Properties

Label 1008.3.cg.n.145.2
Level $1008$
Weight $3$
Character 1008.145
Analytic conductor $27.466$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(145,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.145"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cg (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-6,0,4,0,0,0,14,0,0,0,0,0,-12,0,-78] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.126303473664.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 2x^{5} + 92x^{4} + 14x^{3} - 441x^{2} - 686x + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.2
Root \(2.18070 + 1.49818i\) of defining polynomial
Character \(\chi\) \(=\) 1008.145
Dual form 1008.3.cg.n.577.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.425150 + 0.245461i) q^{5} +(6.25375 + 3.14494i) q^{7} +(-5.17890 - 8.97011i) q^{11} -8.96825i q^{13} +(-0.259406 + 0.149768i) q^{17} +(24.4164 + 14.0968i) q^{19} +(2.82843 - 4.89898i) q^{23} +(-12.3795 - 21.4419i) q^{25} -25.4340 q^{29} +(39.5821 - 22.8527i) q^{31} +(1.88682 + 2.87212i) q^{35} +(5.17174 - 8.95772i) q^{37} -47.6299i q^{41} -6.83830 q^{43} +(56.4531 + 32.5932i) q^{47} +(29.2187 + 39.3353i) q^{49} +(8.95008 + 15.5020i) q^{53} -5.08486i q^{55} +(-42.0210 + 24.2608i) q^{59} +(-30.0000 - 17.3205i) q^{61} +(2.20135 - 3.81285i) q^{65} +(40.5985 + 70.3186i) q^{67} +133.927 q^{71} +(-5.51407 + 3.18355i) q^{73} +(-4.17706 - 72.3841i) q^{77} +(26.5241 - 45.9410i) q^{79} -116.065i q^{83} -0.147049 q^{85} +(27.1948 + 15.7009i) q^{89} +(28.2046 - 56.0852i) q^{91} +(6.92041 + 11.9865i) q^{95} -54.6836i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} + 4 q^{7} + 14 q^{11} - 12 q^{17} - 78 q^{19} - 6 q^{25} + 4 q^{29} + 24 q^{31} - 156 q^{35} + 50 q^{37} + 20 q^{43} + 12 q^{47} + 220 q^{49} + 50 q^{53} - 186 q^{59} - 240 q^{61} + 148 q^{65}+ \cdots + 144 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.425150 + 0.245461i 0.0850300 + 0.0490921i 0.541912 0.840435i \(-0.317701\pi\)
−0.456882 + 0.889527i \(0.651034\pi\)
\(6\) 0 0
\(7\) 6.25375 + 3.14494i 0.893393 + 0.449277i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.17890 8.97011i −0.470809 0.815465i 0.528634 0.848850i \(-0.322705\pi\)
−0.999443 + 0.0333851i \(0.989371\pi\)
\(12\) 0 0
\(13\) 8.96825i 0.689865i −0.938627 0.344933i \(-0.887902\pi\)
0.938627 0.344933i \(-0.112098\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.259406 + 0.149768i −0.0152592 + 0.00880990i −0.507610 0.861587i \(-0.669471\pi\)
0.492351 + 0.870397i \(0.336138\pi\)
\(18\) 0 0
\(19\) 24.4164 + 14.0968i 1.28507 + 0.741936i 0.977771 0.209676i \(-0.0672409\pi\)
0.307301 + 0.951612i \(0.400574\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 4.89898i 0.122975 0.212999i −0.797965 0.602704i \(-0.794090\pi\)
0.920940 + 0.389705i \(0.127423\pi\)
\(24\) 0 0
\(25\) −12.3795 21.4419i −0.495180 0.857677i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −25.4340 −0.877033 −0.438517 0.898723i \(-0.644496\pi\)
−0.438517 + 0.898723i \(0.644496\pi\)
\(30\) 0 0
\(31\) 39.5821 22.8527i 1.27684 0.737185i 0.300576 0.953758i \(-0.402821\pi\)
0.976266 + 0.216573i \(0.0694879\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.88682 + 2.87212i 0.0539092 + 0.0820606i
\(36\) 0 0
\(37\) 5.17174 8.95772i 0.139777 0.242101i −0.787635 0.616142i \(-0.788695\pi\)
0.927412 + 0.374041i \(0.122028\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 47.6299i 1.16171i −0.814009 0.580853i \(-0.802719\pi\)
0.814009 0.580853i \(-0.197281\pi\)
\(42\) 0 0
\(43\) −6.83830 −0.159030 −0.0795151 0.996834i \(-0.525337\pi\)
−0.0795151 + 0.996834i \(0.525337\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 56.4531 + 32.5932i 1.20113 + 0.693472i 0.960806 0.277221i \(-0.0894134\pi\)
0.240323 + 0.970693i \(0.422747\pi\)
\(48\) 0 0
\(49\) 29.2187 + 39.3353i 0.596300 + 0.802761i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.95008 + 15.5020i 0.168870 + 0.292491i 0.938023 0.346574i \(-0.112655\pi\)
−0.769153 + 0.639064i \(0.779322\pi\)
\(54\) 0 0
\(55\) 5.08486i 0.0924520i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −42.0210 + 24.2608i −0.712220 + 0.411200i −0.811882 0.583821i \(-0.801557\pi\)
0.0996628 + 0.995021i \(0.468224\pi\)
\(60\) 0 0
\(61\) −30.0000 17.3205i −0.491803 0.283943i 0.233519 0.972352i \(-0.424976\pi\)
−0.725322 + 0.688409i \(0.758309\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.20135 3.81285i 0.0338669 0.0586593i
\(66\) 0 0
\(67\) 40.5985 + 70.3186i 0.605948 + 1.04953i 0.991901 + 0.127014i \(0.0405392\pi\)
−0.385953 + 0.922518i \(0.626127\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 133.927 1.88630 0.943150 0.332366i \(-0.107847\pi\)
0.943150 + 0.332366i \(0.107847\pi\)
\(72\) 0 0
\(73\) −5.51407 + 3.18355i −0.0755352 + 0.0436103i −0.537292 0.843396i \(-0.680553\pi\)
