0.858489i \(-0.328596\pi\)
0.512832 + 0.858489i \(0.328596\pi\)
\(282\) 0 0
\(283\) 305.915 + 176.620i 1.08097 + 0.624099i 0.931158 0.364616i \(-0.118800\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −149.793 297.865i −0.521927 1.03786i
\(288\) 0 0
\(289\) −144.455 250.204i −0.499845 0.865757i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 367.107i 1.25292i 0.779452 + 0.626462i \(0.215498\pi\)
−0.779452 + 0.626462i \(0.784502\pi\)
\(294\) 0 0
\(295\) 23.8203 0.0807467
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 43.9353 25.3660i 0.146941 0.0848362i
\(300\) 0 0
\(301\) −42.7650 + 21.5060i −0.142076 + 0.0714486i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.50300 + 14.7276i −0.0278787 + 0.0482873i
\(306\) 0 0
\(307\) 369.042i 1.20209i 0.799214 + 0.601046i \(0.205249\pi\)
−0.799214 + 0.601046i \(0.794751\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 358.023 + 206.705i 1.15120 + 0.664645i 0.949179 0.314736i \(-0.101916\pi\)
0.202020 + 0.979381i \(0.435249\pi\)
\(312\) 0 0
\(313\) −414.383 + 239.244i −1.32391 + 0.764359i −0.984350 0.176226i \(-0.943611\pi\)
−0.339559 + 0.940585i \(0.610278\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −172.202 298.263i −0.543224 0.940892i −0.998716 0.0506524i \(-0.983870\pi\)
0.455492 0.890240i \(-0.349463\pi\)
\(318\) 0 0
\(319\) −131.720 + 228.146i −0.412915 + 0.715190i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.44501 0.0261455
\(324\) 0 0
\(325\) −192.296 111.022i −0.591681 0.341607i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 250.540 381.371i 0.761519 1.15918i
\(330\) 0 0
\(331\) −254.688 441.133i −0.769450 1.33273i −0.937861 0.347010i \(-0.887197\pi\)
0.168411 0.985717i \(-0.446136\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 39.8613i 0.118989i
\(336\) 0 0
\(337\) −539.169 −1.59991 −0.799953 0.600062i \(-0.795142\pi\)
−0.799953 + 0.600062i \(0.795142\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −409.983 + 236.704i −1.20230 + 0.694147i
\(342\) 0 0
\(343\) −59.0194 + 337.884i −0.172068 + 0.985085i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −338.796 + 586.813i −0.976359 + 1.69110i −0.300982 + 0.953630i \(0.597314\pi\)
−0.675376 + 0.737473i \(0.736019\pi\)
\(348\) 0 0
\(349\) 380.017i 1.08887i 0.838802 + 0.544437i \(0.183257\pi\)
−0.838802 + 0.544437i \(0.816743\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −365.769 211.177i −1.03617 0.598235i −0.117427 0.993082i \(-0.537464\pi\)
−0.918747 + 0.394846i \(0.870798\pi\)
\(354\) 0 0
\(355\) −56.9392 + 32.8739i −0.160392 + 0.0926025i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −153.041 265.076i −0.426299 0.738372i 0.570242 0.821477i \(-0.306850\pi\)
−0.996541 + 0.0831051i \(0.973516\pi\)
\(360\) 0 0
\(361\) 216.939 375.750i 0.600940 1.04086i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.12574 −0.00856368
\(366\) 0 0
\(367\) 409.023 + 236.149i 1.11450 + 0.643459i 0.939992 0.341196i \(-0.110832\pi\)
0.174512 + 0.984655i \(0.444165\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.21873 + 125.093i −0.0194575 + 0.337178i
\(372\) 0 0
\(373\) −208.308 360.799i −0.558465 0.967291i −0.997625 0.0688814i \(-0.978057\pi\)
