Properties

Label 504.2.p.g.307.9
Level $504$
Weight $2$
Character 504.307
Analytic conductor $4.024$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(307,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,0,2,0,0,0,10,0,0,8,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.20457921756784916168704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 4x^{10} + 16x^{8} - 16x^{6} - 64x^{4} + 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 307.9
Root \(-1.40199 + 0.185533i\) of defining polynomial
Character \(\chi\) \(=\) 504.307
Dual form 504.2.p.g.307.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.185533 - 1.40199i) q^{2} +(-1.93115 - 0.520231i) q^{4} -3.84444 q^{5} +(1.62140 + 2.09071i) q^{7} +(-1.08765 + 2.61094i) q^{8} +(-0.713272 + 5.38987i) q^{10} +4.54637 q^{11} -1.81625 q^{13} +(3.23198 - 1.88529i) q^{14} +(3.45872 + 2.00929i) q^{16} +3.49124i q^{17} +1.68700i q^{19} +(7.42422 + 2.00000i) q^{20} +(0.843502 - 6.37397i) q^{22} +5.00632i q^{23} +9.77975 q^{25} +(-0.336975 + 2.54637i) q^{26} +(-2.04352 - 4.88099i) q^{28} -1.81625i q^{29} +5.34329 q^{31} +(3.45872 - 4.47630i) q^{32} +(4.89469 + 0.647741i) q^{34} +(-6.23338 - 8.03761i) q^{35} +1.42654i q^{37} +(2.36516 + 0.312995i) q^{38} +(4.18142 - 10.0376i) q^{40} +8.97551i q^{41} -8.03761 q^{43} +(-8.77975 - 2.36516i) q^{44} +(7.01881 + 0.928837i) q^{46} -4.83580 q^{47} +(-1.74213 + 6.77975i) q^{49} +(1.81447 - 13.7111i) q^{50} +(3.50747 + 0.944872i) q^{52} +5.87263i q^{53} -17.4783 q^{55} +(-7.22224 + 1.95941i) q^{56} +(-2.54637 - 0.336975i) q^{58} +8.46675i q^{59} +3.01955 q^{61} +(0.991357 - 7.49124i) q^{62} +(-5.63402 - 5.67959i) q^{64} +6.98249 q^{65} -4.42914 q^{67} +(1.81625 - 6.74213i) q^{68} +(-12.4252 + 7.24789i) q^{70} +1.47928i q^{71} -6.98249i q^{73} +(2.00000 + 0.264671i) q^{74} +(0.877633 - 3.25787i) q^{76} +(7.37148 + 9.50514i) q^{77} +2.97813i q^{79} +(-13.2968 - 7.72462i) q^{80} +(12.5836 + 1.66525i) q^{82} -10.5770i q^{83} -13.4219i q^{85} +(-1.49124 + 11.2687i) q^{86} +(-4.94487 + 11.8703i) q^{88} -15.9580i q^{89} +(-2.94487 - 3.79726i) q^{91} +(2.60444 - 9.66797i) q^{92} +(-0.897201 + 6.77975i) q^{94} -6.48559i q^{95} +11.6085i q^{97} +(9.18192 + 3.70032i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 2 q^{4} + 10 q^{8} + 8 q^{11} + 14 q^{14} + 18 q^{16} + 8 q^{22} + 16 q^{25} - 10 q^{28} + 18 q^{32} - 24 q^{35} - 8 q^{43} + 52 q^{46} - 8 q^{49} + 34 q^{50} - 50 q^{56} + 24 q^{58} + 2 q^{64}+ \cdots - 66 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.185533 1.40199i 0.131192 0.991357i
\(3\) 0 0
\(4\) −1.93115 0.520231i −0.965577 0.260116i
\(5\) −3.84444 −1.71929 −0.859644 0.510894i \(-0.829314\pi\)
−0.859644 + 0.510894i \(0.829314\pi\)
\(6\) 0 0
\(7\) 1.62140 + 2.09071i 0.612831 + 0.790214i
\(8\) −1.08765 + 2.61094i −0.384543 + 0.923107i
\(9\) 0 0
\(10\) −0.713272 + 5.38987i −0.225556 + 1.70443i
\(11\) 4.54637 1.37078 0.685391 0.728175i \(-0.259631\pi\)
0.685391 + 0.728175i \(0.259631\pi\)
\(12\) 0 0
\(13\) −1.81625 −0.503738 −0.251869 0.967761i \(-0.581045\pi\)
−0.251869 + 0.967761i \(0.581045\pi\)
\(14\) 3.23198 1.88529i 0.863782 0.503865i
\(15\) 0 0
\(16\) 3.45872 + 2.00929i 0.864680 + 0.502324i
\(17\) 3.49124i 0.846751i 0.905954 + 0.423375i \(0.139155\pi\)
−0.905954 + 0.423375i \(0.860845\pi\)
\(18\) 0 0
\(19\) 1.68700i 0.387025i 0.981098 + 0.193513i \(0.0619881\pi\)
−0.981098 + 0.193513i \(0.938012\pi\)
\(20\) 7.42422 + 2.00000i 1.66011 + 0.447214i
\(21\) 0 0
\(22\) 0.843502 6.37397i 0.179835 1.35893i
\(23\) 5.00632i 1.04389i 0.852979 + 0.521945i \(0.174793\pi\)
−0.852979 + 0.521945i \(0.825207\pi\)
\(24\) 0 0
\(25\) 9.77975 1.95595
\(26\) −0.336975 + 2.54637i −0.0660863 + 0.499384i
\(27\) 0 0
\(28\) −2.04352 4.88099i −0.386189 0.922420i
\(29\) 1.81625i 0.337270i −0.985679 0.168635i \(-0.946064\pi\)
0.985679 0.168635i \(-0.0539359\pi\)
\(30\) 0 0
\(31\) 5.34329 0.959683 0.479842 0.877355i \(-0.340694\pi\)
0.479842 + 0.877355i \(0.340694\pi\)
\(32\) 3.45872 4.47630i 0.611421 0.791306i
\(33\) 0 0
\(34\) 4.89469 + 0.647741i 0.839433 + 0.111087i
\(35\) −6.23338 8.03761i −1.05363 1.35860i
\(36\) 0 0
\(37\) 1.42654i 0.234522i 0.993101 + 0.117261i \(0.0374114\pi\)
−0.993101 + 0.117261i \(0.962589\pi\)
\(38\) 2.36516 + 0.312995i 0.383680 + 0.0507745i
\(39\) 0 0
\(40\) 4.18142 10.0376i 0.661140 1.58709i
\(41\) 8.97551i 1.40174i 0.713290 + 0.700869i \(0.247204\pi\)
−0.713290 + 0.700869i \(0.752796\pi\)
\(42\) 0 0
\(43\) −8.03761 −1.22572 −0.612862 0.790190i \(-0.709982\pi\)
−0.612862 + 0.790190i \(0.709982\pi\)
\(44\) −8.77975 2.36516i −1.32360 0.356562i
\(45\) 0 0
\(46\) 7.01881 + 0.928837i 1.03487 + 0.136950i
\(47\) −4.83580 −0.705374 −0.352687 0.935741i \(-0.614732\pi\)
−0.352687 + 0.935741i \(0.614732\pi\)
\(48\) 0 0
\(49\) −1.74213 + 6.77975i −0.248876 + 0.968535i
\(50\) 1.81447 13.7111i 0.256604 1.93904i
\(51\) 0 0
\(52\) 3.50747 + 0.944872i 0.486398 + 0.131030i
\(53\) 5.87263i 0.806668i 0.915053 + 0.403334i \(0.132149\pi\)
−0.915053 + 0.403334i \(0.867851\pi\)
\(54\) 0 0
\(55\) −17.4783 −2.35677
\(56\) −7.22224 + 1.95941i −0.965112 + 0.261837i
\(57\) 0 0
\(58\) −2.54637 0.336975i −0.334355 0.0442470i
\(59\) 8.46675i 1.10228i 0.834414 + 0.551139i \(0.185806\pi\)
−0.834414 + 0.551139i \(0.814194\pi\)
\(60\) 0 0
\(61\) 3.01955 0.386613 0.193307 0.981138i \(-0.438079\pi\)
0.193307 + 0.981138i \(0.438079\pi\)
\(62\) 0.991357 7.49124i 0.125903 0.951389i
\(63\) 0 0
\(64\) −5.63402 5.67959i −0.704253 0.709949i
\(65\) 6.98249 0.866071
\(66\) 0 0
\(67\) −4.42914 −0.541105 −0.270553 0.962705i \(-0.587206\pi\)
−0.270553 + 0.962705i \(0.587206\pi\)
\(68\) 1.81625 6.74213i 0.220253 0.817604i
\(69\) 0 0
\(70\) −12.4252 + 7.24789i −1.48509 + 0.866289i
