Properties

Label 168.2.p.a.139.6
Level $168$
Weight $2$
Character 168.139
Analytic conductor $1.341$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,2,Mod(139,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34148675396\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.20457921756784916168704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - 4x^{12} - 4x^{10} + 16x^{8} - 16x^{6} - 64x^{4} + 64x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.6
Root \(-1.40199 - 0.185533i\) of defining polynomial
Character \(\chi\) \(=\) 168.139
Dual form 168.2.p.a.139.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.185533 - 1.40199i) q^{2} +1.00000i q^{3} +(-1.93115 + 0.520231i) q^{4} -3.84444 q^{5} +(1.40199 - 0.185533i) q^{6} +(-1.62140 - 2.09071i) q^{7} +(1.08765 + 2.61094i) q^{8} -1.00000 q^{9} +(0.713272 + 5.38987i) q^{10} -4.54637 q^{11} +(-0.520231 - 1.93115i) q^{12} +1.81625 q^{13} +(-2.63033 + 2.66108i) q^{14} -3.84444i q^{15} +(3.45872 - 2.00929i) q^{16} -3.49124i q^{17} +(0.185533 + 1.40199i) q^{18} +1.68700i q^{19} +(7.42422 - 2.00000i) q^{20} +(2.09071 - 1.62140i) q^{21} +(0.843502 + 6.37397i) q^{22} +5.00632i q^{23} +(-2.61094 + 1.08765i) q^{24} +9.77975 q^{25} +(-0.336975 - 2.54637i) q^{26} -1.00000i q^{27} +(4.21882 + 3.19398i) q^{28} -1.81625i q^{29} +(-5.38987 + 0.713272i) q^{30} -5.34329 q^{31} +(-3.45872 - 4.47630i) q^{32} -4.54637i q^{33} +(-4.89469 + 0.647741i) q^{34} +(6.23338 + 8.03761i) q^{35} +(1.93115 - 0.520231i) q^{36} -1.42654i q^{37} +(2.36516 - 0.312995i) q^{38} +1.81625i q^{39} +(-4.18142 - 10.0376i) q^{40} -8.97551i q^{41} +(-2.66108 - 2.63033i) q^{42} -8.03761 q^{43} +(8.77975 - 2.36516i) q^{44} +3.84444 q^{45} +(7.01881 - 0.928837i) q^{46} -4.83580 q^{47} +(2.00929 + 3.45872i) q^{48} +(-1.74213 + 6.77975i) q^{49} +(-1.81447 - 13.7111i) q^{50} +3.49124 q^{51} +(-3.50747 + 0.944872i) q^{52} +5.87263i q^{53} +(-1.40199 + 0.185533i) q^{54} +17.4783 q^{55} +(3.69520 - 6.50734i) q^{56} -1.68700 q^{57} +(-2.54637 + 0.336975i) q^{58} -8.46675i q^{59} +(2.00000 + 7.42422i) q^{60} -3.01955 q^{61} +(0.991357 + 7.49124i) q^{62} +(1.62140 + 2.09071i) q^{63} +(-5.63402 + 5.67959i) q^{64} -6.98249 q^{65} +(-6.37397 + 0.843502i) q^{66} -4.42914 q^{67} +(1.81625 + 6.74213i) q^{68} -5.00632 q^{69} +(10.1122 - 10.2304i) q^{70} +1.47928i q^{71} +(-1.08765 - 2.61094i) q^{72} -6.98249i q^{73} +(-2.00000 + 0.264671i) q^{74} +9.77975i q^{75} +(-0.877633 - 3.25787i) q^{76} +(7.37148 + 9.50514i) q^{77} +(2.54637 - 0.336975i) q^{78} -2.97813i q^{79} +(-13.2968 + 7.72462i) q^{80} +1.00000 q^{81} +(-12.5836 + 1.66525i) q^{82} +10.5770i q^{83} +(-3.19398 + 4.21882i) q^{84} +13.4219i q^{85} +(1.49124 + 11.2687i) q^{86} +1.81625 q^{87} +(-4.94487 - 11.8703i) q^{88} +15.9580i q^{89} +(-0.713272 - 5.38987i) q^{90} +(-2.94487 - 3.79726i) q^{91} +(-2.60444 - 9.66797i) q^{92} -5.34329i q^{93} +(0.897201 + 6.77975i) q^{94} -6.48559i q^{95} +(4.47630 - 3.45872i) q^{96} +11.6085i q^{97} +(9.82836 + 1.18459i) q^{98} +4.54637 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 2 q^{4} - 10 q^{8} - 16 q^{9} - 8 q^{11} - 14 q^{14} + 18 q^{16} - 2 q^{18} + 8 q^{22} + 16 q^{25} - 10 q^{28} - 16 q^{30} - 18 q^{32} + 24 q^{35} - 2 q^{36} - 4 q^{42} - 8 q^{43} + 52 q^{46}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.185533 1.40199i −0.131192 0.991357i
\(3\) 1.00000i 0.577350i
\(4\) −1.93115 + 0.520231i −0.965577 + 0.260116i
\(5\) −3.84444 −1.71929 −0.859644 0.510894i \(-0.829314\pi\)
−0.859644 + 0.510894i \(0.829314\pi\)
\(6\) 1.40199 0.185533i 0.572360 0.0757436i
\(7\) −1.62140 2.09071i −0.612831 0.790214i
\(8\) 1.08765 + 2.61094i 0.384543 + 0.923107i
\(9\) −1.00000 −0.333333
\(10\) 0.713272 + 5.38987i 0.225556 + 1.70443i
\(11\) −4.54637 −1.37078 −0.685391 0.728175i \(-0.740369\pi\)
−0.685391 + 0.728175i \(0.740369\pi\)
\(12\) −0.520231 1.93115i −0.150178 0.557476i
\(13\) 1.81625 0.503738 0.251869 0.967761i \(-0.418955\pi\)
0.251869 + 0.967761i \(0.418955\pi\)
\(14\) −2.63033 + 2.66108i −0.702986 + 0.711204i
\(15\) 3.84444i 0.992631i
\(16\) 3.45872 2.00929i 0.864680 0.502324i
\(17\) 3.49124i 0.846751i −0.905954 0.423375i \(-0.860845\pi\)
0.905954 0.423375i \(-0.139155\pi\)
\(18\) 0.185533 + 1.40199i 0.0437306 + 0.330452i
\(19\) 1.68700i 0.387025i 0.981098 + 0.193513i \(0.0619881\pi\)
−0.981098 + 0.193513i \(0.938012\pi\)
\(20\) 7.42422 2.00000i 1.66011 0.447214i
\(21\) 2.09071 1.62140i 0.456230 0.353818i
\(22\) 0.843502 + 6.37397i 0.179835 + 1.35893i
\(23\) 5.00632i 1.04389i 0.852979 + 0.521945i \(0.174793\pi\)
−0.852979 + 0.521945i \(0.825207\pi\)
\(24\) −2.61094 + 1.08765i −0.532956 + 0.222016i
\(25\) 9.77975 1.95595
\(26\) −0.336975 2.54637i −0.0660863 0.499384i
\(27\) 1.00000i 0.192450i