0.439159 0.898409i \(-0.355276\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 228.098i 0.605035i
\(378\) 0 0
\(379\) 109.766 0.289621 0.144811 0.989459i \(-0.453743\pi\)
0.144811 + 0.989459i \(0.453743\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 231.360 133.576i 0.604073 0.348762i −0.166569 0.986030i \(-0.553269\pi\)
0.770642 + 0.637268i \(0.219935\pi\)
\(384\) 0 0
\(385\) 15.9916 + 31.7994i 0.0415366 + 0.0825959i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −49.6383 + 85.9761i −0.127605 + 0.221018i −0.922748 0.385403i \(-0.874062\pi\)
0.795143 + 0.606422i \(0.207396\pi\)
\(390\) 0 0
\(391\) 1.69443i 0.00433359i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.5534 13.0212i −0.0570972 0.0329651i
\(396\) 0 0
\(397\) −303.640 + 175.307i −0.764837 + 0.441579i −0.831030 0.556228i \(-0.812248\pi\)
0.0661929 + 0.997807i \(0.478915\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 336.391 + 582.647i 0.838881 + 1.45299i 0.890831 + 0.454335i \(0.150123\pi\)
−0.0519493 + 0.998650i \(0.516543\pi\)
\(402\) 0 0
\(403\) 204.949 354.982i 0.508558 0.880849i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 107.136 0.263233
\(408\) 0 0
\(409\) 459.393 + 265.231i 1.12321 + 0.648486i 0.942219 0.334999i \(-0.108736\pi\)
0.180992 + 0.983485i \(0.442069\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −339.087 19.5677i −0.821034 0.0473793i
\(414\) 0 0
\(415\) −28.4894 49.3450i −0.0686490 0.118904i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 164.046i 0.391517i 0.980652 + 0.195759i \(0.0627169\pi\)
−0.980652 + 0.195759i \(0.937283\pi\)
\(420\) 0 0
\(421\) −278.128 −0.660637 −0.330319 0.943870i \(-0.607156\pi\)
−0.330319 + 0.943870i \(0.607156\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.42264 3.70811i 0.0151121 0.00872497i
\(426\) 0 0
\(427\) 133.140 202.666i 0.311804 0.474628i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −347.432 + 601.770i −0.806107 + 1.39622i 0.109435 + 0.993994i \(0.465096\pi\)
−0.915541 + 0.402224i \(0.868237\pi\)
\(432\) 0 0
\(433\) 324.716i 0.749921i −0.927041 0.374960i \(-0.877656\pi\)
0.927041 0.374960i \(-0.122344\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 138.120 + 79.7435i 0.316064 + 0.182479i
\(438\) 0 0
\(439\) 8.14985 4.70532i 0.0185646 0.0107183i −0.490689 0.871335i \(-0.663255\pi\)
0.509254 + 0.860617i \(0.329922\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −164.820 285.477i −0.372055 0.644418i 0.617827 0.786314i \(-0.288013\pi\)
−0.989882 + 0.141896i \(0.954680\pi\)
\(444\) 0 0
\(445\) 7.70792 13.3505i 0.0173212 0.0300011i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 127.813 0.284662 0.142331 0.989819i \(-0.454540\pi\)
0.142331 + 0.989819i \(0.454540\pi\)
\(450\) 0 0
\(451\) 427.246 + 246.670i 0.947330 + 0.546941i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −25.7579 16.9215i −0.0566107 0.0371901i
\(456\) 0 0
\(457\) 43.0590 + 74.5804i 0.0942210 + 0.163196i 0.909283 0.416178i \(-0.136631\pi\)
−0.815062 + 0.579373i \(0.803297\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 397.368i 0.861970i 0.902359 + 0.430985i \(0.141834\pi\)
−0.902359 + 0.430985i \(0.858166\pi\)
\(462\) 0 0
\(463\) −190.911 −0.412335 −0.206167 0.978517i \(-0.566099\pi\)