\(71\) 1.47928i 0.175558i 0.996140 + 0.0877791i \(0.0279769\pi\)
−0.996140 + 0.0877791i \(0.972023\pi\)
\(72\) 0 0
\(73\) 6.98249i 0.817238i −0.912705 0.408619i \(-0.866010\pi\)
0.912705 0.408619i \(-0.133990\pi\)
\(74\) 2.00000 + 0.264671i 0.232495 + 0.0307674i
\(75\) 0 0
\(76\) 0.877633 3.25787i 0.100671 0.373703i
\(77\) 7.37148 + 9.50514i 0.840058 + 1.08321i
\(78\) 0 0
\(79\) 2.97813i 0.335065i 0.985867 + 0.167533i \(0.0535800\pi\)
−0.985867 + 0.167533i \(0.946420\pi\)
\(80\) −13.2968 7.72462i −1.48663 0.863639i
\(81\) 0 0
\(82\) 12.5836 + 1.66525i 1.38962 + 0.183897i
\(83\) 10.5770i 1.16098i −0.814268 0.580489i \(-0.802862\pi\)
0.814268 0.580489i \(-0.197138\pi\)
\(84\) 0 0
\(85\) 13.4219i 1.45581i
\(86\) −1.49124 + 11.2687i −0.160805 + 1.21513i
\(87\) 0 0
\(88\) −4.94487 + 11.8703i −0.527125 + 1.26538i
\(89\) 15.9580i 1.69154i −0.533544 0.845772i \(-0.679140\pi\)
0.533544 0.845772i \(-0.320860\pi\)
\(90\) 0 0
\(91\) −2.94487 3.79726i −0.308707 0.398061i
\(92\) 2.60444 9.66797i 0.271532 1.00796i
\(93\) 0 0
\(94\) −0.897201 + 6.77975i −0.0925392 + 0.699278i
\(95\) 6.48559i 0.665408i
\(96\) 0 0
\(97\) 11.6085i 1.17866i 0.807892 + 0.589331i \(0.200609\pi\)
−0.807892 + 0.589331i \(0.799391\pi\)
\(98\) 9.18192 + 3.70032i 0.927514 + 0.373789i
\(99\) 0 0
\(100\) −18.8862 5.08773i −1.88862 0.508773i
\(101\) 11.5333 1.14761 0.573805 0.818992i \(-0.305467\pi\)
0.573805 + 0.818992i \(0.305467\pi\)
\(102\) 0 0
\(103\) 1.14230 0.112555 0.0562773 0.998415i \(-0.482077\pi\)
0.0562773 + 0.998415i \(0.482077\pi\)
\(104\) 1.97545 4.74213i 0.193709 0.465004i
\(105\) 0 0
\(106\) 8.23338 + 1.08957i 0.799696 + 0.105828i
\(107\) −0.0796192 −0.00769707 −0.00384854 0.999993i \(-0.501225\pi\)
−0.00384854 + 0.999993i \(0.501225\pi\)
\(108\) 0 0
\(109\) 20.1081i 1.92601i 0.269489 + 0.963004i \(0.413145\pi\)
−0.269489 + 0.963004i \(0.586855\pi\)
\(110\) −3.24280 + 24.5044i −0.309189 + 2.33640i
\(111\) 0 0
\(112\) 1.40711 + 10.4890i 0.132959 + 0.991121i
\(113\) −4.98249 −0.468713 −0.234356 0.972151i \(-0.575298\pi\)
−0.234356 + 0.972151i \(0.575298\pi\)
\(114\) 0 0
\(115\) 19.2465i 1.79475i
\(116\) −0.944872 + 3.50747i −0.0877292 + 0.325660i
\(117\) 0 0
\(118\) 11.8703 + 1.57086i 1.09275 + 0.144610i
\(119\) −7.29918 + 5.66070i −0.669114 + 0.518915i
\(120\) 0 0
\(121\) 9.66949 0.879045
\(122\) 0.560226 4.23338i 0.0507205 0.383272i
\(123\) 0 0
\(124\) −10.3187 2.77975i −0.926649 0.249629i
\(125\) −18.3755 −1.64355
\(126\) 0 0
\(127\) 5.38471i 0.477816i −0.971042 0.238908i \(-0.923211\pi\)
0.971042 0.238908i \(-0.0767894\pi\)
\(128\) −9.00803 + 6.84510i −0.796205 + 0.605027i
\(129\) 0 0
\(130\) 1.29548 9.78938i 0.113621 0.858586i
\(131\) 13.0927i 1.14392i 0.820282 + 0.571959i \(0.193816\pi\)
−0.820282 + 0.571959i \(0.806184\pi\)
\(132\) 0 0
\(133\) −3.52704 + 2.73531i −0.305833 + 0.237181i
\(134\) −0.821752 + 6.20961i −0.0709885 + 0.536428i
\(135\) 0 0
\(136\) −9.11543 3.79726i −0.781642 0.325612i
\(137\) 19.5595 1.67108 0.835540 0.549429i \(-0.185155\pi\)
0.835540 + 0.549429i \(0.185155\pi\)
\(138\) 0 0
\(139\) 14.5910i 1.23759i −0.785553 0.618795i \(-0.787621\pi\)
0.785553 0.618795i \(-0.212379\pi\)
\(140\) 7.85620 + 18.7647i 0.663970 + 1.58590i
\(141\) 0 0
\(142\) 2.07394 + 0.274455i 0.174041 + 0.0230318i
\(143\) −8.25737 −0.690516
\(144\) 0 0
\(145\) 6.98249i 0.579864i
\(146\) −9.78938 1.29548i −0.810175 0.107215i
\(147\) 0 0
\(148\) 0.742132 2.75488i 0.0610029 0.226449i
\(149\) 18.3973i 1.50717i −0.657352 0.753584i \(-0.728324\pi\)
0.657352 0.753584i \(-0.271676\pi\)
\(150\) 0 0
\(151\) 9.88759i 0.804641i −0.915499 0.402320i \(-0.868204\pi\)
0.915499 0.402320i \(-0.131796\pi\)
\(152\) −4.40467 1.83488i −0.357266 0.148828i
\(153\) 0 0
\(154\) 14.6938 8.57123i 1.18406 0.690689i
\(155\) −20.5420 −1.64997
\(156\) 0 0
\(157\) −12.3582 −0.986294 −0.493147 0.869946i \(-0.664154\pi\)
−0.493147 + 0.869946i \(0.664154\pi\)
\(158\) 4.17531 + 0.552541i 0.332169 + 0.0439578i
\(159\) 0 0
\(160\) −13.2968 + 17.2089i −1.05121 + 1.36048i
\(161\) −10.4668 + 8.11723i −0.824896 + 0.639728i
\(162\) 0 0
\(163\) −3.57086 −0.279692 −0.139846 0.990173i \(-0.544661\pi\)
−0.139846 + 0.990173i \(0.544661\pi\)
\(164\) 4.66934 17.3331i 0.364614 1.35349i
\(165\) 0 0
\(166\) −14.8289 1.96239i −1.15094 0.152311i
\(167\) 19.5788 1.51505 0.757525 0.652806i \(-0.226408\pi\)
0.757525 + 0.652806i \(0.226408\pi\)
\(168\) 0 0
\(169\) −9.70122 −0.746248
\(170\) −18.8174 2.49020i −1.44323 0.190990i
\(171\) 0 0
\(172\) 15.5219 + 4.18142i 1.18353 + 0.318830i
\(173\) −5.49424 −0.417719 −0.208860 0.977946i \(-0.566975\pi\)
−0.208860 + 0.977946i \(0.566975\pi\)
\(174\) 0 0
\(175\) 15.8569 + 20.4466i 1.19867 + 1.54562i
\(176\) 15.7246 + 9.13500i 1.18529 + 0.688576i
\(177\) 0 0
\(178\) −22.3730 2.96074i −1.67692 0.221917i
\(179\) −10.0306 −0.749725 −0.374862 0.927080i \(-0.622310\pi\)
−0.374862 + 0.927080i \(0.622310\pi\)
\(180\) 0 0
\(181\) 24.2481 1.80235 0.901174 0.433458i \(-0.142707\pi\)
0.901174 + 0.433458i \(0.142707\pi\)
\(182\) −5.87009 + 3.42417i −0.435120 + 0.253816i
\(183\) 0 0
\(184\) −13.0712 5.44513i −0.963621 0.401420i
\(185\) 5.48426i 0.403211i
\(186\) 0 0
\(187\) 15.8725i 1.16071i
\(188\) 9.33868 + 2.51574i 0.681093 + 0.183479i
\(189\) 0 0
\(190\) −9.09274 1.20329i −0.659657 0.0872960i
\(191\) 8.49422i 0.614620i −0.951609 0.307310i \(-0.900571\pi\)
0.951609 0.307310i \(-0.0994288\pi\)
\(192\) 0 0
\(193\) −11.2955 −0.813067 −0.406533 0.913636i \(-0.633262\pi\)
−0.406533 + 0.913636i \(0.633262\pi\)
\(194\) 16.2750 + 2.15376i 1.16848 + 0.154631i
\(195\) 0 0
\(196\) 6.89136 12.1864i 0.492240 0.870459i
\(197\) 2.38473i 0.169905i −0.996385 0.0849526i \(-0.972926\pi\)
0.996385 0.0849526i \(-0.0270739\pi\)