\(28\) 4.21882 + 3.19398i 0.797283 + 0.603606i
\(29\) 1.81625i 0.337270i −0.985679 0.168635i \(-0.946064\pi\)
0.985679 0.168635i \(-0.0539359\pi\)
\(30\) −5.38987 + 0.713272i −0.984052 + 0.130225i
\(31\) −5.34329 −0.959683 −0.479842 0.877355i \(-0.659306\pi\)
−0.479842 + 0.877355i \(0.659306\pi\)
\(32\) −3.45872 4.47630i −0.611421 0.791306i
\(33\) 4.54637i 0.791422i
\(34\) −4.89469 + 0.647741i −0.839433 + 0.111087i
\(35\) 6.23338 + 8.03761i 1.05363 + 1.35860i
\(36\) 1.93115 0.520231i 0.321859 0.0867052i
\(37\) 1.42654i 0.234522i −0.993101 0.117261i \(-0.962589\pi\)
0.993101 0.117261i \(-0.0374114\pi\)
\(38\) 2.36516 0.312995i 0.383680 0.0507745i
\(39\) 1.81625i 0.290833i
\(40\) −4.18142 10.0376i −0.661140 1.58709i
\(41\) 8.97551i 1.40174i −0.713290 0.700869i \(-0.752796\pi\)
0.713290 0.700869i \(-0.247204\pi\)
\(42\) −2.66108 2.63033i −0.410614 0.405869i
\(43\) −8.03761 −1.22572 −0.612862 0.790190i \(-0.709982\pi\)
−0.612862 + 0.790190i \(0.709982\pi\)
\(44\) 8.77975 2.36516i 1.32360 0.356562i
\(45\) 3.84444 0.573096
\(46\) 7.01881 0.928837i 1.03487 0.136950i
\(47\) −4.83580 −0.705374 −0.352687 0.935741i \(-0.614732\pi\)
−0.352687 + 0.935741i \(0.614732\pi\)
\(48\) 2.00929 + 3.45872i 0.290017 + 0.499223i
\(49\) −1.74213 + 6.77975i −0.248876 + 0.968535i
\(50\) −1.81447 13.7111i −0.256604 1.93904i
\(51\) 3.49124 0.488872
\(52\) −3.50747 + 0.944872i −0.486398 + 0.131030i
\(53\) 5.87263i 0.806668i 0.915053 + 0.403334i \(0.132149\pi\)
−0.915053 + 0.403334i \(0.867851\pi\)
\(54\) −1.40199 + 0.185533i −0.190787 + 0.0252479i
\(55\) 17.4783 2.35677
\(56\) 3.69520 6.50734i 0.493792 0.869580i
\(57\) −1.68700 −0.223449
\(58\) −2.54637 + 0.336975i −0.334355 + 0.0442470i
\(59\) 8.46675i 1.10228i −0.834414 0.551139i \(-0.814194\pi\)
0.834414 0.551139i \(-0.185806\pi\)
\(60\) 2.00000 + 7.42422i 0.258199 + 0.958462i
\(61\) −3.01955 −0.386613 −0.193307 0.981138i \(-0.561921\pi\)
−0.193307 + 0.981138i \(0.561921\pi\)
\(62\) 0.991357 + 7.49124i 0.125903 + 0.951389i
\(63\) 1.62140 + 2.09071i 0.204277 + 0.263405i
\(64\) −5.63402 + 5.67959i −0.704253 + 0.709949i
\(65\) −6.98249 −0.866071
\(66\) −6.37397 + 0.843502i −0.784581 + 0.103828i
\(67\) −4.42914 −0.541105 −0.270553 0.962705i \(-0.587206\pi\)
−0.270553 + 0.962705i \(0.587206\pi\)
\(68\) 1.81625 + 6.74213i 0.220253 + 0.817604i
\(69\) −5.00632 −0.602690
\(70\) 10.1122 10.2304i 1.20863 1.22276i
\(71\) 1.47928i 0.175558i 0.996140 + 0.0877791i \(0.0279769\pi\)
−0.996140 + 0.0877791i \(0.972023\pi\)
\(72\) −1.08765 2.61094i −0.128181 0.307702i
\(73\) 6.98249i 0.817238i −0.912705 0.408619i \(-0.866010\pi\)
0.912705 0.408619i \(-0.133990\pi\)
\(74\) −2.00000 + 0.264671i −0.232495 + 0.0307674i
\(75\) 9.77975i 1.12927i
\(76\) −0.877633 3.25787i −0.100671 0.373703i
\(77\) 7.37148 + 9.50514i 0.840058 + 1.08321i
\(78\) 2.54637 0.336975i 0.288320 0.0381549i
\(79\) 2.97813i 0.335065i −0.985867 0.167533i \(-0.946420\pi\)
0.985867 0.167533i \(-0.0535800\pi\)
\(80\) −13.2968 + 7.72462i −1.48663 + 0.863639i
\(81\) 1.00000 0.111111
\(82\) −12.5836 + 1.66525i −1.38962 + 0.183897i
\(83\) 10.5770i 1.16098i 0.814268 + 0.580489i \(0.197138\pi\)
−0.814268 + 0.580489i \(0.802862\pi\)
\(84\) −3.19398 + 4.21882i −0.348492 + 0.460312i
\(85\) 13.4219i 1.45581i
\(86\) 1.49124 + 11.2687i 0.160805 + 1.21513i
\(87\) 1.81625 0.194723
\(88\) −4.94487 11.8703i −0.527125 1.26538i
\(89\) 15.9580i 1.69154i 0.533544 + 0.845772i \(0.320860\pi\)
−0.533544 + 0.845772i \(0.679140\pi\)
\(90\) −0.713272 5.38987i −0.0751854 0.568143i
\(91\) −2.94487 3.79726i −0.308707 0.398061i
\(92\) −2.60444 9.66797i −0.271532 1.00796i
\(93\) 5.34329i 0.554073i
\(94\) 0.897201 + 6.77975i 0.0925392 + 0.699278i
\(95\) 6.48559i 0.665408i
\(96\) 4.47630 3.45872i 0.456860 0.353004i
\(97\) 11.6085i 1.17866i 0.807892 + 0.589331i \(0.200609\pi\)
−0.807892 + 0.589331i \(0.799391\pi\)
\(98\) 9.82836 + 1.18459i 0.992815 + 0.119661i
\(99\) 4.54637 0.456928
\(100\) −18.8862 + 5.08773i −1.88862 + 0.508773i
\(101\) 11.5333 1.14761 0.573805 0.818992i \(-0.305467\pi\)
0.573805 + 0.818992i \(0.305467\pi\)
\(102\) −0.647741 4.89469i −0.0641359 0.484647i
\(103\) −1.14230 −0.112555 −0.0562773 0.998415i \(-0.517923\pi\)
−0.0562773 + 0.998415i \(0.517923\pi\)
\(104\) 1.97545 + 4.74213i 0.193709 + 0.465004i
\(105\) −8.03761 + 6.23338i −0.784391 + 0.608315i
\(106\) 8.23338 1.08957i 0.799696 0.105828i
\(107\) 0.0796192 0.00769707 0.00384854 0.999993i \(-0.498775\pi\)
0.00384854 + 0.999993i \(0.498775\pi\)
\(108\) 0.520231 + 1.93115i 0.0500593 + 0.185825i
\(109\) 20.1081i 1.92601i −0.269489 0.963004i \(-0.586855\pi\)
0.269489 0.963004i \(-0.413145\pi\)
\(110\) −3.24280 24.5044i −0.309189 2.33640i
\(111\) 1.42654 0.135401
\(112\) −9.80881 3.97331i −0.926846 0.375442i