0.461757 + 0.887007i \(0.347219\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.17706 72.3841i −0.0542475 0.940054i
\(78\) 0 0
\(79\) 26.5241 45.9410i 0.335747 0.581532i −0.647881 0.761742i \(-0.724344\pi\)
0.983628 + 0.180210i \(0.0576778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 116.065i 1.39837i −0.714940 0.699186i \(-0.753546\pi\)
0.714940 0.699186i \(-0.246454\pi\)
\(84\) 0 0
\(85\) −0.147049 −0.00172999
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 27.1948 + 15.7009i 0.305560 + 0.176415i 0.644938 0.764235i \(-0.276883\pi\)
−0.339378 + 0.940650i \(0.610217\pi\)
\(90\) 0 0
\(91\) 28.2046 56.0852i 0.309941 0.616320i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.92041 + 11.9865i 0.0728464 + 0.126174i
\(96\) 0 0
\(97\) 54.6836i 0.563749i −0.959451 0.281874i \(-0.909044\pi\)
0.959451 0.281874i \(-0.0909562\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 129.836 74.9610i 1.28551 0.742188i 0.307658 0.951497i \(-0.400455\pi\)
0.977850 + 0.209309i \(0.0671214\pi\)
\(102\) 0 0
\(103\) −39.3881 22.7407i −0.382409 0.220784i 0.296457 0.955046i \(-0.404195\pi\)
−0.678866 + 0.734262i \(0.737528\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 93.8988 162.637i 0.877559 1.51998i 0.0235469 0.999723i \(-0.492504\pi\)
0.854012 0.520254i \(-0.174163\pi\)
\(108\) 0 0
\(109\) −72.6347 125.807i −0.666373 1.15419i −0.978911 0.204287i \(-0.934512\pi\)
0.312538 0.949905i \(-0.398821\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 198.397 1.75572 0.877862 0.478913i \(-0.158969\pi\)
0.877862 + 0.478913i \(0.158969\pi\)
\(114\) 0 0
\(115\) 2.40501 1.38853i 0.0209131 0.0120742i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.09327 + 0.120796i −0.0175905 + 0.00101509i
\(120\) 0 0
\(121\) 6.85803 11.8785i 0.0566780 0.0981691i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.4277i 0.195422i
\(126\) 0 0
\(127\) −231.421 −1.82221 −0.911107 0.412170i \(-0.864771\pi\)
−0.911107 + 0.412170i \(0.864771\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.8508 + 10.8835i 0.143899 + 0.0830802i 0.570221 0.821491i \(-0.306858\pi\)
−0.426322 + 0.904572i \(0.640191\pi\)
\(132\) 0 0
\(133\) 108.360 + 164.946i 0.814738 + 1.24019i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 120.880 + 209.371i 0.882339 + 1.52826i 0.848733 + 0.528821i \(0.177366\pi\)
0.0336062 + 0.999435i \(0.489301\pi\)
\(138\) 0 0
\(139\) 186.378i 1.34085i 0.741978 + 0.670424i \(0.233888\pi\)
−0.741978 + 0.670424i \(0.766112\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −80.4462 + 46.4456i −0.562561 + 0.324795i
\(144\) 0 0
\(145\) −10.8133 6.24304i −0.0745742 0.0430554i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −31.8090 + 55.0948i −0.213483 + 0.369764i −0.952802 0.303591i \(-0.901814\pi\)
0.739319 + 0.673355i \(0.235148\pi\)
\(150\) 0 0
\(151\) −39.6384 68.6557i −0.262506 0.454673i 0.704401 0.709802i \(-0.251216\pi\)
−0.966907 + 0.255129i \(0.917882\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 22.4378 0.144760
\(156\) 0 0
\(157\) 81.9060 47.2884i 0.521694 0.301200i −0.215933 0.976408i \(-0.569279\pi\)
0.737628 + 0.675208i \(0.235946\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 33.0953 21.7418i 0.205561 0.135042i
\(162\) 0 0
\(163\) 86.7846 150.315i 0.532421 0.922180i −0.466862 0.884330i \(-0.654616\pi\)
0.999283 0.0378503i \(-0.0120510\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 63.2343i 0.378649i −0.981915 0.189324i \(-0.939370\pi\)
0.981915 0.189324i \(-0.0606298\pi\)
\(168\) 0 0
\(169\) 88.5705 0.524086
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −190.268 109.851i −1.09981 0.634977i −0.163641 0.986520i \(-0.552324\pi\)
−0.936172 + 0.351543i \(0.885657\pi\)
\(174\) 0 0
\(175\) −9.98473 173.025i −0.0570556 0.988715i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 37.5698 + 65.0728i 0.209887 + 0.363535i 0.951679 0.307095i \(-0.0993570\pi\)
−0.741792 + 0.670630i \(0.766024\pi\)
\(180\) 0 0
\(181\) 188.584i 1.04190i 0.853587 + 0.520950i \(0.174422\pi\)
−0.853587 + 0.520950i \(0.825578\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.39753 2.53892i 0.0237705 0.0137239i
\(186\) 0 0
\(187\) 2.68688 + 1.55127i 0.0143683 + 0.00829556i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −106.725 + 184.853i −0.558770 + 0.967818i 0.438829 + 0.898570i \(0.355393\pi\)
−0.997599 + 0.0692478i \(0.977940\pi\)
\(192\) 0 0
\(193\) 129.565 + 224.413i 0.671320 + 1.16276i 0.977530 + 0.210796i \(0.0676055\pi\)
−0.306211 + 0.951964i \(0.599061\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −174.822 −0.887424 −0.443712 0.896170i \(-0.646339\pi\)
−0.443712 + 0.896170i \(0.646339\pi\)
\(198\) 0 0
\(199\) −118.111 + 68.1912i −0.593521 + 0.342669i −0.766488 0.642258i \(-0.777998\pi\)