−0.206167 + 0.978517i \(0.566099\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −649.505 + 374.992i −1.39080 + 0.802981i −0.993404 0.114665i \(-0.963420\pi\)
−0.397399 + 0.917646i \(0.630087\pi\)
\(468\) 0 0
\(469\) 32.7449 567.435i 0.0698185 1.20988i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.4149 61.3403i 0.0748729 0.129684i
\(474\) 0 0
\(475\) 698.045i 1.46957i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −146.651 84.6693i −0.306162 0.176763i 0.339046 0.940770i \(-0.389896\pi\)
−0.645208 + 0.764007i \(0.723229\pi\)
\(480\) 0 0
\(481\) −80.3351 + 46.3815i −0.167017 + 0.0964272i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.4227 + 23.2488i 0.0276756 + 0.0479356i
\(486\) 0 0
\(487\) −181.494 + 314.356i −0.372677 + 0.645496i −0.989976 0.141233i \(-0.954893\pi\)
0.617299 + 0.786728i \(0.288227\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 749.523 1.52652 0.763262 0.646089i \(-0.223597\pi\)
0.763262 + 0.646089i \(0.223597\pi\)
\(492\) 0 0
\(493\) 6.59773 + 3.80920i 0.0133828 + 0.00772657i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 837.548 421.193i 1.68521 0.847472i
\(498\) 0 0
\(499\) 72.9754 + 126.397i 0.146243 + 0.253301i 0.929836 0.367974i \(-0.119948\pi\)
−0.783593 + 0.621275i \(0.786615\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 820.446i 1.63111i −0.578683 0.815553i \(-0.696433\pi\)
0.578683 0.815553i \(-0.303567\pi\)
\(504\) 0 0
\(505\) 73.5999 0.145742
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −148.845 + 85.9359i −0.292427 + 0.168833i −0.639036 0.769177i \(-0.720666\pi\)
0.346609 + 0.938010i \(0.387333\pi\)
\(510\) 0 0
\(511\) 44.4957 + 2.56770i 0.0870757 + 0.00502486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.1639 19.3364i 0.0216775 0.0375465i
\(516\) 0 0
\(517\) 675.187i 1.30597i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −499.992 288.671i −0.959678 0.554070i −0.0636038 0.997975i \(-0.520259\pi\)
−0.896074 + 0.443905i \(0.853593\pi\)
\(522\) 0 0
\(523\) −67.2420 + 38.8222i −0.128570 + 0.0742298i −0.562905 0.826521i \(-0.690316\pi\)
0.434336 + 0.900751i \(0.356983\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.84523 + 11.8563i 0.0129890 + 0.0224977i
\(528\) 0 0
\(529\) 248.500 430.415i 0.469754 0.813638i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −427.157 −0.801420
\(534\) 0 0
\(535\) −79.8422 46.0969i −0.149238 0.0861624i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −201.521 465.809i −0.373880 0.864209i
\(540\) 0 0
\(541\) 36.9433 + 63.9877i 0.0682871 + 0.118277i 0.898147 0.439695i \(-0.144913\pi\)
−0.829860 + 0.557971i \(0.811580\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 71.3158i 0.130855i
\(546\) 0 0
\(547\) −47.2310 −0.0863456 −0.0431728 0.999068i \(-0.513747\pi\)
−0.0431728 + 0.999068i \(0.513747\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 621.005 358.537i 1.12705 0.650703i
\(552\) 0 0
\(553\) 310.356 + 203.887i 0.561223 + 0.368692i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 466.647 808.257i 0.837787 1.45109i −0.0539545 0.998543i \(-0.517183\pi\)
0.891741 0.452546i \(-0.149484\pi\)
\(558\) 0 0
\(559\) 61.3276i 0.109709i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 669.452 + 386.509i 1.18908 + 0.686516i 0.958098 0.286442i \(-0.0924725\pi\)