\(198\) 0 0
\(199\) 2.46338 0.174624 0.0873120 0.996181i \(-0.472172\pi\)
0.0873120 + 0.996181i \(0.472172\pi\)
\(200\) −10.6370 + 25.5343i −0.752147 + 1.80555i
\(201\) 0 0
\(202\) 2.13981 16.1696i 0.150557 1.13769i
\(203\) 3.79726 2.94487i 0.266515 0.206690i
\(204\) 0 0
\(205\) 34.5058i 2.40999i
\(206\) 0.211935 1.60150i 0.0147662 0.111582i
\(207\) 0 0
\(208\) −6.28191 3.64939i −0.435572 0.253040i
\(209\) 7.66975i 0.530528i
\(210\) 0 0
\(211\) −0.0376150 −0.00258952 −0.00129476 0.999999i \(-0.500412\pi\)
−0.00129476 + 0.999999i \(0.500412\pi\)
\(212\) 3.05513 11.3410i 0.209827 0.778901i
\(213\) 0 0
\(214\) −0.0147720 + 0.111625i −0.00100979 + 0.00763055i
\(215\) 30.9002 2.10737
\(216\) 0 0
\(217\) 8.66361 + 11.1713i 0.588124 + 0.758355i
\(218\) 28.1914 + 3.73072i 1.90936 + 0.252676i
\(219\) 0 0
\(220\) 33.7532 + 9.09274i 2.27564 + 0.613033i
\(221\) 6.34099i 0.426541i
\(222\) 0 0
\(223\) 12.9144 0.864812 0.432406 0.901679i \(-0.357665\pi\)
0.432406 + 0.901679i \(0.357665\pi\)
\(224\) 14.9666 0.0266914i 0.999998 0.00178340i
\(225\) 0 0
\(226\) −0.924416 + 6.98540i −0.0614913 + 0.464662i
\(227\) 1.48426i 0.0985141i 0.998786 + 0.0492571i \(0.0156854\pi\)
−0.998786 + 0.0492571i \(0.984315\pi\)
\(228\) 0 0
\(229\) 4.66934 0.308559 0.154279 0.988027i \(-0.450694\pi\)
0.154279 + 0.988027i \(0.450694\pi\)
\(230\) −26.9834 3.57086i −1.77923 0.235456i
\(231\) 0 0
\(232\) 4.74213 + 1.97545i 0.311336 + 0.129695i
\(233\) 8.35650 0.547452 0.273726 0.961808i \(-0.411744\pi\)
0.273726 + 0.961808i \(0.411744\pi\)
\(234\) 0 0
\(235\) 18.5910 1.21274
\(236\) 4.40467 16.3506i 0.286720 1.06433i
\(237\) 0 0
\(238\) 6.58201 + 11.2836i 0.426648 + 0.731409i
\(239\) 19.8547i 1.28430i −0.766580 0.642148i \(-0.778043\pi\)
0.766580 0.642148i \(-0.221957\pi\)
\(240\) 0 0
\(241\) 6.57701i 0.423662i 0.977306 + 0.211831i \(0.0679427\pi\)
−0.977306 + 0.211831i \(0.932057\pi\)
\(242\) 1.79401 13.5565i 0.115323 0.871447i
\(243\) 0 0
\(244\) −5.83121 1.57086i −0.373305 0.100564i
\(245\) 6.69753 26.0644i 0.427889 1.66519i
\(246\) 0 0
\(247\) 3.06403i 0.194960i
\(248\) −5.81164 + 13.9510i −0.369040 + 0.885890i
\(249\) 0 0
\(250\) −3.40926 + 25.7622i −0.215620 + 1.62935i
\(251\) 4.85827i 0.306652i −0.988176 0.153326i \(-0.951002\pi\)
0.988176 0.153326i \(-0.0489984\pi\)
\(252\) 0 0
\(253\) 22.7606i 1.43094i
\(254\) −7.54931 0.999042i −0.473686 0.0626855i
\(255\) 0 0
\(256\) 7.92547 + 13.8992i 0.495342 + 0.868698i
\(257\) 9.20998i 0.574503i −0.957855 0.287251i \(-0.907259\pi\)
0.957855 0.287251i \(-0.0927415\pi\)
\(258\) 0 0
\(259\) −2.98249 + 2.31300i −0.185323 + 0.143723i
\(260\) −13.4843 3.63251i −0.836259 0.225279i
\(261\) 0 0
\(262\) 18.3559 + 2.42914i 1.13403 + 0.150073i
\(263\) 3.90849i 0.241008i 0.992713 + 0.120504i \(0.0384511\pi\)
−0.992713 + 0.120504i \(0.961549\pi\)
\(264\) 0 0
\(265\) 22.5770i 1.38689i
\(266\) 3.18049 + 5.45236i 0.195009 + 0.334306i
\(267\) 0 0
\(268\) 8.55335 + 2.30418i 0.522479 + 0.140750i
\(269\) 9.24872 0.563905 0.281952 0.959428i \(-0.409018\pi\)
0.281952 + 0.959428i \(0.409018\pi\)
\(270\) 0 0
\(271\) −16.5201 −1.00352 −0.501762 0.865006i \(-0.667315\pi\)
−0.501762 + 0.865006i \(0.667315\pi\)
\(272\) −7.01494 + 12.0752i −0.425343 + 0.732168i
\(273\) 0 0
\(274\) 3.62893 27.4222i 0.219232 1.65664i
\(275\) 44.4624 2.68118
\(276\) 0 0
\(277\) 3.26465i 0.196154i −0.995179 0.0980769i \(-0.968731\pi\)
0.995179 0.0980769i \(-0.0312691\pi\)
\(278\) −20.4564 2.70711i −1.22689 0.162361i
\(279\) 0 0
\(280\) 27.7655 7.53284i 1.65931 0.450174i
\(281\) −19.1680 −1.14347 −0.571733 0.820440i \(-0.693729\pi\)
−0.571733 + 0.820440i \(0.693729\pi\)
\(282\) 0 0
\(283\) 20.2780i 1.20540i 0.797968 + 0.602700i \(0.205908\pi\)
−0.797968 + 0.602700i \(0.794092\pi\)
\(284\) 0.769567 2.85672i 0.0456654 0.169515i
\(285\) 0 0
\(286\) −1.53201 + 11.5767i −0.0905899 + 0.684548i
\(287\) −18.7652 + 14.5529i −1.10767 + 0.859029i
\(288\) 0 0
\(289\) 4.81122 0.283013
\(290\) 9.78938 + 1.29548i 0.574852 + 0.0760734i
\(291\) 0 0
\(292\) −3.63251 + 13.4843i −0.212576 + 0.789107i
\(293\) 5.07037 0.296214 0.148107 0.988971i \(-0.452682\pi\)
0.148107 + 0.988971i \(0.452682\pi\)
\(294\) 0 0
\(295\) 32.5500i 1.89513i
\(296\) −3.72462 1.55158i −0.216489 0.0901839i
\(297\) 0 0
\(298\) −25.7929 3.41331i −1.49414 0.197728i
\(299\) 9.09274i 0.525847i
\(300\) 0 0
\(301\) −13.0322 16.8043i −0.751162 0.968585i
\(302\) −13.8623 1.83448i −0.797686 0.105562i
\(303\) 0 0
\(304\) −3.38969 + 5.83488i −0.194412 + 0.334653i
\(305\) −11.6085 −0.664700
\(306\) 0 0
\(307\) 15.2465i 0.870164i 0.900391 + 0.435082i \(0.143281\pi\)
−0.900391 + 0.435082i \(0.856719\pi\)
\(308\) −9.29060 22.1908i −0.529381 1.26444i
\(309\) 0 0
\(310\) −3.81122 + 28.7997i −0.216463 + 1.63571i
\(311\) −8.91481 −0.505513 −0.252756 0.967530i \(-0.581337\pi\)
−0.252756 + 0.967530i \(0.581337\pi\)
\(312\) 0 0
\(313\) 24.9335i 1.40932i −0.709543 0.704662i \(-0.751098\pi\)
0.709543 0.704662i \(-0.248902\pi\)
\(314\) −2.29286 + 17.3261i −0.129394 + 0.977769i
\(315\) 0 0
\(316\) 1.54931 5.75122i 0.0871558 0.323532i
\(317\) 16.1127i 0.904980i 0.891769 + 0.452490i \(0.149464\pi\)
−0.891769 + 0.452490i \(0.850536\pi\)
\(318\) 0 0
\(319\) 8.25737i 0.462324i
\(320\) 21.6597 + 21.8349i 1.21081 + 1.22061i
\(321\) 0 0
\(322\) 9.43836 + 16.1803i 0.525979 + 0.901693i
\(323\) −5.88974 −0.327714
\(324\) 0 0
\(325\) −17.7625 −0.985287
\(326\) −0.662513 + 5.00632i −0.0366932 + 0.277274i
\(327\) 0 0
\(328\) −23.4345 9.76223i −1.29395 0.539029i
\(329\) −7.84076 10.1103i −0.432275 0.557396i
\(330\) 0 0
\(331\) 22.3802 1.23012 0.615062 0.788479i \(-0.289131\pi\)
0.615062 + 0.788479i \(0.289131\pi\)
\(332\) −5.50249 + 20.4258i −0.301988 + 1.12101i
\(333\) 0 0