0.172968 + 0.984928i \(0.444664\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −159.058 79.9883i −0.783535 0.394031i
\(204\) 0 0
\(205\) 11.6913 20.2499i 0.0570306 0.0987798i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 292.023i 1.39724i
\(210\) 0 0
\(211\) −78.7551 −0.373247 −0.186623 0.982432i \(-0.559754\pi\)
−0.186623 + 0.982432i \(0.559754\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.90730 1.67853i −0.0135223 0.00780713i
\(216\) 0 0
\(217\) 319.407 18.4320i 1.47192 0.0849400i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.34316 + 2.32642i 0.00607764 + 0.0105268i
\(222\) 0 0
\(223\) 13.4235i 0.0601952i 0.999547 + 0.0300976i \(0.00958181\pi\)
−0.999547 + 0.0300976i \(0.990418\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −170.282 + 98.3125i −0.750142 + 0.433095i −0.825745 0.564043i \(-0.809245\pi\)
0.0756031 + 0.997138i \(0.475912\pi\)
\(228\) 0 0
\(229\) −175.428 101.283i −0.766062 0.442286i 0.0654062 0.997859i \(-0.479166\pi\)
−0.831468 + 0.555573i \(0.812499\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −190.078 + 329.224i −0.815783 + 1.41298i 0.0929805 + 0.995668i \(0.470361\pi\)
−0.908764 + 0.417310i \(0.862973\pi\)
\(234\) 0 0
\(235\) 16.0007 + 27.7140i 0.0680880 + 0.117932i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −85.8505 −0.359207 −0.179604 0.983739i \(-0.557482\pi\)
−0.179604 + 0.983739i \(0.557482\pi\)
\(240\) 0 0
\(241\) 128.636 74.2679i 0.533758 0.308165i −0.208787 0.977961i \(-0.566952\pi\)
0.742546 + 0.669796i \(0.233618\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.76708 + 23.8955i 0.0112942 + 0.0975325i
\(246\) 0 0
\(247\) 126.424 218.972i 0.511836 0.886526i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 149.761i 0.596659i −0.954463 0.298329i \(-0.903571\pi\)
0.954463 0.298329i \(-0.0964294\pi\)
\(252\) 0 0
\(253\) −58.5925 −0.231591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 61.7360 + 35.6433i 0.240218 + 0.138690i 0.615277 0.788311i \(-0.289044\pi\)
−0.375059 + 0.927001i \(0.622378\pi\)
\(258\) 0 0
\(259\) 60.5143 39.7545i 0.233646 0.153492i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 29.6583 + 51.3696i 0.112769 + 0.195322i 0.916886 0.399150i \(-0.130695\pi\)
−0.804117 + 0.594472i \(0.797361\pi\)
\(264\) 0 0
\(265\) 8.78757i 0.0331606i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −430.588 + 248.600i −1.60070 + 0.924165i −0.609353 + 0.792899i \(0.708571\pi\)
−0.991347 + 0.131266i \(0.958096\pi\)
\(270\) 0 0
\(271\) 435.450 + 251.407i 1.60683 + 0.927702i 0.990074 + 0.140546i \(0.0448857\pi\)
0.616753 + 0.787157i \(0.288448\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −128.224 + 222.091i −0.466270 + 0.807604i
\(276\) 0 0
\(277\) −185.233 320.833i −0.668712 1.15824i −0.978265 0.207360i \(-0.933513\pi\)
0.309553 0.950882i \(-0.399821\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 288.212 1.02566 0.512832 0.858489i \(-0.328596\pi\)
0.512832 + 0.858489i \(0.328596\pi\)
\(282\) 0 0
\(283\) −305.915 + 176.620i −1.08097 + 0.624099i −0.931158 0.364616i \(-0.881200\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 149.793 297.865i 0.521927 1.03786i
\(288\) 0 0
\(289\) −144.455 + 250.204i −0.499845 + 0.865757i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 367.107i 1.25292i −0.779452 0.626462i \(-0.784502\pi\)
0.779452 0.626462i \(-0.215498\pi\)
\(294\) 0 0
\(295\) −23.8203 −0.0807467
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −43.9353 25.3660i −0.146941 0.0848362i
\(300\) 0 0
\(301\) −42.7650 21.5060i −0.142076 0.0714486i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.50300 14.7276i −0.0278787 0.0482873i
\(306\) 0 0
\(307\) 369.042i 1.20209i 0.799214 + 0.601046i \(0.205249\pi\)
−0.799214 + 0.601046i \(0.794751\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −358.023 + 206.705i −1.15120 + 0.664645i −0.949179 0.314736i \(-0.898084\pi\)
−0.202020 + 0.979381i \(0.564751\pi\)
\(312\) 0 0
\(313\) −414.383 239.244i −1.32391 0.764359i −0.339559 0.940585i \(-0.610278\pi\)
−0.984350 + 0.176226i \(0.943611\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −172.202 + 298.263i −0.543224 + 0.940892i 0.455492 + 0.890240i \(0.349463\pi\)
−0.998716 + 0.0506524i \(0.983870\pi\)
\(318\) 0 0
\(319\) 131.720 + 228.146i 0.412915 + 0.715190i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.44501 −0.0261455
\(324\) 0 0
\(325\) −192.296 + 111.022i −0.591681 + 0.341607i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 250.540 + 381.371i 0.761519 + 1.15918i
\(330\) 0 0
\(331\) 254.688 441.133i 0.769450 1.33273i −0.168411 0.985717i \(-0.553864\pi\)
0.937861 0.347010i \(-0.112803\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 39.8613i 0.118989i
\(336\) 0 0
\(337\) −539.169 −1.59991 −0.799953 0.600062i \(-0.795142\pi\)