\(113\) 4.98249 0.468713 0.234356 0.972151i \(-0.424702\pi\)
0.234356 + 0.972151i \(0.424702\pi\)
\(114\) 0.312995 + 2.36516i 0.0293147 + 0.221518i
\(115\) 19.2465i 1.79475i
\(116\) 0.944872 + 3.50747i 0.0877292 + 0.325660i
\(117\) −1.81625 −0.167913
\(118\) −11.8703 + 1.57086i −1.09275 + 0.144610i
\(119\) −7.29918 + 5.66070i −0.669114 + 0.518915i
\(120\) 10.0376 4.18142i 0.916305 0.381710i
\(121\) 9.66949 0.879045
\(122\) 0.560226 + 4.23338i 0.0507205 + 0.383272i
\(123\) 8.97551 0.809294
\(124\) 10.3187 2.77975i 0.926649 0.249629i
\(125\) −18.3755 −1.64355
\(126\) 2.63033 2.66108i 0.234329 0.237068i
\(127\) 5.38471i 0.477816i 0.971042 + 0.238908i \(0.0767894\pi\)
−0.971042 + 0.238908i \(0.923211\pi\)
\(128\) 9.00803 + 6.84510i 0.796205 + 0.605027i
\(129\) 8.03761i 0.707673i
\(130\) 1.29548 + 9.78938i 0.113621 + 0.858586i
\(131\) 13.0927i 1.14392i −0.820282 0.571959i \(-0.806184\pi\)
0.820282 0.571959i \(-0.193816\pi\)
\(132\) 2.36516 + 8.77975i 0.205861 + 0.764179i
\(133\) 3.52704 2.73531i 0.305833 0.237181i
\(134\) 0.821752 + 6.20961i 0.0709885 + 0.536428i
\(135\) 3.84444i 0.330877i
\(136\) 9.11543 3.79726i 0.781642 0.325612i
\(137\) −19.5595 −1.67108 −0.835540 0.549429i \(-0.814845\pi\)
−0.835540 + 0.549429i \(0.814845\pi\)
\(138\) 0.928837 + 7.01881i 0.0790679 + 0.597481i
\(139\) 14.5910i 1.23759i −0.785553 0.618795i \(-0.787621\pi\)
0.785553 0.618795i \(-0.212379\pi\)
\(140\) −16.2190 12.2791i −1.37076 1.03777i
\(141\) 4.83580i 0.407248i
\(142\) 2.07394 0.274455i 0.174041 0.0230318i
\(143\) −8.25737 −0.690516
\(144\) −3.45872 + 2.00929i −0.288227 + 0.167441i
\(145\) 6.98249i 0.579864i
\(146\) −9.78938 + 1.29548i −0.810175 + 0.107215i
\(147\) −6.77975 1.74213i −0.559184 0.143689i
\(148\) 0.742132 + 2.75488i 0.0610029 + 0.226449i
\(149\) 18.3973i 1.50717i −0.657352 0.753584i \(-0.728324\pi\)
0.657352 0.753584i \(-0.271676\pi\)
\(150\) 13.7111 1.81447i 1.11951 0.148151i
\(151\) 9.88759i 0.804641i 0.915499 + 0.402320i \(0.131796\pi\)
−0.915499 + 0.402320i \(0.868204\pi\)
\(152\) −4.40467 + 1.83488i −0.357266 + 0.148828i
\(153\) 3.49124i 0.282250i
\(154\) 11.9585 12.0983i 0.963641 0.974906i
\(155\) 20.5420 1.64997
\(156\) −0.944872 3.50747i −0.0756503 0.280822i
\(157\) 12.3582 0.986294 0.493147 0.869946i \(-0.335846\pi\)
0.493147 + 0.869946i \(0.335846\pi\)
\(158\) −4.17531 + 0.552541i −0.332169 + 0.0439578i
\(159\) −5.87263 −0.465730
\(160\) 13.2968 + 17.2089i 1.05121 + 1.36048i
\(161\) 10.4668 8.11723i 0.824896 0.639728i
\(162\) −0.185533 1.40199i −0.0145769 0.110151i
\(163\) −3.57086 −0.279692 −0.139846 0.990173i \(-0.544661\pi\)
−0.139846 + 0.990173i \(0.544661\pi\)
\(164\) 4.66934 + 17.3331i 0.364614 + 1.35349i
\(165\) 17.4783i 1.36068i
\(166\) 14.8289 1.96239i 1.15094 0.152311i
\(167\) 19.5788 1.51505 0.757525 0.652806i \(-0.226408\pi\)
0.757525 + 0.652806i \(0.226408\pi\)
\(168\) 6.50734 + 3.69520i 0.502052 + 0.285091i
\(169\) −9.70122 −0.746248
\(170\) 18.8174 2.49020i 1.44323 0.190990i
\(171\) 1.68700i 0.129008i
\(172\) 15.5219 4.18142i 1.18353 0.318830i
\(173\) −5.49424 −0.417719 −0.208860 0.977946i \(-0.566975\pi\)
−0.208860 + 0.977946i \(0.566975\pi\)
\(174\) −0.336975 2.54637i −0.0255460 0.193040i
\(175\) −15.8569 20.4466i −1.19867 1.54562i
\(176\) −15.7246 + 9.13500i −1.18529 + 0.688576i
\(177\) 8.46675 0.636400
\(178\) 22.3730 2.96074i 1.67692 0.221917i
\(179\) 10.0306 0.749725 0.374862 0.927080i \(-0.377690\pi\)
0.374862 + 0.927080i \(0.377690\pi\)
\(180\) −7.42422 + 2.00000i −0.553368 + 0.149071i
\(181\) −24.2481 −1.80235 −0.901174 0.433458i \(-0.857293\pi\)
−0.901174 + 0.433458i \(0.857293\pi\)
\(182\) −4.77735 + 4.83320i −0.354121 + 0.358261i
\(183\) 3.01955i 0.223211i
\(184\) −13.0712 + 5.44513i −0.963621 + 0.401420i
\(185\) 5.48426i 0.403211i
\(186\) −7.49124 + 0.991357i −0.549285 + 0.0726899i
\(187\) 15.8725i 1.16071i
\(188\) 9.33868 2.51574i 0.681093 0.183479i
\(189\) −2.09071 + 1.62140i −0.152077 + 0.117939i
\(190\) −9.09274 + 1.20329i −0.659657 + 0.0872960i
\(191\) 8.49422i 0.614620i −0.951609 0.307310i \(-0.900571\pi\)
0.951609 0.307310i \(-0.0994288\pi\)
\(192\) −5.67959 5.63402i −0.409889 0.406601i
\(193\) −11.2955 −0.813067 −0.406533 0.913636i \(-0.633262\pi\)
−0.406533 + 0.913636i \(0.633262\pi\)
\(194\) 16.2750 2.15376i 1.16848 0.154631i
\(195\) 6.98249i 0.500026i
\(196\) −0.162709 13.9991i −0.0116221 0.999932i
\(197\) 2.38473i 0.169905i −0.996385 0.0849526i \(-0.972926\pi\)
0.996385 0.0849526i \(-0.0270739\pi\)
\(198\) −0.843502 6.37397i −0.0599451 0.452978i
\(199\) −2.46338 −0.174624 −0.0873120 0.996181i \(-0.527828\pi\)
−0.0873120 + 0.996181i \(0.527828\pi\)
\(200\) 10.6370 + 25.5343i 0.752147 + 1.80555i
\(201\) 4.42914i 0.312407i
\(202\) −2.13981 16.1696i −0.150557 1.13769i
\(203\) −3.79726 + 2.94487i −0.266515 + 0.206690i