\(334\) 3.63251 27.4492i 0.198762 1.50196i
\(335\) 17.0276 0.930315
\(336\) 0 0
\(337\) 2.22051 0.120959 0.0604795 0.998169i \(-0.480737\pi\)
0.0604795 + 0.998169i \(0.480737\pi\)
\(338\) −1.79990 + 13.6010i −0.0979015 + 0.739798i
\(339\) 0 0
\(340\) −6.98249 + 25.9197i −0.378679 + 1.40570i
\(341\) 24.2926 1.31552
\(342\) 0 0
\(343\) −16.9992 + 7.35038i −0.917869 + 0.396883i
\(344\) 8.74213 20.9857i 0.471344 1.13148i
\(345\) 0 0
\(346\) −1.01936 + 7.70287i −0.0548013 + 0.414109i
\(347\) 17.4186 0.935080 0.467540 0.883972i \(-0.345140\pi\)
0.467540 + 0.883972i \(0.345140\pi\)
\(348\) 0 0
\(349\) 29.0839 1.55683 0.778413 0.627753i \(-0.216025\pi\)
0.778413 + 0.627753i \(0.216025\pi\)
\(350\) 31.6079 18.4377i 1.68951 0.985534i
\(351\) 0 0
\(352\) 15.7246 20.3509i 0.838125 1.08471i
\(353\) 7.02449i 0.373876i 0.982372 + 0.186938i \(0.0598563\pi\)
−0.982372 + 0.186938i \(0.940144\pi\)
\(354\) 0 0
\(355\) 5.68700i 0.301835i
\(356\) −8.30185 + 30.8174i −0.439997 + 1.63332i
\(357\) 0 0
\(358\) −1.86102 + 14.0629i −0.0983577 + 0.743245i
\(359\) 11.1509i 0.588521i −0.955725 0.294260i \(-0.904927\pi\)
0.955725 0.294260i \(-0.0950733\pi\)
\(360\) 0 0
\(361\) 16.1540 0.850211
\(362\) 4.49883 33.9956i 0.236453 1.78677i
\(363\) 0 0
\(364\) 3.71155 + 8.86511i 0.194538 + 0.464658i
\(365\) 26.8438i 1.40507i
\(366\) 0 0
\(367\) 6.42880 0.335581 0.167790 0.985823i \(-0.446337\pi\)
0.167790 + 0.985823i \(0.446337\pi\)
\(368\) −10.0592 + 17.3154i −0.524370 + 0.902630i
\(369\) 0 0
\(370\) −7.68889 1.01751i −0.399726 0.0528980i
\(371\) −12.2780 + 9.52188i −0.637440 + 0.494351i
\(372\) 0 0
\(373\) 1.75527i 0.0908842i 0.998967 + 0.0454421i \(0.0144697\pi\)
−0.998967 + 0.0454421i \(0.985530\pi\)
\(374\) 22.2531 + 2.94487i 1.15068 + 0.152276i
\(375\) 0 0
\(376\) 5.25967 12.6260i 0.271247 0.651136i
\(377\) 3.29878i 0.169896i
\(378\) 0 0
\(379\) −19.0061 −0.976280 −0.488140 0.872765i \(-0.662324\pi\)
−0.488140 + 0.872765i \(0.662324\pi\)
\(380\) −3.37401 + 12.5247i −0.173083 + 0.642503i
\(381\) 0 0
\(382\) −11.9088 1.57596i −0.609308 0.0806330i
\(383\) −28.4936 −1.45595 −0.727977 0.685602i \(-0.759539\pi\)
−0.727977 + 0.685602i \(0.759539\pi\)
\(384\) 0 0
\(385\) −28.3392 36.5420i −1.44430 1.86235i
\(386\) −2.09569 + 15.8362i −0.106668 + 0.806039i
\(387\) 0 0
\(388\) 6.03909 22.4178i 0.306589 1.13809i
\(389\) 29.3858i 1.48992i 0.667110 + 0.744960i \(0.267531\pi\)
−0.667110 + 0.744960i \(0.732469\pi\)
\(390\) 0 0
\(391\) −17.4783 −0.883914
\(392\) −15.8067 11.9226i −0.798358 0.602183i
\(393\) 0 0
\(394\) −3.34337 0.442447i −0.168437 0.0222902i
\(395\) 11.4492i 0.576074i
\(396\) 0 0
\(397\) −15.5442 −0.780143 −0.390071 0.920785i \(-0.627550\pi\)
−0.390071 + 0.920785i \(0.627550\pi\)
\(398\) 0.457038 3.45363i 0.0229092 0.173115i
\(399\) 0 0
\(400\) 33.8254 + 19.6504i 1.69127 + 0.982520i
\(401\) 15.5595 0.777004 0.388502 0.921448i \(-0.372993\pi\)
0.388502 + 0.921448i \(0.372993\pi\)
\(402\) 0 0
\(403\) −9.70478 −0.483429
\(404\) −22.2726 6.00000i −1.10811 0.298511i
\(405\) 0 0
\(406\) −3.42417 5.87009i −0.169938 0.291328i
\(407\) 6.48559i 0.321479i
\(408\) 0 0
\(409\) 18.3565i 0.907670i 0.891086 + 0.453835i \(0.149945\pi\)
−0.891086 + 0.453835i \(0.850055\pi\)
\(410\) −48.3769 6.40198i −2.38916 0.316171i
\(411\) 0 0
\(412\) −2.20597 0.594262i −0.108680 0.0292772i
\(413\) −17.7015 + 13.7280i −0.871035 + 0.675510i
\(414\) 0 0
\(415\) 40.6627i 1.99605i
\(416\) −6.28191 + 8.13010i −0.307996 + 0.398611i
\(417\) 0 0
\(418\) 10.7529 + 1.42299i 0.525942 + 0.0696008i
\(419\) 21.1680i 1.03412i 0.855948 + 0.517062i \(0.172974\pi\)
−0.855948 + 0.517062i \(0.827026\pi\)
\(420\) 0 0
\(421\) 2.20597i 0.107512i 0.998554 + 0.0537561i \(0.0171193\pi\)
−0.998554 + 0.0537561i \(0.982881\pi\)
\(422\) −0.00697882 + 0.0527358i −0.000339724 + 0.00256714i
\(423\) 0 0
\(424\) −15.3331 6.38738i −0.744641 0.310199i
\(425\) 34.1435i 1.65620i
\(426\) 0 0
\(427\) 4.89589 + 6.31300i 0.236929 + 0.305507i
\(428\) 0.153757 + 0.0414204i 0.00743212 + 0.00200213i
\(429\) 0 0
\(430\) 5.73300 43.3217i 0.276470 2.08916i
\(431\) 17.4255i 0.839358i −0.907673 0.419679i \(-0.862143\pi\)
0.907673 0.419679i \(-0.137857\pi\)
\(432\) 0 0
\(433\) 2.18549i 0.105028i −0.998620 0.0525139i \(-0.983277\pi\)
0.998620 0.0525139i \(-0.0167234\pi\)
\(434\) 17.2694 10.0737i 0.828958 0.483551i
\(435\) 0 0
\(436\) 10.4609 38.8319i 0.500985 1.85971i
\(437\) −8.44568 −0.404012
\(438\) 0 0
\(439\) 27.5128 1.31311 0.656556 0.754277i \(-0.272013\pi\)
0.656556 + 0.754277i \(0.272013\pi\)
\(440\) 19.0103 45.6347i 0.906280 2.17555i
\(441\) 0 0
\(442\) −8.89000 1.17646i −0.422854 0.0559586i
\(443\) −3.37840 −0.160513 −0.0802563 0.996774i \(-0.525574\pi\)
−0.0802563 + 0.996774i \(0.525574\pi\)
\(444\) 0 0
\(445\) 61.3496i 2.90825i
\(446\) 2.39605 18.1059i 0.113456 0.857338i
\(447\) 0 0
\(448\) 2.73938 20.9880i 0.129424 0.991589i
\(449\) −1.76553 −0.0833206 −0.0416603 0.999132i \(-0.513265\pi\)
−0.0416603 + 0.999132i \(0.513265\pi\)
\(450\) 0 0
\(451\) 40.8060i 1.92148i
\(452\) 9.62195 + 2.59205i 0.452579 + 0.121920i
\(453\) 0 0
\(454\) 2.08093 + 0.275380i 0.0976627 + 0.0129242i
\(455\) 11.3214 + 14.5984i 0.530755 + 0.684381i
\(456\) 0 0
\(457\) −24.4178 −1.14222 −0.571108 0.820875i \(-0.693486\pi\)
−0.571108 + 0.820875i \(0.693486\pi\)
\(458\) 0.866317 6.54637i 0.0404803 0.305892i
\(459\) 0 0
\(460\) −10.0126 + 37.1680i −0.466841 + 1.73297i
\(461\) −7.77884 −0.362297 −0.181148 0.983456i \(-0.557981\pi\)
−0.181148 + 0.983456i \(0.557981\pi\)
\(462\) 0 0
\(463\) 16.5615i 0.769678i 0.922984 + 0.384839i \(0.125743\pi\)
−0.922984 + 0.384839i \(0.874257\pi\)
\(464\) 3.64939 6.28191i 0.169419 0.291630i
\(465\) 0 0
\(466\) 1.55041 11.7157i 0.0718212 0.542721i