−0.799953 + 0.600062i \(0.795142\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −409.983 236.704i −1.20230 0.694147i
\(342\) 0 0
\(343\) 59.0194 + 337.884i 0.172068 + 0.985085i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 338.796 + 586.813i 0.976359 + 1.69110i 0.675376 + 0.737473i \(0.263981\pi\)
0.300982 + 0.953630i \(0.402686\pi\)
\(348\) 0 0
\(349\) 380.017i 1.08887i −0.838802 0.544437i \(-0.816743\pi\)
0.838802 0.544437i \(-0.183257\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −365.769 + 211.177i −1.03617 + 0.598235i −0.918747 0.394846i \(-0.870798\pi\)
−0.117427 + 0.993082i \(0.537464\pi\)
\(354\) 0 0
\(355\) 56.9392 + 32.8739i 0.160392 + 0.0926025i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 153.041 265.076i 0.426299 0.738372i −0.570242 0.821477i \(-0.693150\pi\)
0.996541 + 0.0831051i \(0.0264837\pi\)
\(360\) 0 0
\(361\) 216.939 + 375.750i 0.600940 + 1.04086i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.12574 −0.00856368
\(366\) 0 0
\(367\) −409.023 + 236.149i −1.11450 + 0.643459i −0.939992 0.341196i \(-0.889168\pi\)
−0.174512 + 0.984655i \(0.555835\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.21873 + 125.093i 0.0194575 + 0.337178i
\(372\) 0 0
\(373\) −208.308 + 360.799i −0.558465 + 0.967291i 0.439159 + 0.898409i \(0.355276\pi\)
−0.997625 + 0.0688814i \(0.978057\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 228.098i 0.605035i
\(378\) 0 0
\(379\) −109.766 −0.289621 −0.144811 0.989459i \(-0.546257\pi\)
−0.144811 + 0.989459i \(0.546257\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −231.360 133.576i −0.604073 0.348762i 0.166569 0.986030i \(-0.446731\pi\)
−0.770642 + 0.637268i \(0.780065\pi\)
\(384\) 0 0
\(385\) 15.9916 31.7994i 0.0415366 0.0825959i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −49.6383 85.9761i −0.127605 0.221018i 0.795143 0.606422i \(-0.207396\pi\)
−0.922748 + 0.385403i \(0.874062\pi\)
\(390\) 0 0
\(391\) 1.69443i 0.00433359i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 22.5534 13.0212i 0.0570972 0.0329651i
\(396\) 0 0
\(397\) −303.640 175.307i −0.764837 0.441579i 0.0661929 0.997807i \(-0.478915\pi\)
−0.831030 + 0.556228i \(0.812248\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 336.391 582.647i 0.838881 1.45299i −0.0519493 0.998650i \(-0.516543\pi\)
0.890831 0.454335i \(-0.150123\pi\)
\(402\) 0 0
\(403\) −204.949 354.982i −0.508558 0.880849i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −107.136 −0.263233
\(408\) 0 0
\(409\) 459.393 265.231i 1.12321 0.648486i 0.180992 0.983485i \(-0.442069\pi\)
0.942219 + 0.334999i \(0.108736\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −339.087 + 19.5677i −0.821034 + 0.0473793i
\(414\) 0 0
\(415\) 28.4894 49.3450i 0.0686490 0.118904i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 164.046i 0.391517i 0.980652 + 0.195759i \(0.0627169\pi\)
−0.980652 + 0.195759i \(0.937283\pi\)
\(420\) 0 0
\(421\) −278.128 −0.660637 −0.330319 0.943870i \(-0.607156\pi\)
−0.330319 + 0.943870i \(0.607156\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.42264 + 3.70811i 0.0151121 + 0.00872497i
\(426\) 0 0
\(427\) −133.140 202.666i −0.311804 0.474628i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 347.432 + 601.770i 0.806107 + 1.39622i 0.915541 + 0.402224i \(0.131763\pi\)
−0.109435 + 0.993994i \(0.534904\pi\)
\(432\) 0 0
\(433\) 324.716i 0.749921i 0.927041 + 0.374960i \(0.122344\pi\)
−0.927041 + 0.374960i \(0.877656\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 138.120 79.7435i 0.316064 0.182479i
\(438\) 0 0
\(439\) −8.14985 4.70532i −0.0185646 0.0107183i 0.490689 0.871335i \(-0.336745\pi\)
−0.509254 + 0.860617i \(0.670078\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 164.820 285.477i 0.372055 0.644418i −0.617827 0.786314i \(-0.711987\pi\)
0.989882 + 0.141896i \(0.0453199\pi\)
\(444\) 0 0
\(445\) 7.70792 + 13.3505i 0.0173212 + 0.0300011i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 127.813 0.284662 0.142331 0.989819i \(-0.454540\pi\)
0.142331 + 0.989819i \(0.454540\pi\)
\(450\) 0 0
\(451\) −427.246 + 246.670i −0.947330 + 0.546941i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 25.7579 16.9215i 0.0566107 0.0371901i
\(456\) 0 0
\(457\) 43.0590 74.5804i 0.0942210 0.163196i −0.815062 0.579373i \(-0.803297\pi\)
0.909283 + 0.416178i \(0.136631\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 397.368i 0.861970i −0.902359 0.430985i \(-0.858166\pi\)
0.902359 0.430985i \(-0.141834\pi\)
\(462\) 0 0
\(463\) 190.911 0.412335 0.206167 0.978517i \(-0.433901\pi\)
0.206167 + 0.978517i \(0.433901\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 649.505 + 374.992i 1.39080 + 0.802981i 0.993404 0.114665i \(-0.0365796\pi\)
0.397399 + 0.917646i \(0.369913\pi\)
\(468\) 0 0