0.230983 + 0.972958i \(0.425806\pi\)
\(564\) 0 0
\(565\) 84.3484 48.6986i 0.149289 0.0861922i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 119.707 + 207.339i 0.210382 + 0.364392i 0.951834 0.306613i \(-0.0991959\pi\)
−0.741452 + 0.671006i \(0.765863\pi\)
\(570\) 0 0
\(571\) −78.9427 + 136.733i −0.138253 + 0.239462i −0.926836 0.375467i \(-0.877482\pi\)
0.788582 + 0.614929i \(0.210816\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 140.058 0.243579
\(576\) 0 0
\(577\) 428.402 + 247.338i 0.742465 + 0.428663i 0.822965 0.568092i \(-0.192318\pi\)
−0.0804997 + 0.996755i \(0.525652\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 365.017 + 725.841i 0.628257 + 1.24930i
\(582\) 0 0
\(583\) −92.7031 160.567i −0.159011 0.275414i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 185.278i 0.315635i 0.987468 + 0.157818i \(0.0504458\pi\)
−0.987468 + 0.157818i \(0.949554\pi\)
\(588\) 0 0
\(589\) 1288.60 2.18778
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 371.431 214.446i 0.626359 0.361628i −0.152982 0.988229i \(-0.548888\pi\)
0.779340 + 0.626601i \(0.215554\pi\)
\(594\) 0 0
\(595\) 0.919606 0.462459i 0.00154556 0.000777243i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 322.911 559.299i 0.539084 0.933721i −0.459869 0.887987i \(-0.652104\pi\)
0.998954 0.0457347i \(-0.0145629\pi\)
\(600\) 0 0
\(601\) 872.204i 1.45125i 0.688088 + 0.725627i \(0.258450\pi\)
−0.688088 + 0.725627i \(0.741550\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.83139 + 3.36675i 0.00963866 + 0.00556488i
\(606\) 0 0
\(607\) 203.992 117.775i 0.336065 0.194027i −0.322465 0.946581i \(-0.604512\pi\)
0.658531 + 0.752554i \(0.271178\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −292.304 506.285i −0.478402 0.828617i
\(612\) 0 0
\(613\) 333.951 578.421i 0.544782 0.943590i −0.453838 0.891084i \(-0.649946\pi\)
0.998621 0.0525064i \(-0.0167210\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 257.921 0.418025 0.209012 0.977913i \(-0.432975\pi\)
0.209012 + 0.977913i \(0.432975\pi\)
\(618\) 0 0
\(619\) −200.464 115.738i −0.323852 0.186976i 0.329257 0.944241i \(-0.393202\pi\)
−0.653108 + 0.757265i \(0.726535\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −120.691 + 183.716i −0.193726 + 0.294889i
\(624\) 0 0
\(625\) −303.491 525.663i −0.485586 0.841060i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.09825i 0.00492568i
\(630\) 0 0
\(631\) −146.992 −0.232951 −0.116476 0.993194i \(-0.537160\pi\)
−0.116476 + 0.993194i \(0.537160\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 98.3887 56.8047i 0.154943 0.0894563i
\(636\) 0 0
\(637\) 352.769 + 262.041i 0.553797 + 0.411367i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.09951 + 5.36851i −0.00483543 + 0.00837521i −0.868433 0.495807i \(-0.834873\pi\)
0.863598 + 0.504182i \(0.168206\pi\)
\(642\) 0 0
\(643\) 436.122i 0.678261i −0.940739 0.339130i \(-0.889867\pi\)
0.940739 0.339130i \(-0.110133\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 77.8134 + 44.9256i 0.120268 + 0.0694368i 0.558927 0.829217i \(-0.311213\pi\)
−0.438659 + 0.898654i \(0.644546\pi\)
\(648\) 0 0