\(467\) 14.1103i 0.652945i −0.945207 0.326472i \(-0.894140\pi\)
0.945207 0.326472i \(-0.105860\pi\)
\(468\) 0 0
\(469\) −7.18140 9.26004i −0.331606 0.427589i
\(470\) 3.44924 26.0644i 0.159102 1.20226i
\(471\) 0 0
\(472\) −22.1062 9.20888i −1.01752 0.423873i
\(473\) −36.5420 −1.68020
\(474\) 0 0
\(475\) 16.4985i 0.757002i
\(476\) 17.0407 7.13442i 0.781060 0.327006i
\(477\) 0 0
\(478\) −27.8362 3.68371i −1.27320 0.168489i
\(479\) −8.74757 −0.399687 −0.199843 0.979828i \(-0.564043\pi\)
−0.199843 + 0.979828i \(0.564043\pi\)
\(480\) 0 0
\(481\) 2.59097i 0.118138i
\(482\) 9.22090 + 1.22025i 0.420001 + 0.0555810i
\(483\) 0 0
\(484\) −18.6733 5.03037i −0.848786 0.228653i
\(485\) 44.6281i 2.02646i
\(486\) 0 0
\(487\) 31.0252i 1.40589i −0.711246 0.702943i \(-0.751869\pi\)
0.711246 0.702943i \(-0.248131\pi\)
\(488\) −3.28422 + 7.88386i −0.148670 + 0.356885i
\(489\) 0 0
\(490\) −35.2994 14.2257i −1.59466 0.642650i
\(491\) 22.0446 0.994859 0.497429 0.867505i \(-0.334277\pi\)
0.497429 + 0.867505i \(0.334277\pi\)
\(492\) 0 0
\(493\) 6.34099 0.285584
\(494\) −4.29574 0.568479i −0.193275 0.0255771i
\(495\) 0 0
\(496\) 18.4809 + 10.7362i 0.829819 + 0.482072i
\(497\) −3.09274 + 2.39850i −0.138728 + 0.107587i
\(498\) 0 0
\(499\) 40.6409 1.81934 0.909668 0.415337i \(-0.136336\pi\)
0.909668 + 0.415337i \(0.136336\pi\)
\(500\) 35.4859 + 9.55949i 1.58698 + 0.427514i
\(501\) 0 0
\(502\) −6.81125 0.901371i −0.304001 0.0402301i
\(503\) −33.1848 −1.47964 −0.739818 0.672807i \(-0.765088\pi\)
−0.739818 + 0.672807i \(0.765088\pi\)
\(504\) 0 0
\(505\) −44.3392 −1.97307
\(506\) 31.9101 + 4.22284i 1.41858 + 0.187728i
\(507\) 0 0
\(508\) −2.80130 + 10.3987i −0.124287 + 0.461368i
\(509\) −35.5240 −1.57457 −0.787287 0.616586i \(-0.788515\pi\)
−0.787287 + 0.616586i \(0.788515\pi\)
\(510\) 0 0
\(511\) 14.5984 11.3214i 0.645793 0.500829i
\(512\) 20.9569 8.53268i 0.926175 0.377095i
\(513\) 0 0
\(514\) −12.9123 1.70876i −0.569537 0.0753700i
\(515\) −4.39152 −0.193514
\(516\) 0 0
\(517\) −21.9853 −0.966914
\(518\) 2.68945 + 4.61056i 0.118168 + 0.202576i
\(519\) 0 0
\(520\) −7.59452 + 18.2309i −0.333042 + 0.799476i
\(521\) 26.4737i 1.15984i −0.814675 0.579918i \(-0.803085\pi\)
0.814675 0.579918i \(-0.196915\pi\)
\(522\) 0 0
\(523\) 41.7100i 1.82385i −0.410358 0.911924i \(-0.634596\pi\)
0.410358 0.911924i \(-0.365404\pi\)
\(524\) 6.81125 25.2841i 0.297551 1.10454i
\(525\) 0 0
\(526\) 5.47967 + 0.725155i 0.238925 + 0.0316183i
\(527\) 18.6547i 0.812613i
\(528\) 0 0
\(529\) −2.06320 −0.0897043
\(530\) −31.6528 4.18878i −1.37491 0.181949i
\(531\) 0 0
\(532\) 8.23425 3.44743i 0.357000 0.149465i
\(533\) 16.3018i 0.706110i
\(534\) 0 0
\(535\) 0.306091 0.0132335
\(536\) 4.81736 11.5642i 0.208078 0.499498i
\(537\) 0 0
\(538\) 1.71594 12.9666i 0.0739796 0.559031i
\(539\) −7.92038 + 30.8232i −0.341155 + 1.32765i
\(540\) 0 0
\(541\) 10.3187i 0.443637i −0.975088 0.221818i \(-0.928801\pi\)
0.975088 0.221818i \(-0.0711992\pi\)
\(542\) −3.06502 + 23.1610i −0.131654 + 0.994850i
\(543\) 0 0
\(544\) 15.6279 + 12.0752i 0.670039 + 0.517721i
\(545\) 77.3045i 3.31136i
\(546\) 0 0
\(547\) 19.6461 0.840006 0.420003 0.907523i \(-0.362029\pi\)
0.420003 + 0.907523i \(0.362029\pi\)
\(548\) −37.7724 10.1755i −1.61356 0.434674i
\(549\) 0 0
\(550\) 8.24924 62.3358i 0.351749 2.65801i
\(551\) 3.06403 0.130532
\(552\) 0 0
\(553\) −6.22640 + 4.82873i −0.264773 + 0.205339i
\(554\) −4.57701 0.605701i −0.194458 0.0257337i
\(555\) 0 0
\(556\) −7.59068 + 28.1774i −0.321916 + 1.19499i
\(557\) 30.0989i 1.27533i 0.770314 + 0.637665i \(0.220100\pi\)
−0.770314 + 0.637665i \(0.779900\pi\)
\(558\) 0 0
\(559\) 14.5984 0.617445
\(560\) −5.40956 40.3245i −0.228596 1.70402i
\(561\) 0 0
\(562\) −3.55629 + 26.8733i −0.150013 + 1.13358i
\(563\) 6.35650i 0.267894i −0.990988 0.133947i \(-0.957235\pi\)
0.990988 0.133947i \(-0.0427653\pi\)
\(564\) 0 0
\(565\) 19.1549 0.805852
\(566\) 28.4295 + 3.76223i 1.19498 + 0.158139i
\(567\) 0 0
\(568\) −3.86231 1.60894i −0.162059 0.0675097i
\(569\) 37.7589 1.58294 0.791469 0.611210i \(-0.209317\pi\)
0.791469 + 0.611210i \(0.209317\pi\)
\(570\) 0 0
\(571\) −29.0324 −1.21497 −0.607484 0.794332i \(-0.707821\pi\)
−0.607484 + 0.794332i \(0.707821\pi\)
\(572\) 15.9463 + 4.29574i 0.666746 + 0.179614i
\(573\) 0 0
\(574\) 16.9214 + 29.0086i 0.706287 + 1.21080i
\(575\) 48.9605i 2.04179i
\(576\) 0 0
\(577\) 38.4060i 1.59886i −0.600758 0.799431i \(-0.705134\pi\)
0.600758 0.799431i \(-0.294866\pi\)
\(578\) 0.892640 6.74528i 0.0371289 0.280567i
\(579\) 0 0
\(580\) 3.63251 13.4843i 0.150832 0.559904i
\(581\) 22.1134 17.1495i 0.917420 0.711483i
\(582\) 0 0
\(583\) 26.6992i 1.10577i
\(584\) 18.2309 + 7.59452i 0.754398 + 0.314263i
\(585\) 0 0
\(586\) 0.940721 7.10861i 0.0388608 0.293654i
\(587\) 0.157054i 0.00648231i 0.999995 + 0.00324116i \(0.00103169\pi\)
−0.999995 + 0.00324116i \(0.998968\pi\)
\(588\) 0 0
\(589\) 9.01416i 0.371422i
\(590\) −45.6347 6.03909i −1.87875 0.248626i
\(591\) 0 0
\(592\) −2.86635 + 4.93401i −0.117806 + 0.202787i
\(593\) 37.5927i 1.54375i 0.635776 + 0.771874i \(0.280680\pi\)
−0.635776 + 0.771874i \(0.719320\pi\)
\(594\) 0 0
\(595\) 28.0613 21.7622i 1.15040 0.892165i
\(596\) −9.57086 + 35.5281i −0.392038 + 1.45529i
\(597\) 0 0
\(598\) −12.7479 1.68700i −0.521302 0.0689868i
\(599\) 18.7569i 0.766387i −0.923668 0.383194i \(-0.874824\pi\)
0.923668 0.383194i \(-0.125176\pi\)
\(600\) 0 0
\(601\) 2.44051i 0.0995503i −0.998760 0.0497751i \(-0.984150\pi\)
0.998760 0.0497751i \(-0.0158505\pi\)
\(602\) −25.9774 + 15.1532i −1.05876 + 0.617600i
\(603\) 0 0
\(604\) −5.14383 + 19.0945i −0.209300 + 0.776943i
\(605\) −37.1738 −1.51133
\(606\) 0 0
\(607\) −40.4839 −1.64319 −0.821596 0.570070i \(-0.806916\pi\)