\(469\) 32.7449 + 567.435i 0.0698185 + 1.20988i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.4149 + 61.3403i 0.0748729 + 0.129684i
\(474\) 0 0
\(475\) 698.045i 1.46957i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 146.651 84.6693i 0.306162 0.176763i −0.339046 0.940770i \(-0.610104\pi\)
0.645208 + 0.764007i \(0.276771\pi\)
\(480\) 0 0
\(481\) −80.3351 46.3815i −0.167017 0.0964272i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.4227 23.2488i 0.0276756 0.0479356i
\(486\) 0 0
\(487\) 181.494 + 314.356i 0.372677 + 0.645496i 0.989976 0.141233i \(-0.0451065\pi\)
−0.617299 + 0.786728i \(0.711773\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −749.523 −1.52652 −0.763262 0.646089i \(-0.776403\pi\)
−0.763262 + 0.646089i \(0.776403\pi\)
\(492\) 0 0
\(493\) 6.59773 3.80920i 0.0133828 0.00772657i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 837.548 + 421.193i 1.68521 + 0.847472i
\(498\) 0 0
\(499\) −72.9754 + 126.397i −0.146243 + 0.253301i −0.929836 0.367974i \(-0.880052\pi\)
0.783593 + 0.621275i \(0.213385\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 820.446i 1.63111i −0.578683 0.815553i \(-0.696433\pi\)
0.578683 0.815553i \(-0.303567\pi\)
\(504\) 0 0
\(505\) 73.5999 0.145742
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −148.845 85.9359i −0.292427 0.168833i 0.346609 0.938010i \(-0.387333\pi\)
−0.639036 + 0.769177i \(0.720666\pi\)
\(510\) 0 0
\(511\) −44.4957 + 2.56770i −0.0870757 + 0.00502486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.1639 19.3364i −0.0216775 0.0375465i
\(516\) 0 0
\(517\) 675.187i 1.30597i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −499.992 + 288.671i −0.959678 + 0.554070i −0.896074 0.443905i \(-0.853593\pi\)
−0.0636038 + 0.997975i \(0.520259\pi\)
\(522\) 0 0
\(523\) 67.2420 + 38.8222i 0.128570 + 0.0742298i 0.562905 0.826521i \(-0.309684\pi\)
−0.434336 + 0.900751i \(0.643017\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.84523 + 11.8563i −0.0129890 + 0.0224977i
\(528\) 0 0
\(529\) 248.500 + 430.415i 0.469754 + 0.813638i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −427.157 −0.801420
\(534\) 0 0
\(535\) 79.8422 46.0969i 0.149238 0.0861624i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 201.521 465.809i 0.373880 0.864209i
\(540\) 0 0
\(541\) 36.9433 63.9877i 0.0682871 0.118277i −0.829860 0.557971i \(-0.811580\pi\)
0.898147 + 0.439695i \(0.144913\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 71.3158i 0.130855i
\(546\) 0 0
\(547\) 47.2310 0.0863456 0.0431728 0.999068i \(-0.486253\pi\)
0.0431728 + 0.999068i \(0.486253\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −621.005 358.537i −1.12705 0.650703i
\(552\) 0 0
\(553\) 310.356 203.887i 0.561223 0.368692i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 466.647 + 808.257i 0.837787 + 1.45109i 0.891741 + 0.452546i \(0.149484\pi\)
−0.0539545 + 0.998543i \(0.517183\pi\)
\(558\) 0 0
\(559\) 61.3276i 0.109709i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −669.452 + 386.509i −1.18908 + 0.686516i −0.958098 0.286442i \(-0.907528\pi\)
−0.230983 + 0.972958i \(0.574194\pi\)
\(564\) 0 0
\(565\) 84.3484 + 48.6986i 0.149289 + 0.0861922i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 119.707 207.339i 0.210382 0.364392i −0.741452 0.671006i \(-0.765863\pi\)
0.951834 + 0.306613i \(0.0991959\pi\)
\(570\) 0 0
\(571\) 78.9427 + 136.733i 0.138253 + 0.239462i 0.926836 0.375467i \(-0.122518\pi\)
−0.788582 + 0.614929i \(0.789184\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −140.058 −0.243579
\(576\) 0 0
\(577\) 428.402 247.338i 0.742465 0.428663i −0.0804997 0.996755i \(-0.525652\pi\)
0.822965 + 0.568092i \(0.192318\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 365.017 725.841i 0.628257 1.24930i
\(582\) 0 0
\(583\) 92.7031 160.567i 0.159011 0.275414i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 185.278i 0.315635i 0.987468 + 0.157818i \(0.0504458\pi\)
−0.987468 + 0.157818i \(0.949554\pi\)
\(588\) 0 0
\(589\) 1288.60 2.18778
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 371.431 + 214.446i 0.626359 + 0.361628i 0.779340 0.626601i \(-0.215554\pi\)
−0.152982 + 0.988229i \(0.548888\pi\)
\(594\) 0 0
\(595\) −0.919606 0.462459i −0.00154556 0.000777243i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −322.911 559.299i −0.539084 0.933721i −0.998954 0.0457347i \(-0.985437\pi\)
0.459869 0.887987i \(-0.347896\pi\)
\(600\) 0 0
\(601\) 872.204i 1.45125i −0.688088 0.725627i \(-0.741550\pi\)
0.688088 0.725627i \(-0.258450\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.83139 3.36675i 0.00963866 0.00556488i
\(606\) 0 0
\(607\) −203.992 117.775i −0.336065 0.194027i 0.322465 0.946581i \(-0.395488\pi\)
−0.658531 + 0.752554i \(0.728822\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 292.304 506.285i 0.478402 0.828617i