\(649\) 435.244 251.288i 0.670639 0.387193i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.9180 44.8913i −0.0396907 0.0687462i 0.845498 0.533979i \(-0.179304\pi\)
−0.885188 + 0.465233i \(0.845971\pi\)
\(654\) 0 0
\(655\) −5.34294 + 9.25425i −0.00815716 + 0.0141286i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −212.500 −0.322459 −0.161229 0.986917i \(-0.551546\pi\)
−0.161229 + 0.986917i \(0.551546\pi\)
\(660\) 0 0
\(661\) −1000.48 577.625i −1.51358 0.873865i −0.999874 0.0158974i \(-0.994939\pi\)
−0.513704 0.857967i \(-0.671727\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.58169 96.7249i 0.00839351 0.145451i
\(666\) 0 0
\(667\) 71.9381 + 124.601i 0.107853 + 0.186807i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 358.805i 0.534731i
\(672\) 0 0
\(673\) 563.787 0.837722 0.418861 0.908050i \(-0.362429\pi\)
0.418861 + 0.908050i \(0.362429\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −417.611 + 241.108i −0.616855 + 0.356141i −0.775643 0.631171i \(-0.782574\pi\)
0.158789 + 0.987313i \(0.449241\pi\)
\(678\) 0 0
\(679\) −171.977 341.978i −0.253279 0.503649i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.2784 + 52.4437i −0.0443315 + 0.0767844i −0.887340 0.461116i \(-0.847449\pi\)
0.843008 + 0.537901i \(0.180782\pi\)
\(684\) 0 0
\(685\) 118.686i 0.173264i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 139.026 + 80.2666i 0.201779 + 0.116497i
\(690\) 0 0
\(691\) 97.0468 56.0300i 0.140444 0.0810853i −0.428132 0.903716i \(-0.640828\pi\)
0.568576 + 0.822631i \(0.307495\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 45.7484 + 79.2386i 0.0658251 + 0.114012i
\(696\) 0 0
\(697\) 7.13345 12.3555i 0.0102345 0.0177267i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1102.36 −1.57255 −0.786274 0.617878i \(-0.787992\pi\)
−0.786274 + 0.617878i \(0.787992\pi\)
\(702\) 0 0
\(703\) −252.550 145.810i −0.359247 0.207411i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1047.71 60.4601i −1.48191 0.0855164i
\(708\) 0 0
\(709\) 337.594 + 584.730i 0.476155 + 0.824725i 0.999627 0.0273180i \(-0.00869667\pi\)
−0.523471 + 0.852043i \(0.675363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 258.549i 0.362622i
\(714\) 0 0
\(715\) 45.6023 0.0637794
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 194.756 112.443i 0.270871 0.156387i −0.358412 0.933563i \(-0.616682\pi\)
0.629283 + 0.777176i \(0.283348\pi\)
\(720\) 0 0
\(721\) −174.805 + 266.088i −0.242448 + 0.369054i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 314.860 545.353i 0.434289 0.752211i
\(726\) 0 0
\(727\) 1063.86i 1.46336i −0.681648 0.731680i \(-0.738736\pi\)
0.681648 0.731680i \(-0.261264\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.77390 1.02416i −0.00242667 0.00140104i
\(732\) 0 0
\(733\) 291.563 168.334i 0.397767 0.229651i −0.287753 0.957705i \(-0.592908\pi\)
0.685520 + 0.728054i \(0.259575\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 420.511 + 728.346i 0.570571 + 0.988258i
\(738\) 0 0
\(739\) −602.668 + 1043.85i −0.815519 + 1.41252i 0.0934364 + 0.995625i \(0.470215\pi\)
−0.908955 + 0.416894i \(0.863119\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −521.516 −0.701906 −0.350953 0.936393i \(-0.614142\pi\)
−0.350953 + 0.936393i \(0.614142\pi\)
\(744\) 0 0