−0.821596 + 0.570070i \(0.806916\pi\)
\(608\) 7.55154 + 5.83488i 0.306255 + 0.236635i
\(609\) 0 0
\(610\) −2.15376 + 16.2750i −0.0872031 + 0.658955i
\(611\) 8.78304 0.355324
\(612\) 0 0
\(613\) 8.57378i 0.346292i −0.984896 0.173146i \(-0.944607\pi\)
0.984896 0.173146i \(-0.0553932\pi\)
\(614\) 21.3754 + 2.82873i 0.862643 + 0.114158i
\(615\) 0 0
\(616\) −32.8350 + 8.90821i −1.32296 + 0.358922i
\(617\) −31.3390 −1.26166 −0.630830 0.775921i \(-0.717285\pi\)
−0.630830 + 0.775921i \(0.717285\pi\)
\(618\) 0 0
\(619\) 41.5595i 1.67042i −0.549933 0.835209i \(-0.685347\pi\)
0.549933 0.835209i \(-0.314653\pi\)
\(620\) 39.6698 + 10.6866i 1.59318 + 0.429183i
\(621\) 0 0
\(622\) −1.65399 + 12.4985i −0.0663191 + 0.501143i
\(623\) 33.3635 25.8743i 1.33668 1.03663i
\(624\) 0 0
\(625\) 21.7447 0.869789
\(626\) −34.9565 4.62599i −1.39714 0.184892i
\(627\) 0 0
\(628\) 23.8657 + 6.42914i 0.952343 + 0.256551i
\(629\) −4.98041 −0.198582
\(630\) 0 0
\(631\) 48.0528i 1.91295i 0.291814 + 0.956475i \(0.405741\pi\)
−0.291814 + 0.956475i \(0.594259\pi\)
\(632\) −7.77571 3.23917i −0.309301 0.128847i
\(633\) 0 0
\(634\) 22.5899 + 2.98944i 0.897158 + 0.118726i
\(635\) 20.7012i 0.821503i
\(636\) 0 0
\(637\) 3.16416 12.3137i 0.125368 0.487888i
\(638\) −11.5767 1.53201i −0.458328 0.0606530i
\(639\) 0 0
\(640\) 34.6309 26.3156i 1.36891 1.04021i
\(641\) 26.9335 1.06381 0.531905 0.846804i \(-0.321476\pi\)
0.531905 + 0.846804i \(0.321476\pi\)
\(642\) 0 0
\(643\) 20.2780i 0.799685i 0.916584 + 0.399843i \(0.130935\pi\)
−0.916584 + 0.399843i \(0.869065\pi\)
\(644\) 24.4358 10.2305i 0.962904 0.403138i
\(645\) 0 0
\(646\) −1.09274 + 8.25737i −0.0429934 + 0.324882i
\(647\) 16.3928 0.644466 0.322233 0.946660i \(-0.395567\pi\)
0.322233 + 0.946660i \(0.395567\pi\)
\(648\) 0 0
\(649\) 38.4930i 1.51098i
\(650\) −3.29553 + 24.9029i −0.129261 + 0.976771i
\(651\) 0 0
\(652\) 6.89589 + 1.85767i 0.270064 + 0.0727522i
\(653\) 27.4567i 1.07447i 0.843434 + 0.537233i \(0.180530\pi\)
−0.843434 + 0.537233i \(0.819470\pi\)
\(654\) 0 0
\(655\) 50.3343i 1.96672i
\(656\) −18.0344 + 31.0438i −0.704127 + 1.21206i
\(657\) 0 0
\(658\) −15.6292 + 9.11689i −0.609290 + 0.355413i
\(659\) −34.1059 −1.32858 −0.664288 0.747477i \(-0.731265\pi\)
−0.664288 + 0.747477i \(0.731265\pi\)
\(660\) 0 0
\(661\) 42.0551 1.63575 0.817877 0.575393i \(-0.195151\pi\)
0.817877 + 0.575393i \(0.195151\pi\)
\(662\) 4.15226 31.3768i 0.161382 1.21949i
\(663\) 0 0
\(664\) 27.6159 + 11.5041i 1.07171 + 0.446446i
\(665\) 13.5595 10.5157i 0.525815 0.407783i
\(666\) 0 0
\(667\) 9.09274 0.352072
\(668\) −37.8096 10.1855i −1.46290 0.394088i
\(669\) 0 0
\(670\) 3.15918 23.8725i 0.122050 0.922275i
\(671\) 13.7280 0.529963
\(672\) 0 0
\(673\) 43.0405 1.65909 0.829544 0.558441i \(-0.188600\pi\)
0.829544 + 0.558441i \(0.188600\pi\)
\(674\) 0.411978 3.11313i 0.0158688 0.119913i
\(675\) 0 0
\(676\) 18.7346 + 5.04688i 0.720560 + 0.194111i
\(677\) 5.91811 0.227451 0.113726 0.993512i \(-0.463722\pi\)
0.113726 + 0.993512i \(0.463722\pi\)
\(678\) 0 0
\(679\) −24.2700 + 18.8220i −0.931395 + 0.722321i
\(680\) 35.0438 + 14.5984i 1.34387 + 0.559821i
\(681\) 0 0
\(682\) 4.50708 34.0580i 0.172585 1.30415i
\(683\) 1.50261 0.0574958 0.0287479 0.999587i \(-0.490848\pi\)
0.0287479 + 0.999587i \(0.490848\pi\)
\(684\) 0 0
\(685\) −75.1954 −2.87307
\(686\) 7.15126 + 25.1964i 0.273036 + 0.962004i
\(687\) 0 0
\(688\) −27.7998 16.1499i −1.05986 0.615711i
\(689\) 10.6662i 0.406350i
\(690\) 0 0
\(691\) 8.62599i 0.328148i 0.986448 + 0.164074i \(0.0524636\pi\)
−0.986448 + 0.164074i \(0.947536\pi\)
\(692\) 10.6102 + 2.85827i 0.403340 + 0.108655i
\(693\) 0 0
\(694\) 3.23173 24.4207i 0.122675 0.926998i
\(695\) 56.0941i 2.12777i
\(696\) 0 0
\(697\) −31.3357 −1.18692
\(698\) 5.39603 40.7754i 0.204243 1.54337i
\(699\) 0 0
\(700\) −19.9851 47.7348i −0.755366 1.80421i
\(701\) 10.4065i 0.393050i 0.980499 + 0.196525i \(0.0629656\pi\)
−0.980499 + 0.196525i \(0.937034\pi\)
\(702\) 0 0
\(703\) −2.40659 −0.0907661
\(704\) −25.6144 25.8215i −0.965378 0.973186i
\(705\) 0 0
\(706\) 9.84827 + 1.30328i 0.370645 + 0.0490494i
\(707\) 18.7001 + 24.1128i 0.703291 + 0.906857i
\(708\) 0 0
\(709\) 34.8737i 1.30971i −0.755755 0.654855i \(-0.772730\pi\)
0.755755 0.654855i \(-0.227270\pi\)
\(710\) −7.97313 1.05513i −0.299226 0.0395982i
\(711\) 0 0
\(712\) 41.6654 + 17.3568i 1.56148 + 0.650472i
\(713\) 26.7502i 1.00180i
\(714\) 0 0
\(715\) 31.7450 1.18719
\(716\) 19.3707 + 5.21825i 0.723918 + 0.195015i
\(717\) 0 0
\(718\) −15.6334 2.06886i −0.583434 0.0772091i
\(719\) −8.74757 −0.326229 −0.163115 0.986607i \(-0.552154\pi\)
−0.163115 + 0.986607i \(0.552154\pi\)
\(720\) 0 0
\(721\) 1.85213 + 2.38823i 0.0689769 + 0.0889422i
\(722\) 2.99710 22.6478i 0.111541 0.842863i
\(723\) 0 0
\(724\) −46.8268 12.6146i −1.74031 0.468819i
\(725\) 17.7625i 0.659683i
\(726\) 0 0
\(727\) −23.7851 −0.882140 −0.441070 0.897473i \(-0.645401\pi\)
−0.441070 + 0.897473i \(0.645401\pi\)
\(728\) 13.1174 3.55879i 0.486164 0.131897i
\(729\) 0 0
\(730\) 37.6347 + 4.98041i 1.39292 + 0.184333i
\(731\) 28.0613i 1.03788i
\(732\) 0 0
\(733\) 4.79132 0.176971 0.0884857 0.996077i \(-0.471797\pi\)
0.0884857 + 0.996077i \(0.471797\pi\)
\(734\) 1.19276 9.01312i 0.0440254 0.332680i
\(735\) 0 0
\(736\) 22.4098 + 17.3154i 0.826035 + 0.638256i
\(737\) −20.1365 −0.741738
\(738\) 0 0
\(739\) 13.7563 0.506035 0.253018 0.967462i \(-0.418577\pi\)
0.253018 + 0.967462i \(0.418577\pi\)
\(740\) −2.85309 + 10.5910i −0.104882 + 0.389332i
\(741\) 0 0
\(742\) 11.0716 + 18.9802i 0.406452 + 0.696786i
\(743\) 11.5310i 0.423033i −0.977374 0.211517i \(-0.932160\pi\)
0.977374 0.211517i \(-0.0678402\pi\)
\(744\) 0 0
\(745\) 70.7275i 2.59125i
\(746\) 2.46087 + 0.325660i 0.0900987 + 0.0119233i