\(612\) 0 0
\(613\) 333.951 + 578.421i 0.544782 + 0.943590i 0.998621 + 0.0525064i \(0.0167210\pi\)
−0.453838 + 0.891084i \(0.649946\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 257.921 0.418025 0.209012 0.977913i \(-0.432975\pi\)
0.209012 + 0.977913i \(0.432975\pi\)
\(618\) 0 0
\(619\) 200.464 115.738i 0.323852 0.186976i −0.329257 0.944241i \(-0.606798\pi\)
0.653108 + 0.757265i \(0.273465\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 120.691 + 183.716i 0.193726 + 0.294889i
\(624\) 0 0
\(625\) −303.491 + 525.663i −0.485586 + 0.841060i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.09825i 0.00492568i
\(630\) 0 0
\(631\) 146.992 0.232951 0.116476 0.993194i \(-0.462840\pi\)
0.116476 + 0.993194i \(0.462840\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −98.3887 56.8047i −0.154943 0.0894563i
\(636\) 0 0
\(637\) 352.769 262.041i 0.553797 0.411367i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.09951 5.36851i −0.00483543 0.00837521i 0.863598 0.504182i \(-0.168206\pi\)
−0.868433 + 0.495807i \(0.834873\pi\)
\(642\) 0 0
\(643\) 436.122i 0.678261i −0.940739 0.339130i \(-0.889867\pi\)
0.940739 0.339130i \(-0.110133\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −77.8134 + 44.9256i −0.120268 + 0.0694368i −0.558927 0.829217i \(-0.688787\pi\)
0.438659 + 0.898654i \(0.355454\pi\)
\(648\) 0 0
\(649\) 435.244 + 251.288i 0.670639 + 0.387193i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.9180 + 44.8913i −0.0396907 + 0.0687462i −0.885188 0.465233i \(-0.845971\pi\)
0.845498 + 0.533979i \(0.179304\pi\)
\(654\) 0 0
\(655\) 5.34294 + 9.25425i 0.00815716 + 0.0141286i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 212.500 0.322459 0.161229 0.986917i \(-0.448454\pi\)
0.161229 + 0.986917i \(0.448454\pi\)
\(660\) 0 0
\(661\) −1000.48 + 577.625i −1.51358 + 0.873865i −0.513704 + 0.857967i \(0.671727\pi\)
−0.999874 + 0.0158974i \(0.994939\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.58169 + 96.7249i 0.00839351 + 0.145451i
\(666\) 0 0
\(667\) −71.9381 + 124.601i −0.107853 + 0.186807i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 358.805i 0.534731i
\(672\) 0 0
\(673\) 563.787 0.837722 0.418861 0.908050i \(-0.362429\pi\)
0.418861 + 0.908050i \(0.362429\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −417.611 241.108i −0.616855 0.356141i 0.158789 0.987313i \(-0.449241\pi\)
−0.775643 + 0.631171i \(0.782574\pi\)
\(678\) 0 0
\(679\) 171.977 341.978i 0.253279 0.503649i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.2784 + 52.4437i 0.0443315 + 0.0767844i 0.887340 0.461116i \(-0.152551\pi\)
−0.843008 + 0.537901i \(0.819218\pi\)
\(684\) 0 0
\(685\) 118.686i 0.173264i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 139.026 80.2666i 0.201779 0.116497i
\(690\) 0 0
\(691\) −97.0468 56.0300i −0.140444 0.0810853i 0.428132 0.903716i \(-0.359172\pi\)
−0.568576 + 0.822631i \(0.692505\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −45.7484 + 79.2386i −0.0658251 + 0.114012i
\(696\) 0 0
\(697\) 7.13345 + 12.3555i 0.0102345 + 0.0177267i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1102.36 −1.57255 −0.786274 0.617878i \(-0.787992\pi\)
−0.786274 + 0.617878i \(0.787992\pi\)
\(702\) 0 0
\(703\) 252.550 145.810i 0.359247 0.207411i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1047.71 60.4601i 1.48191 0.0855164i
\(708\) 0 0
\(709\) 337.594 584.730i 0.476155 0.824725i −0.523471 0.852043i \(-0.675363\pi\)
0.999627 + 0.0273180i \(0.00869667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 258.549i 0.362622i
\(714\) 0 0
\(715\) −45.6023 −0.0637794
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −194.756 112.443i −0.270871 0.156387i 0.358412 0.933563i \(-0.383318\pi\)
−0.629283 + 0.777176i \(0.716652\pi\)
\(720\) 0 0
\(721\) −174.805 266.088i −0.242448 0.369054i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 314.860 + 545.353i 0.434289 + 0.752211i
\(726\) 0 0
\(727\) 1063.86i 1.46336i −0.681648 0.731680i \(-0.738736\pi\)
0.681648 0.731680i \(-0.261264\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.77390 1.02416i 0.00242667 0.00140104i
\(732\) 0 0
\(733\) 291.563 + 168.334i 0.397767 + 0.229651i 0.685520 0.728054i \(-0.259575\pi\)
−0.287753 + 0.957705i \(0.592908\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 420.511 728.346i 0.570571 0.988258i
\(738\) 0 0
\(739\) 602.668 + 1043.85i 0.815519 + 1.41252i 0.908955 + 0.416894i \(0.136881\pi\)
−0.0934364 + 0.995625i \(0.529785\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 521.516 0.701906 0.350953 0.936393i \(-0.385858\pi\)
0.350953 + 0.936393i \(0.385858\pi\)
\(744\) 0 0
\(745\) −27.0472 + 15.6157i −0.0363050 + 0.0209607i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1098.70 721.788i 1.46689 0.963669i