\(204\) −6.74213 + 1.81625i −0.472044 + 0.127163i
\(205\) 34.5058i 2.40999i
\(206\) 0.211935 + 1.60150i 0.0147662 + 0.111582i
\(207\) 5.00632i 0.347963i
\(208\) 6.28191 3.64939i 0.435572 0.253040i
\(209\) 7.66975i 0.530528i
\(210\) 10.2304 + 10.1122i 0.705963 + 0.697806i
\(211\) −0.0376150 −0.00258952 −0.00129476 0.999999i \(-0.500412\pi\)
−0.00129476 + 0.999999i \(0.500412\pi\)
\(212\) −3.05513 11.3410i −0.209827 0.778901i
\(213\) −1.47928 −0.101359
\(214\) −0.0147720 0.111625i −0.00100979 0.00763055i
\(215\) 30.9002 2.10737
\(216\) 2.61094 1.08765i 0.177652 0.0740054i
\(217\) 8.66361 + 11.1713i 0.588124 + 0.758355i
\(218\) −28.1914 + 3.73072i −1.90936 + 0.252676i
\(219\) 6.98249 0.471833
\(220\) −33.7532 + 9.09274i −2.27564 + 0.613033i
\(221\) 6.34099i 0.426541i
\(222\) −0.264671 2.00000i −0.0177636 0.134231i
\(223\) −12.9144 −0.864812 −0.432406 0.901679i \(-0.642335\pi\)
−0.432406 + 0.901679i \(0.642335\pi\)
\(224\) −3.75068 + 14.4890i −0.250603 + 0.968090i
\(225\) −9.77975 −0.651983
\(226\) −0.924416 6.98540i −0.0614913 0.464662i
\(227\) 1.48426i 0.0985141i −0.998786 0.0492571i \(-0.984315\pi\)
0.998786 0.0492571i \(-0.0156854\pi\)
\(228\) 3.25787 0.877633i 0.215758 0.0581226i
\(229\) −4.66934 −0.308559 −0.154279 0.988027i \(-0.549306\pi\)
−0.154279 + 0.988027i \(0.549306\pi\)
\(230\) −26.9834 + 3.57086i −1.77923 + 0.235456i
\(231\) −9.50514 + 7.37148i −0.625392 + 0.485008i
\(232\) 4.74213 1.97545i 0.311336 0.129695i
\(233\) −8.35650 −0.547452 −0.273726 0.961808i \(-0.588256\pi\)
−0.273726 + 0.961808i \(0.588256\pi\)
\(234\) 0.336975 + 2.54637i 0.0220288 + 0.166461i
\(235\) 18.5910 1.21274
\(236\) 4.40467 + 16.3506i 0.286720 + 1.06433i
\(237\) 2.97813 0.193450
\(238\) 9.29048 + 9.18313i 0.602213 + 0.595254i
\(239\) 19.8547i 1.28430i −0.766580 0.642148i \(-0.778043\pi\)
0.766580 0.642148i \(-0.221957\pi\)
\(240\) −7.72462 13.2968i −0.498622 0.858308i
\(241\) 6.57701i 0.423662i 0.977306 + 0.211831i \(0.0679427\pi\)
−0.977306 + 0.211831i \(0.932057\pi\)
\(242\) −1.79401 13.5565i −0.115323 0.871447i
\(243\) 1.00000i 0.0641500i
\(244\) 5.83121 1.57086i 0.373305 0.100564i
\(245\) 6.69753 26.0644i 0.427889 1.66519i
\(246\) −1.66525 12.5836i −0.106173 0.802300i
\(247\) 3.06403i 0.194960i
\(248\) −5.81164 13.9510i −0.369040 0.885890i
\(249\) −10.5770 −0.670291
\(250\) 3.40926 + 25.7622i 0.215620 + 1.62935i
\(251\) 4.85827i 0.306652i 0.988176 + 0.153326i \(0.0489984\pi\)
−0.988176 + 0.153326i \(0.951002\pi\)
\(252\) −4.21882 3.19398i −0.265761 0.201202i
\(253\) 22.7606i 1.43094i
\(254\) 7.54931 0.999042i 0.473686 0.0626855i
\(255\) −13.4219 −0.840511
\(256\) 7.92547 13.8992i 0.495342 0.868698i
\(257\) 9.20998i 0.574503i 0.957855 + 0.287251i \(0.0927415\pi\)
−0.957855 + 0.287251i \(0.907259\pi\)
\(258\) −11.2687 + 1.49124i −0.701556 + 0.0928408i
\(259\) −2.98249 + 2.31300i −0.185323 + 0.143723i
\(260\) 13.4843 3.63251i 0.836259 0.225279i
\(261\) 1.81625i 0.112423i
\(262\) −18.3559 + 2.42914i −1.13403 + 0.150073i
\(263\) 3.90849i 0.241008i 0.992713 + 0.120504i \(0.0384511\pi\)
−0.992713 + 0.120504i \(0.961549\pi\)
\(264\) 11.8703 4.94487i 0.730567 0.304336i
\(265\) 22.5770i 1.38689i
\(266\) −4.48926 4.43738i −0.275254 0.272073i
\(267\) −15.9580 −0.976613
\(268\) 8.55335 2.30418i 0.522479 0.140750i
\(269\) 9.24872 0.563905 0.281952 0.959428i \(-0.409018\pi\)
0.281952 + 0.959428i \(0.409018\pi\)
\(270\) 5.38987 0.713272i 0.328017 0.0434083i
\(271\) 16.5201 1.00352 0.501762 0.865006i \(-0.332685\pi\)
0.501762 + 0.865006i \(0.332685\pi\)
\(272\) −7.01494 12.0752i −0.425343 0.732168i
\(273\) 3.79726 2.94487i 0.229821 0.178232i
\(274\) 3.62893 + 27.4222i 0.219232 + 1.65664i
\(275\) −44.4624 −2.68118
\(276\) 9.66797 2.60444i 0.581944 0.156769i
\(277\) 3.26465i 0.196154i 0.995179 + 0.0980769i \(0.0312691\pi\)
−0.995179 + 0.0980769i \(0.968731\pi\)
\(278\) −20.4564 + 2.70711i −1.22689 + 0.162361i
\(279\) 5.34329 0.319894
\(280\) −14.2060 + 25.0171i −0.848970 + 1.49506i
\(281\) 19.1680 1.14347 0.571733 0.820440i \(-0.306271\pi\)
0.571733 + 0.820440i \(0.306271\pi\)
\(282\) −6.77975 + 0.897201i −0.403728 + 0.0534276i
\(283\) 20.2780i 1.20540i 0.797968 + 0.602700i \(0.205908\pi\)
−0.797968 + 0.602700i \(0.794092\pi\)
\(284\) −0.769567 2.85672i −0.0456654 0.169515i
\(285\) 6.48559 0.384173
\(286\) 1.53201 + 11.5767i 0.0905899 + 0.684548i
\(287\) −18.7652 + 14.5529i −1.10767 + 0.859029i
\(288\) 3.45872 + 4.47630i 0.203807 + 0.263769i
\(289\) 4.81122 0.283013
\(290\) 9.78938 1.29548i 0.574852 0.0760734i
\(291\) −11.6085 −0.680501
\(292\) 3.63251 + 13.4843i 0.212576 + 0.789107i
\(293\) 5.07037 0.296214 0.148107 0.988971i \(-0.452682\pi\)
0.148107 + 0.988971i \(0.452682\pi\)
\(294\) −1.18459 + 9.82836i −0.0690864 + 0.573202i