\(747\) 0 0
\(748\) 8.25737 30.6522i 0.301919 1.12076i
\(749\) −0.129094 0.166461i −0.00471701 0.00608234i
\(750\) 0 0
\(751\) 40.8541i 1.49079i −0.666625 0.745393i \(-0.732262\pi\)
0.666625 0.745393i \(-0.267738\pi\)
\(752\) −16.7257 9.71655i −0.609923 0.354326i
\(753\) 0 0
\(754\) 4.62486 + 0.612033i 0.168427 + 0.0222889i
\(755\) 38.0123i 1.38341i
\(756\) 0 0
\(757\) 27.8196i 1.01112i 0.862791 + 0.505561i \(0.168714\pi\)
−0.862791 + 0.505561i \(0.831286\pi\)
\(758\) −3.52627 + 26.6464i −0.128080 + 0.967842i
\(759\) 0 0
\(760\) 16.9335 + 7.05407i 0.614243 + 0.255878i
\(761\) 26.4737i 0.959672i 0.877358 + 0.479836i \(0.159304\pi\)
−0.877358 + 0.479836i \(0.840696\pi\)
\(762\) 0 0
\(763\) −42.0402 + 32.6033i −1.52196 + 1.18032i
\(764\) −4.41896 + 16.4036i −0.159872 + 0.593463i
\(765\) 0 0
\(766\) −5.28650 + 39.9477i −0.191009 + 1.44337i
\(767\) 15.3778i 0.555259i
\(768\) 0 0
\(769\) 31.5945i 1.13933i 0.821878 + 0.569664i \(0.192927\pi\)
−0.821878 + 0.569664i \(0.807073\pi\)
\(770\) −56.4894 + 32.9516i −2.03574 + 1.18749i
\(771\) 0 0
\(772\) 21.8133 + 5.87626i 0.785079 + 0.211491i
\(773\) 33.5413 1.20640 0.603199 0.797591i \(-0.293893\pi\)
0.603199 + 0.797591i \(0.293893\pi\)
\(774\) 0 0
\(775\) 52.2560 1.87709
\(776\) −30.3090 12.6260i −1.08803 0.453247i
\(777\) 0 0
\(778\) 41.1986 + 5.45204i 1.47704 + 0.195465i
\(779\) −15.1417 −0.542509
\(780\) 0 0
\(781\) 6.72535i 0.240652i
\(782\) −3.24280 + 24.5044i −0.115962 + 0.876274i
\(783\) 0 0
\(784\) −19.6481 + 19.9488i −0.701716 + 0.712457i
\(785\) 47.5105 1.69572
\(786\) 0 0
\(787\) 1.03147i 0.0367679i −0.999831 0.0183840i \(-0.994148\pi\)
0.999831 0.0183840i \(-0.00585213\pi\)
\(788\) −1.24061 + 4.60529i −0.0441950 + 0.164057i
\(789\) 0 0
\(790\) −16.0517 2.12421i −0.571095 0.0755761i
\(791\) −8.07860 10.4169i −0.287242 0.370384i
\(792\) 0 0
\(793\) −5.48426 −0.194752
\(794\) −2.88397 + 21.7929i −0.102348 + 0.773400i
\(795\) 0 0
\(796\) −4.75716 1.28152i −0.168613 0.0454224i
\(797\) 22.2199 0.787070 0.393535 0.919310i \(-0.371252\pi\)
0.393535 + 0.919310i \(0.371252\pi\)
\(798\) 0 0
\(799\) 16.8830i 0.597276i
\(800\) 33.8254 43.7771i 1.19591 1.54775i
\(801\) 0 0
\(802\) 2.88680 21.8143i 0.101937 0.770288i
\(803\) 31.7450i 1.12026i
\(804\) 0 0
\(805\) 40.2388 31.2062i 1.41823 1.09988i
\(806\) −1.80056 + 13.6060i −0.0634219 + 0.479251i
\(807\) 0 0
\(808\) −12.5443 + 30.1128i −0.441305 + 1.05937i
\(809\) 52.4790 1.84506 0.922532 0.385920i \(-0.126116\pi\)
0.922532 + 0.385920i \(0.126116\pi\)
\(810\) 0 0
\(811\) 4.40548i 0.154697i 0.997004 + 0.0773487i \(0.0246455\pi\)
−0.997004 + 0.0773487i \(0.975355\pi\)
\(812\) −8.86511 + 3.71155i −0.311104 + 0.130250i
\(813\) 0 0
\(814\) 9.09274 + 1.20329i 0.318700 + 0.0421754i
\(815\) 13.7280 0.480870
\(816\) 0 0
\(817\) 13.5595i 0.474387i
\(818\) 25.7356 + 3.40574i 0.899825 + 0.119079i
\(819\) 0 0
\(820\) −17.9510 + 66.6361i −0.626877 + 2.32703i
\(821\) 21.2067i 0.740119i −0.929008 0.370060i \(-0.879337\pi\)
0.929008 0.370060i \(-0.120663\pi\)
\(822\) 0 0
\(823\) 29.3609i 1.02346i −0.859148 0.511728i \(-0.829006\pi\)
0.859148 0.511728i \(-0.170994\pi\)
\(824\) −1.24243 + 2.98249i −0.0432821 + 0.103900i
\(825\) 0 0
\(826\) 15.9623 + 27.3644i 0.555399 + 0.952128i
\(827\) 28.2161 0.981171 0.490585 0.871393i \(-0.336783\pi\)
0.490585 + 0.871393i \(0.336783\pi\)
\(828\) 0 0
\(829\) 9.77173 0.339386 0.169693 0.985497i \(-0.445722\pi\)
0.169693 + 0.985497i \(0.445722\pi\)
\(830\) 57.0087 + 7.54428i 1.97880 + 0.261866i
\(831\) 0 0
\(832\) 10.2328 + 10.3156i 0.354759 + 0.357629i
\(833\) −23.6698 6.08221i −0.820108 0.210736i
\(834\) 0 0
\(835\) −75.2694 −2.60481
\(836\) 3.99004 14.8115i 0.137999 0.512266i
\(837\) 0 0
\(838\) 29.6773 + 3.92736i 1.02519 + 0.135668i
\(839\) −35.0785 −1.21104 −0.605522 0.795828i \(-0.707036\pi\)
−0.605522 + 0.795828i \(0.707036\pi\)
\(840\) 0 0
\(841\) 25.7012 0.886249
\(842\) 3.09274 + 0.409280i 0.106583 + 0.0141047i
\(843\) 0 0
\(844\) 0.0726403 + 0.0195685i 0.00250038 + 0.000673575i
\(845\) 37.2958 1.28301
\(846\) 0 0
\(847\) 15.6781 + 20.2161i 0.538706 + 0.694633i
\(848\) −11.7998 + 20.3118i −0.405209 + 0.697510i
\(849\) 0 0
\(850\) 47.8688 + 6.33475i 1.64189 + 0.217280i
\(851\) −7.14173 −0.244815
\(852\) 0 0
\(853\) −18.3536 −0.628416 −0.314208 0.949354i \(-0.601739\pi\)
−0.314208 + 0.949354i \(0.601739\pi\)
\(854\) 9.75911 5.69272i 0.333950 0.194801i
\(855\) 0 0
\(856\) 0.0865980 0.207881i 0.00295986 0.00710522i
\(857\) 7.62775i 0.260559i 0.991477 + 0.130279i \(0.0415874\pi\)
−0.991477 + 0.130279i \(0.958413\pi\)
\(858\) 0 0
\(859\) 13.9075i 0.474518i −0.971446 0.237259i \(-0.923751\pi\)
0.971446 0.237259i \(-0.0762491\pi\)
\(860\) −59.6730 16.0752i −2.03483 0.548161i
\(861\) 0 0
\(862\) −24.4304 3.23301i −0.832104 0.110117i
\(863\) 13.3074i 0.452989i −0.974012 0.226494i \(-0.927274\pi\)
0.974012 0.226494i \(-0.0727265\pi\)
\(864\) 0 0
\(865\) 21.1223 0.718179
\(866\) −3.06403 0.405480i −0.104120 0.0137788i
\(867\) 0 0
\(868\) −10.9191 26.0805i −0.370619 0.885231i
\(869\) 13.5397i 0.459302i
\(870\) 0 0
\(871\) 8.04444 0.272575
\(872\) −52.5011 21.8706i −1.77791 0.740633i
\(873\) 0 0
\(874\) −1.56695 + 11.8408i −0.0530030 + 0.400520i
\(875\) −29.7940 38.4178i −1.00722 1.29876i
\(876\) 0 0
\(877\) 25.0885i 0.847179i 0.905854 + 0.423589i \(0.139230\pi\)
−0.905854 + 0.423589i \(0.860770\pi\)
\(878\) 5.10453 38.5726i 0.172269 1.30176i
\(879\) 0 0
\(880\) −60.4524 35.1190i −2.03785 1.18386i
\(881\) 5.29180i 0.178285i −0.996019 0.0891426i \(-0.971587\pi\)
0.996019 0.0891426i \(-0.0284127\pi\)
\(882\) 0 0
\(883\) −21.5219 −0.724269 −0.362134 0.932126i \(-0.617952\pi\)
−0.362134 + 0.932126i \(0.617952\pi\)