\(750\) 0 0
\(751\) −494.756 + 856.942i −0.658796 + 1.14107i 0.322131 + 0.946695i \(0.395601\pi\)
−0.980928 + 0.194374i \(0.937733\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.9186i 0.0515478i
\(756\) 0 0
\(757\) 265.725 0.351024 0.175512 0.984477i \(-0.443842\pi\)
0.175512 + 0.984477i \(0.443842\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.5450 + 24.5634i 0.0559067 + 0.0322778i 0.527693 0.849435i \(-0.323057\pi\)
−0.471786 + 0.881713i \(0.656391\pi\)
\(762\) 0 0
\(763\) −58.5838 1015.20i −0.0767808 1.33053i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 217.577 + 376.854i 0.283673 + 0.491336i
\(768\) 0 0
\(769\) 831.567i 1.08136i 0.841228 + 0.540681i \(0.181833\pi\)
−0.841228 + 0.540681i \(0.818167\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1211.82 699.646i 1.56769 0.905105i 0.571249 0.820777i \(-0.306459\pi\)
0.996438 0.0843281i \(-0.0268744\pi\)
\(774\) 0 0
\(775\) −980.013 565.811i −1.26453 0.730079i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 671.429 1162.95i 0.861911 1.49287i
\(780\) 0 0
\(781\) −693.596 1201.34i −0.888087 1.53821i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 46.4298 0.0591462
\(786\) 0 0
\(787\) −123.205 + 71.1325i −0.156550 + 0.0903843i −0.576229 0.817289i \(-0.695476\pi\)
0.419678 + 0.907673i \(0.362143\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1240.72 + 623.946i 1.56855 + 0.788806i
\(792\) 0 0
\(793\) −155.335 + 269.047i −0.195882 + 0.339278i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 500.787i 0.628340i 0.949367 + 0.314170i \(0.101726\pi\)
−0.949367 + 0.314170i \(0.898274\pi\)
\(798\) 0 0
\(799\) −19.5257 −0.0244377
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 57.1136 + 32.9746i 0.0711253 + 0.0410642i
\(804\) 0 0
\(805\) 19.4072 1.11993i 0.0241083 0.00139121i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −467.439 809.627i −0.577798 1.00078i −0.995731 0.0922977i \(-0.970579\pi\)
0.417934 0.908478i \(-0.362754\pi\)
\(810\) 0 0
\(811\) 495.665i 0.611178i 0.952164 + 0.305589i \(0.0988533\pi\)
−0.952164 + 0.305589i \(0.901147\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 73.7930 42.6044i 0.0905435 0.0522753i
\(816\) 0 0
\(817\) −166.966 96.3981i −0.204365 0.117990i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 325.872 564.426i 0.396920 0.687486i −0.596424 0.802670i \(-0.703412\pi\)
0.993344 + 0.115183i \(0.0367456\pi\)
\(822\) 0 0
\(823\) −71.9474 124.617i −0.0874209 0.151417i 0.818999 0.573794i \(-0.194529\pi\)
−0.906420 + 0.422377i \(0.861196\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 211.134 0.255302 0.127651 0.991819i \(-0.459256\pi\)
0.127651 + 0.991819i \(0.459256\pi\)
\(828\) 0 0
\(829\) −1164.24 + 672.177i −1.40440 + 0.810828i −0.994840 0.101457i \(-0.967650\pi\)
−0.409556 + 0.912285i \(0.634316\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.4707 5.82779i −0.0161713 0.00699614i
\(834\) 0 0
\(835\) 15.5215 26.8841i 0.0185887 0.0321965i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 256.252i 0.305425i −0.988271 0.152713i \(-0.951199\pi\)
0.988271 0.152713i \(-0.0488009\pi\)
\(840\) 0 0
\(841\) −194.113 −0.230812
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.6558 + 21.7406i 0.0445630 + 0.0257285i
\(846\) 0 0
\(847\) 80.2455 52.7168i 0.0947408 0.0622395i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29.2558 50.6725i −0.0343781 0.0595447i
\(852\) 0 0
\(853\) 674.045i 0.790206i −0.918637 0.395103i \(-0.870709\pi\)
0.918637 0.395103i \(-0.129291\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −342.885 + 197.965i −0.400099 + 0.230997i −0.686527 0.727104i \(-0.740866\pi\)
0.286428 + 0.958102i \(0.407532\pi\)
\(858\) 0 0
\(859\) 926.466 + 534.896i 1.07854 + 0.622696i 0.930502 0.366286i \(-0.119371\pi\)
0.148038 + 0.988982i \(0.452704\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 202.670 351.034i 0.234843 0.406760i −0.724384 0.689397i \(-0.757876\pi\)
0.959227 + 0.282637i \(0.0912090\pi\)
\(864\) 0 0
\(865\) −53.9282 93.4064i −0.0623447 0.107984i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −549.461 −0.632292
\(870\) 0 0
\(871\) 630.635 364.097i 0.724036 0.418022i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 76.8237 152.765i 0.0877986 0.174588i
\(876\) 0 0
\(877\) 440.516 762.996i 0.502299 0.870007i −0.497698 0.867351i \(-0.665821\pi\)
0.999996 0.00265646i \(-0.000845578\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 330.169i 0.374767i 0.982287 + 0.187383i \(0.0600007\pi\)
−0.982287 + 0.187383i \(0.939999\pi\)
\(882\) 0 0
\(883\) 813.993 0.921850 0.460925 0.887439i \(-0.347518\pi\)
0.460925 + 0.887439i \(0.347518\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 321.939 + 185.872i 0.362953 + 0.209551i 0.670375 0.742022i \(-0.266133\pi\)