\(745\) −27.0472 15.6157i −0.0363050 0.0209607i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1098.70 + 721.788i 1.46689 + 0.963669i
\(750\) 0 0
\(751\) 494.756 + 856.942i 0.658796 + 1.14107i 0.980928 + 0.194374i \(0.0622674\pi\)
−0.322131 + 0.946695i \(0.604399\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.9186i 0.0515478i
\(756\) 0 0
\(757\) 265.725 0.351024 0.175512 0.984477i \(-0.443842\pi\)
0.175512 + 0.984477i \(0.443842\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.5450 24.5634i 0.0559067 0.0322778i −0.471786 0.881713i \(-0.656391\pi\)
0.527693 + 0.849435i \(0.323057\pi\)
\(762\) 0 0
\(763\) 58.5838 1015.20i 0.0767808 1.33053i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −217.577 + 376.854i −0.283673 + 0.491336i
\(768\) 0 0
\(769\) 831.567i 1.08136i −0.841228 0.540681i \(-0.818167\pi\)
0.841228 0.540681i \(-0.181833\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1211.82 + 699.646i 1.56769 + 0.905105i 0.996438 + 0.0843281i \(0.0268744\pi\)
0.571249 + 0.820777i \(0.306459\pi\)
\(774\) 0 0
\(775\) 980.013 565.811i 1.26453 0.730079i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −671.429 1162.95i −0.861911 1.49287i
\(780\) 0 0
\(781\) −693.596 + 1201.34i −0.888087 + 1.53821i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 46.4298 0.0591462
\(786\) 0 0
\(787\) 123.205 + 71.1325i 0.156550 + 0.0903843i 0.576229 0.817289i \(-0.304524\pi\)
−0.419678 + 0.907673i \(0.637857\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1240.72 + 623.946i −1.56855 + 0.788806i
\(792\) 0 0
\(793\) −155.335 269.047i −0.195882 0.339278i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 500.787i 0.628340i −0.949367 0.314170i \(-0.898274\pi\)
0.949367 0.314170i \(-0.101726\pi\)
\(798\) 0 0
\(799\) 19.5257 0.0244377
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −57.1136 + 32.9746i −0.0711253 + 0.0410642i
\(804\) 0 0
\(805\) 19.4072 + 1.11993i 0.0241083 + 0.00139121i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −467.439 + 809.627i −0.577798 + 1.00078i 0.417934 + 0.908478i \(0.362754\pi\)
−0.995731 + 0.0922977i \(0.970579\pi\)
\(810\) 0 0
\(811\) 495.665i 0.611178i 0.952164 + 0.305589i \(0.0988533\pi\)
−0.952164 + 0.305589i \(0.901147\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −73.7930 42.6044i −0.0905435 0.0522753i
\(816\) 0 0
\(817\) −166.966 + 96.3981i −0.204365 + 0.117990i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 325.872 + 564.426i 0.396920 + 0.687486i 0.993344 0.115183i \(-0.0367456\pi\)
−0.596424 + 0.802670i \(0.703412\pi\)
\(822\) 0 0
\(823\) 71.9474 124.617i 0.0874209 0.151417i −0.818999 0.573794i \(-0.805471\pi\)
0.906420 + 0.422377i \(0.138804\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −211.134 −0.255302 −0.127651 0.991819i \(-0.540744\pi\)
−0.127651 + 0.991819i \(0.540744\pi\)
\(828\) 0 0
\(829\) −1164.24 672.177i −1.40440 0.810828i −0.409556 0.912285i \(-0.634316\pi\)
−0.994840 + 0.101457i \(0.967650\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.4707 + 5.82779i −0.0161713 + 0.00699614i
\(834\) 0 0
\(835\) −15.5215 26.8841i −0.0185887 0.0321965i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 256.252i 0.305425i −0.988271 0.152713i \(-0.951199\pi\)
0.988271 0.152713i \(-0.0488009\pi\)