\(295\) 32.5500i 1.89513i
\(296\) 3.72462 1.55158i 0.216489 0.0901839i
\(297\) 4.54637i 0.263807i
\(298\) −25.7929 + 3.41331i −1.49414 + 0.197728i
\(299\) 9.09274i 0.525847i
\(300\) −5.08773 18.8862i −0.293740 1.09040i
\(301\) 13.0322 + 16.8043i 0.751162 + 0.968585i
\(302\) 13.8623 1.83448i 0.797686 0.105562i
\(303\) 11.5333i 0.662573i
\(304\) 3.38969 + 5.83488i 0.194412 + 0.334653i
\(305\) 11.6085 0.664700
\(306\) 4.89469 0.647741i 0.279811 0.0370289i
\(307\) 15.2465i 0.870164i 0.900391 + 0.435082i \(0.143281\pi\)
−0.900391 + 0.435082i \(0.856719\pi\)
\(308\) −19.1803 14.5210i −1.09290 0.827412i
\(309\) 1.14230i 0.0649834i
\(310\) −3.81122 28.7997i −0.216463 1.63571i
\(311\) −8.91481 −0.505513 −0.252756 0.967530i \(-0.581337\pi\)
−0.252756 + 0.967530i \(0.581337\pi\)
\(312\) −4.74213 + 1.97545i −0.268470 + 0.111838i
\(313\) 24.9335i 1.40932i −0.709543 0.704662i \(-0.751098\pi\)
0.709543 0.704662i \(-0.248902\pi\)
\(314\) −2.29286 17.3261i −0.129394 0.977769i
\(315\) −6.23338 8.03761i −0.351211 0.452868i
\(316\) 1.54931 + 5.75122i 0.0871558 + 0.323532i
\(317\) 16.1127i 0.904980i 0.891769 + 0.452490i \(0.149464\pi\)
−0.891769 + 0.452490i \(0.850536\pi\)
\(318\) 1.08957 + 8.23338i 0.0610999 + 0.461705i
\(319\) 8.25737i 0.462324i
\(320\) 21.6597 21.8349i 1.21081 1.22061i
\(321\) 0.0796192i 0.00444391i
\(322\) −13.3222 13.1683i −0.742418 0.733839i
\(323\) 5.88974 0.327714
\(324\) −1.93115 + 0.520231i −0.107286 + 0.0289017i
\(325\) 17.7625 0.985287
\(326\) 0.662513 + 5.00632i 0.0366932 + 0.277274i
\(327\) 20.1081 1.11198
\(328\) 23.4345 9.76223i 1.29395 0.539029i
\(329\) 7.84076 + 10.1103i 0.432275 + 0.557396i
\(330\) 24.5044 3.24280i 1.34892 0.178510i
\(331\) 22.3802 1.23012 0.615062 0.788479i \(-0.289131\pi\)
0.615062 + 0.788479i \(0.289131\pi\)
\(332\) −5.50249 20.4258i −0.301988 1.12101i
\(333\) 1.42654i 0.0781741i
\(334\) −3.63251 27.4492i −0.198762 1.50196i
\(335\) 17.0276 0.930315
\(336\) 3.97331 9.80881i 0.216762 0.535115i
\(337\) 2.22051 0.120959 0.0604795 0.998169i \(-0.480737\pi\)
0.0604795 + 0.998169i \(0.480737\pi\)
\(338\) 1.79990 + 13.6010i 0.0979015 + 0.739798i
\(339\) 4.98249i 0.270612i
\(340\) −6.98249 25.9197i −0.378679 1.40570i
\(341\) 24.2926 1.31552
\(342\) −2.36516 + 0.312995i −0.127893 + 0.0169248i
\(343\) 16.9992 7.35038i 0.917869 0.396883i
\(344\) −8.74213 20.9857i −0.471344 1.13148i
\(345\) 19.2465 1.03620
\(346\) 1.01936 + 7.70287i 0.0548013 + 0.414109i
\(347\) −17.4186 −0.935080 −0.467540 0.883972i \(-0.654860\pi\)
−0.467540 + 0.883972i \(0.654860\pi\)
\(348\) −3.50747 + 0.944872i −0.188020 + 0.0506505i
\(349\) −29.0839 −1.55683 −0.778413 0.627753i \(-0.783975\pi\)
−0.778413 + 0.627753i \(0.783975\pi\)
\(350\) −25.7240 + 26.0247i −1.37500 + 1.39108i
\(351\) 1.81625i 0.0969445i
\(352\) 15.7246 + 20.3509i 0.838125 + 1.08471i
\(353\) 7.02449i 0.373876i −0.982372 0.186938i \(-0.940144\pi\)
0.982372 0.186938i \(-0.0598563\pi\)
\(354\) −1.57086 11.8703i −0.0834904 0.630900i
\(355\) 5.68700i 0.301835i
\(356\) −8.30185 30.8174i −0.439997 1.63332i
\(357\) −5.66070 7.29918i −0.299596 0.386313i
\(358\) −1.86102 14.0629i −0.0983577 0.743245i
\(359\) 11.1509i 0.588521i −0.955725 0.294260i \(-0.904927\pi\)
0.955725 0.294260i \(-0.0950733\pi\)
\(360\) 4.18142 + 10.0376i 0.220380 + 0.529029i
\(361\) 16.1540 0.850211
\(362\) 4.49883 + 33.9956i 0.236453 + 1.78677i
\(363\) 9.66949i 0.507517i
\(364\) 7.66246 + 5.80108i 0.401622 + 0.304059i
\(365\) 26.8438i 1.40507i
\(366\) −4.23338 + 0.560226i −0.221282 + 0.0292835i
\(367\) −6.42880 −0.335581 −0.167790 0.985823i \(-0.553663\pi\)
−0.167790 + 0.985823i \(0.553663\pi\)
\(368\) 10.0592 + 17.3154i 0.524370 + 0.902630i
\(369\) 8.97551i 0.467246i
\(370\) 7.68889 1.01751i 0.399726 0.0528980i
\(371\) 12.2780 9.52188i 0.637440 0.494351i
\(372\) 2.77975 + 10.3187i 0.144123 + 0.535001i
\(373\) 1.75527i 0.0908842i −0.998967 0.0454421i \(-0.985530\pi\)
0.998967 0.0454421i \(-0.0144697\pi\)
\(374\) 22.2531 2.94487i 1.15068 0.152276i
\(375\) 18.3755i 0.948905i
\(376\) −5.25967 12.6260i −0.271247 0.651136i
\(377\) 3.29878i 0.169896i
\(378\) 2.66108 + 2.63033i 0.136871 + 0.135290i
\(379\) −19.0061 −0.976280 −0.488140 0.872765i \(-0.662324\pi\)
−0.488140 + 0.872765i \(0.662324\pi\)
\(380\) 3.37401 + 12.5247i 0.173083 + 0.642503i
\(381\) −5.38471 −0.275867
\(382\) −11.9088 + 1.57596i −0.609308 + 0.0806330i
\(383\) −28.4936 −1.45595 −0.727977 0.685602i \(-0.759539\pi\)
−0.727977 + 0.685602i \(0.759539\pi\)
\(384\) −6.84510 + 9.00803i −0.349312 + 0.459689i
\(385\) −28.3392 36.5420i −1.44430 1.86235i
\(386\) 2.09569 + 15.8362i 0.106668 + 0.806039i
\(387\) 8.03761 0.408575
\(388\) −6.03909 22.4178i −0.306589 1.13809i
\(389\) 29.3858i 1.48992i 0.667110 + 0.744960i \(0.267531\pi\)