−0.307422 + 0.951573i \(0.599466\pi\)
\(888\) 0 0
\(889\) −1447.25 727.805i −1.62795 0.818679i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 918.919 + 1591.61i 1.02902 + 1.78232i
\(894\) 0 0
\(895\) 36.8876i 0.0412152i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1006.73 + 581.236i −1.11983 + 0.646536i
\(900\) 0 0
\(901\) −4.64341 2.68088i −0.00515362 0.00297545i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −46.2899 + 80.1765i −0.0511491 + 0.0885928i
\(906\) 0 0
\(907\) 358.081 + 620.214i 0.394797 + 0.683809i 0.993075 0.117480i \(-0.0374815\pi\)
−0.598278 + 0.801289i \(0.704148\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 161.244 0.176997 0.0884985 0.996076i \(-0.471793\pi\)
0.0884985 + 0.996076i \(0.471793\pi\)
\(912\) 0 0
\(913\) −1041.12 + 601.088i −1.14032 + 0.658366i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 83.6601 + 127.347i 0.0912324 + 0.138874i
\(918\) 0 0
\(919\) −575.804 + 997.322i −0.626555 + 1.08523i 0.361683 + 0.932301i \(0.382202\pi\)
−0.988238 + 0.152924i \(0.951131\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1201.09i 1.30129i
\(924\) 0 0
\(925\) −256.094 −0.276859
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −784.559 452.965i −0.844519 0.487583i 0.0142785 0.999898i \(-0.495455\pi\)
−0.858798 + 0.512315i \(0.828788\pi\)
\(930\) 0 0
\(931\) 158.913 + 1372.32i 0.170691 + 1.47402i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.761551 + 1.31904i 0.000814493 + 0.00141074i
\(936\) 0 0
\(937\) 1077.46i 1.14991i −0.818186 0.574954i \(-0.805020\pi\)
0.818186 0.574954i \(-0.194980\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −293.347 + 169.364i −0.311740 + 0.179983i −0.647705 0.761891i \(-0.724271\pi\)
0.335965 + 0.941874i \(0.390938\pi\)
\(942\) 0 0
\(943\) −233.338 134.718i −0.247442 0.142861i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −412.641 + 714.714i −0.435735 + 0.754714i −0.997355 0.0726805i \(-0.976845\pi\)
0.561621 + 0.827395i \(0.310178\pi\)
\(948\) 0 0
\(949\) 28.5509 + 49.4515i 0.0300852 + 0.0521091i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 156.655 0.164381 0.0821905 0.996617i \(-0.473808\pi\)
0.0821905 + 0.996617i \(0.473808\pi\)
\(954\) 0 0
\(955\) −90.7484 + 52.3936i −0.0950245 + 0.0548624i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 97.4966 + 1689.52i 0.101665 + 1.76175i
\(960\) 0 0
\(961\) 563.995 976.869i 0.586884 1.01651i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 127.212i 0.131826i
\(966\) 0 0
\(967\) 1148.52 1.18771 0.593856 0.804572i \(-0.297605\pi\)
0.593856 + 0.804572i \(0.297605\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1073.94 620.041i −1.10602 0.638559i −0.168222 0.985749i \(-0.553803\pi\)
−0.937795 + 0.347190i \(0.887136\pi\)
\(972\) 0 0
\(973\) −586.147 + 1165.56i −0.602412 + 1.19790i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 117.611 + 203.708i 0.120379 + 0.208503i 0.919917 0.392112i \(-0.128256\pi\)
−0.799538 + 0.600616i \(0.794922\pi\)
\(978\) 0 0
\(979\) 325.254i 0.332231i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1298.66 749.780i 1.32112 0.762747i 0.337210 0.941429i \(-0.390517\pi\)
0.983907 + 0.178682i \(0.0571835\pi\)
\(984\) 0 0
\(985\) −74.3258 42.9120i −0.0754577 0.0435655i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.3416 + 33.5007i −0.0195568 + 0.0338733i
\(990\) 0 0
\(991\) 197.226 + 341.606i 0.199017 + 0.344708i 0.948210 0.317644i \(-0.102892\pi\)
−0.749193 + 0.662352i \(0.769558\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −66.9530 −0.0672894
\(996\) 0 0
\(997\) −885.726 + 511.374i −0.888391 + 0.512913i −0.873416 0.486975i \(-0.838100\pi\)
−0.0149751 + 0.999888i \(0.504767\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.cg.n.145.2 8
3.2 odd 2 336.3.bh.h.145.3 8
4.3 odd 2 504.3.by.a.145.2 8
7.3 odd 6 inner 1008.3.cg.n.577.2 8
12.11 even 2 168.3.z.a.145.3 yes 8
21.2 odd 6 2352.3.f.k.97.6 8
21.5 even 6 2352.3.f.k.97.3 8
21.17 even 6 336.3.bh.h.241.3 8
28.3 even 6 504.3.by.a.73.2 8
28.19 even 6 3528.3.f.f.2449.5 8
28.23 odd 6 3528.3.f.f.2449.4 8
84.11 even 6 1176.3.z.d.913.2 8
84.23 even 6 1176.3.f.a.97.2 8
84.47 odd 6 1176.3.f.a.97.7 8
84.59 odd 6 168.3.z.a.73.3 8
84.83 odd 2 1176.3.z.d.313.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.z.a.73.3 8 84.59 odd 6
168.3.z.a.145.3 yes 8 12.11 even 2
336.3.bh.h.145.3 8 3.2 odd 2
336.3.bh.h.241.3 8 21.17 even 6
504.3.by.a.73.2 8 28.3 even 6
504.3.by.a.145.2 8 4.3 odd 2
1008.3.cg.n.145.2 8 1.1 even 1 trivial
1008.3.cg.n.577.2 8 7.3 odd 6 inner
1176.3.f.a.97.2 8 84.23 even 6
1176.3.f.a.97.7 8 84.47 odd 6
1176.3.z.d.313.2 8 84.83 odd 2
1176.3.z.d.913.2 8 84.11 even 6
2352.3.f.k.97.3 8 21.5 even 6
2352.3.f.k.97.6 8 21.2 odd 6
3528.3.f.f.2449.4 8 28.23 odd 6
3528.3.f.f.2449.5 8 28.19 even 6