\(840\) 0 0
\(841\) −194.113 −0.230812
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.6558 21.7406i 0.0445630 0.0257285i
\(846\) 0 0
\(847\) −80.2455 52.7168i −0.0947408 0.0622395i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 29.2558 50.6725i 0.0343781 0.0595447i
\(852\) 0 0
\(853\) 674.045i 0.790206i 0.918637 + 0.395103i \(0.129291\pi\)
−0.918637 + 0.395103i \(0.870709\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −342.885 197.965i −0.400099 0.230997i 0.286428 0.958102i \(-0.407532\pi\)
−0.686527 + 0.727104i \(0.740866\pi\)
\(858\) 0 0
\(859\) −926.466 + 534.896i −1.07854 + 0.622696i −0.930502 0.366286i \(-0.880629\pi\)
−0.148038 + 0.988982i \(0.547296\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −202.670 351.034i −0.234843 0.406760i 0.724384 0.689397i \(-0.242124\pi\)
−0.959227 + 0.282637i \(0.908791\pi\)
\(864\) 0 0
\(865\) −53.9282 + 93.4064i −0.0623447 + 0.107984i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −549.461 −0.632292
\(870\) 0 0
\(871\) −630.635 364.097i −0.724036 0.418022i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −76.8237 152.765i −0.0877986 0.174588i
\(876\) 0 0
\(877\) 440.516 + 762.996i 0.502299 + 0.870007i 0.999996 + 0.00265646i \(0.000845578\pi\)
−0.497698 + 0.867351i \(0.665821\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 330.169i 0.374767i −0.982287 0.187383i \(-0.939999\pi\)
0.982287 0.187383i \(-0.0600007\pi\)
\(882\) 0 0
\(883\) −813.993 −0.921850 −0.460925 0.887439i \(-0.652482\pi\)
−0.460925 + 0.887439i \(0.652482\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −321.939 + 185.872i −0.362953 + 0.209551i −0.670375 0.742022i \(-0.733867\pi\)
0.307422 + 0.951573i \(0.400534\pi\)
\(888\) 0 0
\(889\) −1447.25 + 727.805i −1.62795 + 0.818679i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 918.919 1591.61i 1.02902 1.78232i
\(894\) 0 0
\(895\) 36.8876i 0.0412152i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1006.73 + 581.236i 1.11983 + 0.646536i
\(900\) 0 0
\(901\) −4.64341 + 2.68088i −0.00515362 + 0.00297545i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −46.2899 80.1765i −0.0511491 0.0885928i
\(906\) 0 0
\(907\) −358.081 + 620.214i −0.394797 + 0.683809i −0.993075 0.117480i \(-0.962518\pi\)
0.598278 + 0.801289i \(0.295852\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −161.244 −0.176997 −0.0884985 0.996076i \(-0.528207\pi\)
−0.0884985 + 0.996076i \(0.528207\pi\)
\(912\) 0 0
\(913\) −1041.12 601.088i −1.14032 0.658366i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 83.6601 127.347i 0.0912324 0.138874i
\(918\) 0 0
\(919\) 575.804 + 997.322i 0.626555 + 1.08523i 0.988238 + 0.152924i \(0.0488690\pi\)
−0.361683 + 0.932301i \(0.617798\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1201.09i 1.30129i
\(924\) 0 0
\(925\) −256.094 −0.276859
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −784.559 + 452.965i −0.844519 + 0.487583i −0.858798 0.512315i \(-0.828788\pi\)
0.0142785 + 0.999898i \(0.495455\pi\)
\(930\) 0 0
\(931\) −158.913 + 1372.32i −0.170691 + 1.47402i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.761551 + 1.31904i −0.000814493 + 0.00141074i
\(936\) 0 0
\(937\) 1077.46i 1.14991i 0.818186 + 0.574954i \(0.194980\pi\)