−0.667110 + 0.744960i \(0.732469\pi\)
\(390\) −9.78938 + 1.29548i −0.495705 + 0.0655993i
\(391\) 17.4783 0.883914
\(392\) −19.5964 + 2.82540i −0.989765 + 0.142704i
\(393\) 13.0927 0.660442
\(394\) −3.34337 + 0.442447i −0.168437 + 0.0222902i
\(395\) 11.4492i 0.576074i
\(396\) −8.77975 + 2.36516i −0.441199 + 0.118854i
\(397\) 15.5442 0.780143 0.390071 0.920785i \(-0.372450\pi\)
0.390071 + 0.920785i \(0.372450\pi\)
\(398\) 0.457038 + 3.45363i 0.0229092 + 0.173115i
\(399\) 2.73531 + 3.52704i 0.136937 + 0.176573i
\(400\) 33.8254 19.6504i 1.69127 0.982520i
\(401\) −15.5595 −0.777004 −0.388502 0.921448i \(-0.627007\pi\)
−0.388502 + 0.921448i \(0.627007\pi\)
\(402\) −6.20961 + 0.821752i −0.309707 + 0.0409852i
\(403\) −9.70478 −0.483429
\(404\) −22.2726 + 6.00000i −1.10811 + 0.298511i
\(405\) −3.84444 −0.191032
\(406\) 4.83320 + 4.77735i 0.239868 + 0.237096i
\(407\) 6.48559i 0.321479i
\(408\) 3.79726 + 9.11543i 0.187992 + 0.451281i
\(409\) 18.3565i 0.907670i 0.891086 + 0.453835i \(0.149945\pi\)
−0.891086 + 0.453835i \(0.850055\pi\)
\(410\) 48.3769 6.40198i 2.38916 0.316171i
\(411\) 19.5595i 0.964799i
\(412\) 2.20597 0.594262i 0.108680 0.0292772i
\(413\) −17.7015 + 13.7280i −0.871035 + 0.675510i
\(414\) −7.01881 + 0.928837i −0.344956 + 0.0456499i
\(415\) 40.6627i 1.99605i
\(416\) −6.28191 8.13010i −0.307996 0.398611i
\(417\) 14.5910 0.714523
\(418\) −10.7529 + 1.42299i −0.525942 + 0.0696008i
\(419\) 21.1680i 1.03412i −0.855948 0.517062i \(-0.827026\pi\)
0.855948 0.517062i \(-0.172974\pi\)
\(420\) 12.2791 16.2190i 0.599158 0.791408i
\(421\) 2.20597i 0.107512i −0.998554 0.0537561i \(-0.982881\pi\)
0.998554 0.0537561i \(-0.0171193\pi\)
\(422\) 0.00697882 + 0.0527358i 0.000339724 + 0.00256714i
\(423\) 4.83580 0.235125
\(424\) −15.3331 + 6.38738i −0.744641 + 0.310199i
\(425\) 34.1435i 1.65620i
\(426\) 0.274455 + 2.07394i 0.0132974 + 0.100482i
\(427\) 4.89589 + 6.31300i 0.236929 + 0.305507i
\(428\) −0.153757 + 0.0414204i −0.00743212 + 0.00200213i
\(429\) 8.25737i 0.398669i
\(430\) −5.73300 43.3217i −0.276470 2.08916i
\(431\) 17.4255i 0.839358i −0.907673 0.419679i \(-0.862143\pi\)
0.907673 0.419679i \(-0.137857\pi\)
\(432\) −2.00929 3.45872i −0.0966722 0.166408i
\(433\) 2.18549i 0.105028i −0.998620 0.0525139i \(-0.983277\pi\)
0.998620 0.0525139i \(-0.0167234\pi\)
\(434\) 14.0546 14.2189i 0.674644 0.682531i
\(435\) −6.98249 −0.334785
\(436\) 10.4609 + 38.8319i 0.500985 + 1.85971i
\(437\) −8.44568 −0.404012
\(438\) −1.29548 9.78938i −0.0619006 0.467755i
\(439\) −27.5128 −1.31311 −0.656556 0.754277i \(-0.727987\pi\)
−0.656556 + 0.754277i \(0.727987\pi\)
\(440\) 19.0103 + 45.6347i 0.906280 + 2.17555i
\(441\) 1.74213 6.77975i 0.0829587 0.322845i
\(442\) −8.89000 + 1.17646i −0.422854 + 0.0559586i
\(443\) 3.37840 0.160513 0.0802563 0.996774i \(-0.474426\pi\)
0.0802563 + 0.996774i \(0.474426\pi\)
\(444\) −2.75488 + 0.742132i −0.130741 + 0.0352200i
\(445\) 61.3496i 2.90825i
\(446\) 2.39605 + 18.1059i 0.113456 + 0.857338i
\(447\) 18.3973 0.870163
\(448\) 21.0094 + 2.57022i 0.992600 + 0.121432i
\(449\) 1.76553 0.0833206 0.0416603 0.999132i \(-0.486735\pi\)
0.0416603 + 0.999132i \(0.486735\pi\)
\(450\) 1.81447 + 13.7111i 0.0855348 + 0.646348i
\(451\) 40.8060i 1.92148i
\(452\) −9.62195 + 2.59205i −0.452579 + 0.121920i
\(453\) −9.88759 −0.464560
\(454\) −2.08093 + 0.275380i −0.0976627 + 0.0129242i
\(455\) 11.3214 + 14.5984i 0.530755 + 0.684381i
\(456\) −1.83488 4.40467i −0.0859259 0.206268i
\(457\) −24.4178 −1.14222 −0.571108 0.820875i \(-0.693486\pi\)
−0.571108 + 0.820875i \(0.693486\pi\)
\(458\) 0.866317 + 6.54637i 0.0404803 + 0.305892i
\(459\) −3.49124 −0.162957
\(460\) 10.0126 + 37.1680i 0.466841 + 1.73297i
\(461\) −7.77884 −0.362297 −0.181148 0.983456i \(-0.557981\pi\)
−0.181148 + 0.983456i \(0.557981\pi\)
\(462\) 12.0983 + 11.9585i 0.562862 + 0.556358i
\(463\) 16.5615i 0.769678i −0.922984 0.384839i \(-0.874257\pi\)
0.922984 0.384839i \(-0.125743\pi\)
\(464\) −3.64939 6.28191i −0.169419 0.291630i
\(465\) 20.5420i 0.952612i
\(466\) 1.55041 + 11.7157i 0.0718212 + 0.542721i
\(467\) 14.1103i 0.652945i 0.945207 + 0.326472i \(0.105860\pi\)
−0.945207 + 0.326472i \(0.894140\pi\)
\(468\) 3.50747 0.944872i 0.162133 0.0436767i
\(469\) 7.18140 + 9.26004i 0.331606 + 0.427589i
\(470\) −3.44924 26.0644i −0.159102 1.20226i
\(471\) 12.3582i 0.569437i
\(472\) 22.1062 9.20888i 1.01752 0.423873i
\(473\) 36.5420 1.68020
\(474\) −0.552541 4.17531i −0.0253791 0.191778i
\(475\) 16.4985i 0.757002i
\(476\) 11.1510 14.7289i 0.511104 0.675100i
\(477\) 5.87263i 0.268889i
\(478\) −27.8362 + 3.68371i −1.27320 + 0.168489i
\(479\) −8.74757 −0.399687 −0.199843 0.979828i \(-0.564043\pi\)
−0.199843 + 0.979828i \(0.564043\pi\)
\(480\) −17.2089 + 13.2968i −0.785475 + 0.606915i