\(884\) −3.29878 + 12.2454i −0.110950 + 0.411858i
\(885\) 0 0
\(886\) −0.626805 + 4.73648i −0.0210579 + 0.159125i
\(887\) −14.7656 −0.495780 −0.247890 0.968788i \(-0.579737\pi\)
−0.247890 + 0.968788i \(0.579737\pi\)
\(888\) 0 0
\(889\) 11.2579 8.73076i 0.377577 0.292820i
\(890\) 86.0116 + 11.3824i 2.88311 + 0.381538i
\(891\) 0 0
\(892\) −24.9397 6.71848i −0.835043 0.224951i
\(893\) 8.15802i 0.272998i
\(894\) 0 0
\(895\) 38.5622 1.28899
\(896\) −28.9167 7.73455i −0.966040 0.258393i
\(897\) 0 0
\(898\) −0.327565 + 2.47526i −0.0109310 + 0.0826005i
\(899\) 9.70478i 0.323672i
\(900\) 0 0
\(901\) −20.5028 −0.683047
\(902\) 57.2096 + 7.57086i 1.90487 + 0.252082i
\(903\) 0 0
\(904\) 5.41922 13.0090i 0.180240 0.432672i
\(905\) −93.2205 −3.09875
\(906\) 0 0
\(907\) 46.8609 1.55599 0.777995 0.628271i \(-0.216237\pi\)
0.777995 + 0.628271i \(0.216237\pi\)
\(908\) 0.772161 2.86635i 0.0256251 0.0951230i
\(909\) 0 0
\(910\) 22.5672 13.1640i 0.748097 0.436383i
\(911\) 54.6440i 1.81044i −0.424945 0.905219i \(-0.639707\pi\)
0.424945 0.905219i \(-0.360293\pi\)
\(912\) 0 0
\(913\) 48.0870i 1.59145i
\(914\) −4.53030 + 34.2335i −0.149849 + 1.13234i
\(915\) 0 0
\(916\) −9.01722 2.42914i −0.297937 0.0802610i
\(917\) −27.3731 + 21.2286i −0.903940 + 0.701029i
\(918\) 0 0
\(919\) 28.6186i 0.944041i 0.881588 + 0.472020i \(0.156475\pi\)
−0.881588 + 0.472020i \(0.843525\pi\)
\(920\) 50.2515 + 20.9335i 1.65674 + 0.690157i
\(921\) 0 0
\(922\) −1.44323 + 10.9059i −0.0475304 + 0.359166i
\(923\) 2.68675i 0.0884353i
\(924\) 0 0
\(925\) 13.9512i 0.458714i
\(926\) 23.2191 + 3.07271i 0.763026 + 0.100975i
\(927\) 0 0
\(928\) −8.13010 6.28191i −0.266884 0.206214i
\(929\) 29.6885i 0.974048i −0.873389 0.487024i \(-0.838082\pi\)
0.873389 0.487024i \(-0.161918\pi\)
\(930\) 0 0
\(931\) −11.4375 2.93899i −0.374848 0.0963214i
\(932\) −16.1377 4.34731i −0.528608 0.142401i
\(933\) 0 0
\(934\) −19.7824 2.61792i −0.647301 0.0856609i
\(935\) 61.0209i 1.99560i
\(936\) 0 0
\(937\) 32.4055i 1.05864i −0.848422 0.529320i \(-0.822447\pi\)
0.848422 0.529320i \(-0.177553\pi\)
\(938\) −14.3149 + 8.35021i −0.467397 + 0.272644i
\(939\) 0 0
\(940\) −35.9020 9.67160i −1.17100 0.315453i
\(941\) −10.5656 −0.344429 −0.172214 0.985060i \(-0.555092\pi\)
−0.172214 + 0.985060i \(0.555092\pi\)
\(942\) 0 0
\(943\) −44.9342 −1.46326
\(944\) −17.0122 + 29.2841i −0.553700 + 0.953117i
\(945\) 0 0
\(946\) −6.77975 + 51.2315i −0.220429 + 1.66568i
\(947\) 3.44186 0.111845 0.0559226 0.998435i \(-0.482190\pi\)
0.0559226 + 0.998435i \(0.482190\pi\)
\(948\) 0 0
\(949\) 12.6820i 0.411674i
\(950\) 23.1307 + 3.06101i 0.750459 + 0.0993124i
\(951\) 0 0
\(952\) −6.84078 25.2146i −0.221711 0.817210i
\(953\) 38.5559 1.24895 0.624475 0.781045i \(-0.285313\pi\)
0.624475 + 0.781045i \(0.285313\pi\)
\(954\) 0 0
\(955\) 32.6555i 1.05671i
\(956\) −10.3291 + 38.3426i −0.334066 + 1.24009i
\(957\) 0 0
\(958\) −1.62296 + 12.2640i −0.0524356 + 0.396232i
\(959\) 31.7137 + 40.8932i 1.02409 + 1.32051i
\(960\) 0 0
\(961\) −2.44924 −0.0790077
\(962\) −3.63251 0.480710i −0.117117 0.0154987i
\(963\) 0 0
\(964\) 3.42157 12.7012i 0.110201 0.409079i
\(965\) 43.4248 1.39790
\(966\) 0 0
\(967\) 10.0322i 0.322614i −0.986904 0.161307i \(-0.948429\pi\)
0.986904 0.161307i \(-0.0515709\pi\)
\(968\) −10.5170 + 25.2465i −0.338031 + 0.811452i
\(969\) 0 0
\(970\) −62.5682 8.28000i −2.00894 0.265855i
\(971\) 28.4807i 0.913989i −0.889469 0.456995i \(-0.848926\pi\)
0.889469 0.456995i \(-0.151074\pi\)
\(972\) 0 0
\(973\) 30.5055 23.6578i 0.977960 0.758433i
\(974\) −43.4970 5.75620i −1.39373 0.184441i
\(975\) 0 0
\(976\) 10.4438 + 6.06716i 0.334297 + 0.194205i
\(977\) −8.98249 −0.287375 −0.143688 0.989623i \(-0.545896\pi\)
−0.143688 + 0.989623i \(0.545896\pi\)
\(978\) 0 0
\(979\) 72.5510i 2.31874i
\(980\) −26.4935 + 46.8500i −0.846303 + 1.49657i
\(981\) 0 0
\(982\) 4.09000 30.9063i 0.130517 0.986260i
\(983\) 11.1768 0.356484 0.178242 0.983987i \(-0.442959\pi\)
0.178242 + 0.983987i \(0.442959\pi\)
\(984\) 0 0
\(985\) 9.16797i 0.292116i
\(986\) 1.17646 8.89000i 0.0374662 0.283115i
\(987\) 0 0
\(988\) −1.59400 + 5.91712i −0.0507120 + 0.188249i
\(989\) 40.2388i 1.27952i
\(990\) 0 0
\(991\) 21.5500i 0.684559i −0.939598 0.342279i \(-0.888801\pi\)
0.939598 0.342279i \(-0.111199\pi\)
\(992\) 18.4809 23.9182i 0.586770 0.759403i
\(993\) 0 0
\(994\) 2.78887 + 4.78100i 0.0884576 + 0.151644i
\(995\) −9.47031 −0.300229
\(996\) 0 0
\(997\) 38.2116 1.21017 0.605087 0.796159i \(-0.293138\pi\)
0.605087 + 0.796159i \(0.293138\pi\)
\(998\) 7.54023 56.9781i 0.238682 1.80361i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.p.g.307.9 16
3.2 odd 2 168.2.p.a.139.8 yes 16
4.3 odd 2 2016.2.p.g.559.1 16
7.6 odd 2 inner 504.2.p.g.307.10 16
8.3 odd 2 inner 504.2.p.g.307.12 16
8.5 even 2 2016.2.p.g.559.16 16
12.11 even 2 672.2.p.a.559.8 16
21.20 even 2 168.2.p.a.139.7 yes 16
24.5 odd 2 672.2.p.a.559.1 16
24.11 even 2 168.2.p.a.139.6 yes 16
28.27 even 2 2016.2.p.g.559.15 16
56.13 odd 2 2016.2.p.g.559.2 16
56.27 even 2 inner 504.2.p.g.307.11 16
84.83 odd 2 672.2.p.a.559.9 16
168.83 odd 2 168.2.p.a.139.5 16
168.125 even 2 672.2.p.a.559.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.p.a.139.5 16 168.83 odd 2
168.2.p.a.139.6 yes 16 24.11 even 2
168.2.p.a.139.7 yes 16 21.20 even 2
168.2.p.a.139.8 yes 16 3.2 odd 2
504.2.p.g.307.9 16 1.1 even 1 trivial
504.2.p.g.307.10 16 7.6 odd 2 inner
504.2.p.g.307.11 16 56.27 even 2 inner
504.2.p.g.307.12 16 8.3 odd 2 inner
672.2.p.a.559.1 16 24.5 odd 2
672.2.p.a.559.8 16 12.11 even 2
672.2.p.a.559.9 16 84.83 odd 2
672.2.p.a.559.16 16 168.125 even 2
2016.2.p.g.559.1 16 4.3 odd 2
2016.2.p.g.559.2 16 56.13 odd 2
2016.2.p.g.559.15 16 28.27 even 2
2016.2.p.g.559.16 16 8.5 even 2