−0.818186 + 0.574954i \(0.805020\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −293.347 169.364i −0.311740 0.179983i 0.335965 0.941874i \(-0.390938\pi\)
−0.647705 + 0.761891i \(0.724271\pi\)
\(942\) 0 0
\(943\) 233.338 134.718i 0.247442 0.142861i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 412.641 + 714.714i 0.435735 + 0.754714i 0.997355 0.0726805i \(-0.0231553\pi\)
−0.561621 + 0.827395i \(0.689822\pi\)
\(948\) 0 0
\(949\) 28.5509 49.4515i 0.0300852 0.0521091i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 156.655 0.164381 0.0821905 0.996617i \(-0.473808\pi\)
0.0821905 + 0.996617i \(0.473808\pi\)
\(954\) 0 0
\(955\) 90.7484 + 52.3936i 0.0950245 + 0.0548624i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −97.4966 + 1689.52i −0.101665 + 1.76175i
\(960\) 0 0
\(961\) 563.995 + 976.869i 0.586884 + 1.01651i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 127.212i 0.131826i
\(966\) 0 0
\(967\) −1148.52 −1.18771 −0.593856 0.804572i \(-0.702395\pi\)
−0.593856 + 0.804572i \(0.702395\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1073.94 620.041i 1.10602 0.638559i 0.168222 0.985749i \(-0.446197\pi\)
0.937795 + 0.347190i \(0.112864\pi\)
\(972\) 0 0
\(973\) −586.147 1165.56i −0.602412 1.19790i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 117.611 203.708i 0.120379 0.208503i −0.799538 0.600616i \(-0.794922\pi\)
0.919917 + 0.392112i \(0.128256\pi\)
\(978\) 0 0
\(979\) 325.254i 0.332231i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1298.66 749.780i −1.32112 0.762747i −0.337210 0.941429i \(-0.609483\pi\)
−0.983907 + 0.178682i \(0.942817\pi\)
\(984\) 0 0
\(985\) −74.3258 + 42.9120i −0.0754577 + 0.0435655i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.3416 33.5007i −0.0195568 0.0338733i
\(990\) 0 0
\(991\) −197.226 + 341.606i −0.199017 + 0.344708i −0.948210 0.317644i \(-0.897108\pi\)
0.749193 + 0.662352i \(0.230442\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 66.9530 0.0672894
\(996\) 0 0
\(997\) −885.726 511.374i −0.888391 0.512913i −0.0149751 0.999888i \(-0.504767\pi\)
−0.873416 + 0.486975i \(0.838100\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.by.a.73.2 8
3.2 odd 2 168.3.z.a.73.3 8
4.3 odd 2 1008.3.cg.n.577.2 8
7.3 odd 6 3528.3.f.f.2449.4 8
7.4 even 3 3528.3.f.f.2449.5 8
7.5 odd 6 inner 504.3.by.a.145.2 8
12.11 even 2 336.3.bh.h.241.3 8
21.2 odd 6 1176.3.z.d.313.2 8
21.5 even 6 168.3.z.a.145.3 yes 8
21.11 odd 6 1176.3.f.a.97.7 8
21.17 even 6 1176.3.f.a.97.2 8
21.20 even 2 1176.3.z.d.913.2 8
28.19 even 6 1008.3.cg.n.145.2 8
84.11 even 6 2352.3.f.k.97.3 8
84.47 odd 6 336.3.bh.h.145.3 8
84.59 odd 6 2352.3.f.k.97.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.z.a.73.3 8 3.2 odd 2
168.3.z.a.145.3 yes 8 21.5 even 6
336.3.bh.h.145.3 8 84.47 odd 6
336.3.bh.h.241.3 8 12.11 even 2
504.3.by.a.73.2 8 1.1 even 1 trivial
504.3.by.a.145.2 8 7.5 odd 6 inner
1008.3.cg.n.145.2 8 28.19 even 6
1008.3.cg.n.577.2 8 4.3 odd 2
1176.3.f.a.97.2 8 21.17 even 6
1176.3.f.a.97.7 8 21.11 odd 6
1176.3.z.d.313.2 8 21.2 odd 6
1176.3.z.d.913.2 8 21.20 even 2
2352.3.f.k.97.3 8 84.11 even 6
2352.3.f.k.97.6 8 84.59 odd 6
3528.3.f.f.2449.4 8 7.3 odd 6
3528.3.f.f.2449.5 8 7.4 even 3