\(481\) 2.59097i 0.118138i
\(482\) 9.22090 1.22025i 0.420001 0.0555810i
\(483\) 8.11723 + 10.4668i 0.369347 + 0.476254i
\(484\) −18.6733 + 5.03037i −0.848786 + 0.228653i
\(485\) 44.6281i 2.02646i
\(486\) 1.40199 0.185533i 0.0635956 0.00841595i
\(487\) 31.0252i 1.40589i 0.711246 + 0.702943i \(0.248131\pi\)
−0.711246 + 0.702943i \(0.751869\pi\)
\(488\) −3.28422 7.88386i −0.148670 0.356885i
\(489\) 3.57086i 0.161480i
\(490\) −37.7846 4.55407i −1.70693 0.205732i
\(491\) −22.0446 −0.994859 −0.497429 0.867505i \(-0.665723\pi\)
−0.497429 + 0.867505i \(0.665723\pi\)
\(492\) −17.3331 + 4.66934i −0.781436 + 0.210510i
\(493\) −6.34099 −0.285584
\(494\) 4.29574 0.568479i 0.193275 0.0255771i
\(495\) −17.4783 −0.785590
\(496\) −18.4809 + 10.7362i −0.829819 + 0.482072i
\(497\) 3.09274 2.39850i 0.138728 0.107587i
\(498\) 1.96239 + 14.8289i 0.0879366 + 0.664497i
\(499\) 40.6409 1.81934 0.909668 0.415337i \(-0.136336\pi\)
0.909668 + 0.415337i \(0.136336\pi\)
\(500\) 35.4859 9.55949i 1.58698 0.427514i
\(501\) 19.5788i 0.874715i
\(502\) 6.81125 0.901371i 0.304001 0.0402301i
\(503\) −33.1848 −1.47964 −0.739818 0.672807i \(-0.765088\pi\)
−0.739818 + 0.672807i \(0.765088\pi\)
\(504\) −3.69520 + 6.50734i −0.164597 + 0.289860i
\(505\) −44.3392 −1.97307
\(506\) −31.9101 + 4.22284i −1.41858 + 0.187728i
\(507\) 9.70122i 0.430846i
\(508\) −2.80130 10.3987i −0.124287 0.461368i
\(509\) −35.5240 −1.57457 −0.787287 0.616586i \(-0.788515\pi\)
−0.787287 + 0.616586i \(0.788515\pi\)
\(510\) 2.49020 + 18.8174i 0.110268 + 0.833247i
\(511\) −14.5984 + 11.3214i −0.645793 + 0.500829i
\(512\) −20.9569 8.53268i −0.926175 0.377095i
\(513\) 1.68700 0.0744831
\(514\) 12.9123 1.70876i 0.569537 0.0753700i
\(515\) 4.39152 0.193514
\(516\) 4.18142 + 15.5219i 0.184077 + 0.683313i
\(517\) 21.9853 0.966914
\(518\) 3.79615 + 3.75228i 0.166793 + 0.164866i
\(519\) 5.49424i 0.241170i
\(520\) −7.59452 18.2309i −0.333042 0.799476i
\(521\) 26.4737i 1.15984i 0.814675 + 0.579918i \(0.196915\pi\)
−0.814675 + 0.579918i \(0.803085\pi\)
\(522\) 2.54637 0.336975i 0.111452 0.0147490i
\(523\) 41.7100i 1.82385i −0.410358 0.911924i \(-0.634596\pi\)
0.410358 0.911924i \(-0.365404\pi\)
\(524\) 6.81125 + 25.2841i 0.297551 + 1.10454i
\(525\) 20.4466 15.8569i 0.892363 0.692051i
\(526\) 5.47967 0.725155i 0.238925 0.0316183i
\(527\) 18.6547i 0.812613i
\(528\) −9.13500 15.7246i −0.397550 0.684326i
\(529\) −2.06320 −0.0897043
\(530\) −31.6528 + 4.18878i −1.37491 + 0.181949i
\(531\) 8.46675i 0.367426i
\(532\) −5.38826 + 7.11718i −0.233611 + 0.308569i
\(533\) 16.3018i 0.706110i
\(534\) 2.96074 + 22.3730i 0.128124 + 0.968173i
\(535\) −0.306091 −0.0132335
\(536\) −4.81736 11.5642i −0.208078 0.499498i
\(537\) 10.0306i 0.432854i
\(538\) −1.71594 12.9666i −0.0739796 0.559031i
\(539\) 7.92038 30.8232i 0.341155 1.32765i
\(540\) −2.00000 7.42422i −0.0860663 0.319487i
\(541\) 10.3187i 0.443637i 0.975088 + 0.221818i \(0.0711992\pi\)
−0.975088 + 0.221818i \(0.928801\pi\)
\(542\) −3.06502 23.1610i −0.131654 0.994850i
\(543\) 24.2481i 1.04059i
\(544\) −15.6279 + 12.0752i −0.670039 + 0.517721i
\(545\) 77.3045i 3.31136i
\(546\) −4.83320 4.77735i −0.206842 0.204452i
\(547\) 19.6461 0.840006 0.420003 0.907523i \(-0.362029\pi\)
0.420003 + 0.907523i \(0.362029\pi\)
\(548\) 37.7724 10.1755i 1.61356 0.434674i
\(549\) 3.01955 0.128871
\(550\) 8.24924 + 62.3358i 0.351749 + 2.65801i
\(551\) 3.06403 0.130532
\(552\) −5.44513 13.0712i −0.231760 0.556347i
\(553\) −6.22640 + 4.82873i −0.264773 + 0.205339i
\(554\) 4.57701 0.605701i 0.194458 0.0257337i
\(555\) −5.48426 −0.232794
\(556\) 7.59068 + 28.1774i 0.321916 + 1.19499i
\(557\) 30.0989i 1.27533i 0.770314 + 0.637665i \(0.220100\pi\)
−0.770314 + 0.637665i \(0.779900\pi\)
\(558\) −0.991357 7.49124i −0.0419675 0.317130i
\(559\) −14.5984 −0.617445
\(560\) 37.7094 + 15.2752i 1.59351 + 0.645493i
\(561\) −15.8725 −0.670137
\(562\) −3.55629 26.8733i −0.150013 1.13358i
\(563\) 6.35650i 0.267894i 0.990988 + 0.133947i \(0.0427653\pi\)
−0.990988 + 0.133947i \(0.957235\pi\)
\(564\) 2.51574 + 9.33868i 0.105932 + 0.393229i
\(565\) −19.1549 −0.805852
\(566\) 28.4295 3.76223i 1.19498 0.158139i
\(567\) −1.62140 2.09071i −0.0680923 0.0878015i
\(568\) −3.86231 + 1.60894i −0.162059 + 0.0675097i
\(569\) −37.7589 −1.58294 −0.791469 0.611210i \(-0.790683\pi\)
−0.791469 + 0.611210i \(0.790683\pi\)
\(570\) −1.20329 9.09274i −0.0504004 0.380853i
\(571\) −29.0324 −1.21497 −0.607484 0.794332i \(-0.707821\pi\)
−0.607484 + 0.794332i \(0.707821\pi\)
\(572\) 15.9463 4.29574i 0.666746 0.179614i
\(573\) 8.49422 0.354851
\(574\) 23.8846 + 23.6086i 0.996922 + 0.985402i
\(575\) 48.9605i 2.04179i
\(576\) 5.63402 5.67959i 0.234751 0.236650i
\(577\) 38.4060i 1.59886i −0.600758 0.799431i \(-0.705134\pi\)
0.600758 0.799431i \(-0.294866\pi\)
\(578\) −0.892640 6.74528i −0.0371289 0.280567i
\(579\) 11.2955i 0.469424i
\(580\) −3.63251 13.4843i −0.150832 0.559904i
\(581\) 22.1134 17.1495i 0.917420 0.711483i
\(582\) 2.15376 + 16.2750i 0.0892761 + 0.674619i
\(583\) 26.6992i 1.10577i
\(584\) 18.2309 7.59452i 0.754398 0.314263i
\(585\) 6.98249 0.288690
\(586\) −0.940721 7.10861i −0.0388608 0.293654i
\(587\) 0.157054i 0.00648231i −0.999995 0.00324116i \(-0.998968\pi\)
0.999995 0.00324116i \(-0.00103169\pi\)
\(588\) 13.9991 0.162709i 0.577311 0.00671002i
\(589\) 9.01416i 0.371422i
\(590\) 45.6347 6.03909i 1.87875 0.248626i
\(591\) 2.38473 0.0980948
\(592\) −2.86635 4.93401i −0.117806 0.202787i
\(593\) 37.5927i 1.54375i −0.635776 0.771874i \(-0.719320\pi\)
0.635776 0.771874i \(-0.280680\pi\)
\(594\) 6.37397 0.843502i 0.261527 0.0346093i
\(595\) 28.0613 21.7622i 1.15040 0.892165i
\(596\) 9.57086 + 35.5281i 0.392038 + 1.45529i
\(597\) 2.46338i 0.100819i
\(598\) 12.7479 1.68700i 0.521302 0.0689868i
\(599\) 18.7569i 0.766387i −0.923668 0.383194i \(-0.874824\pi\)
0.923668 0.383194i \(-0.125176\pi\)
\(600\) −25.5343 + 10.6370i −1.04244 + 0.434252i
\(601\) 2.44051i 0.0995503i −0.998760 0.0497751i \(-0.984150\pi\)
0.998760 0.0497751i \(-0.0158505\pi\)
\(602\) 21.1416 21.3887i 0.861667 0.871740i
\(603\) 4.42914 0.180368
\(604\) −5.14383 19.0945i −0.209300 0.776943i
\(605\) −37.1738 −1.51133
\(606\) 16.1696 2.13981i 0.656846 0.0869240i
\(607\) 40.4839 1.64319 0.821596 0.570070i \(-0.193084\pi\)
0.821596 + 0.570070i \(0.193084\pi\)
\(608\) 7.55154 5.83488i 0.306255 0.236635i
\(609\) −2.94487 3.79726i −0.119332 0.153873i
\(610\) −2.15376 16.2750i −0.0872031 0.658955i
\(611\) −8.78304 −0.355324
\(612\) −1.81625 6.74213i −0.0734177 0.272535i
\(613\) 8.57378i 0.346292i 0.984896 + 0.173146i \(0.0553932\pi\)
−0.984896 + 0.173146i \(0.944607\pi\)
\(614\) 21.3754 2.82873i 0.862643 0.114158i
\(615\) −34.5058 −1.39141
\(616\) −16.7998 + 29.5848i −0.676881 + 1.19201i
\(617\) 31.3390 1.26166 0.630830 0.775921i \(-0.282715\pi\)
0.630830 + 0.775921i \(0.282715\pi\)
\(618\) −1.60150 + 0.211935i −0.0644217 + 0.00852528i
\(619\) 41.5595i 1.67042i −0.549933 0.835209i \(-0.685347\pi\)
0.549933 0.835209i \(-0.314653\pi\)
\(620\) −39.6698 + 10.6866i −1.59318 + 0.429183i
\(621\) 5.00632 0.200897
\(622\) 1.65399 + 12.4985i 0.0663191 + 0.501143i
\(623\) 33.3635 25.8743i 1.33668 1.03663i
\(624\) 3.64939 + 6.28191i 0.146093 + 0.251478i
\(625\) 21.7447 0.869789
\(626\) −34.9565 + 4.62599i −1.39714 + 0.184892i
\(627\) 7.66975 0.306300
\(628\) −23.8657 + 6.42914i −0.952343 + 0.256551i
\(629\) −4.98041 −0.198582
\(630\) −10.1122 + 10.2304i −0.402878 + 0.407588i
\(631\) 48.0528i 1.91295i −0.291814 0.956475i \(-0.594259\pi\)
0.291814 0.956475i \(-0.405741\pi\)
\(632\) 7.77571 3.23917i 0.309301 0.128847i
\(633\) 0.0376150i 0.00149506i
\(634\) 22.5899 2.98944i 0.897158 0.118726i
\(635\) 20.7012i 0.821503i
\(636\) 11.3410 3.05513i 0.449698 0.121144i
\(637\) −3.16416 + 12.3137i −0.125368 + 0.487888i
\(638\) 11.5767 1.53201i 0.458328 0.0606530i
\(639\) 1.47928i 0.0585194i
\(640\) −34.6309 26.3156i −1.36891 1.04021i
\(641\) −26.9335 −1.06381 −0.531905 0.846804i \(-0.678524\pi\)
−0.531905 + 0.846804i \(0.678524\pi\)
\(642\) 0.111625 0.0147720i 0.00440550 0.000583004i
\(643\) 20.2780i 0.799685i 0.916584 + 0.399843i \(0.130935\pi\)
−0.916584 + 0.399843i \(0.869065\pi\)
\(644\) −15.9901 + 21.1208i −0.630097 + 0.832275i
\(645\) 30.9002i 1.21669i
\(646\) −1.09274 8.25737i −0.0429934 0.324882i
\(647\) 16.3928 0.644466 0.322233 0.946660i \(-0.395567\pi\)
0.322233 + 0.946660i \(0.395567\pi\)
\(648\) 1.08765 + 2.61094i 0.0427270 + 0.102567i
\(649\) 38.4930i 1.51098i
\(650\) −3.29553 24.9029i −0.129261 0.976771i
\(651\) −11.1713 + 8.66361i −0.437837 + 0.339553i
\(652\) 6.89589 1.85767i 0.270064 0.0727522i
\(653\) 27.4567i 1.07447i 0.843434 + 0.537233i \(0.180530\pi\)
−0.843434 + 0.537233i \(0.819470\pi\)
\(654\) −3.73072 28.1914i −0.145883 1.10237i
\(655\) 50.3343i 1.96672i
\(656\) −18.0344 31.0438i −0.704127 1.21206i
\(657\) 6.98249i 0.272413i
\(658\) 12.7198 12.8685i 0.495868 0.501665i
\(659\) 34.1059 1.32858 0.664288 0.747477i \(-0.268735\pi\)
0.664288 + 0.747477i \(0.268735\pi\)
\(660\) −9.09274 33.7532i −0.353935 1.31384i
\(661\) −42.0551 −1.63575 −0.817877 0.575393i \(-0.804849\pi\)
−0.817877 + 0.575393i \(0.804849\pi\)
\(662\) −4.15226 31.3768i −0.161382 1.21949i
\(663\) 6.34099 0.246263
\(664\) −27.6159 + 11.5041i −1.07171 + 0.446446i
\(665\) −13.5595 + 10.5157i −0.525815 + 0.407783i
\(666\) 2.00000 0.264671i 0.0774984 0.0102558i
\(667\) 9.09274 0.352072
\(668\) −37.8096 + 10.1855i −1.46290 + 0.394088i
\(669\) 12.9144i 0.499300i
\(670\) −3.15918 23.8725i −0.122050 0.922275i
\(671\) 13.7280 0.529963
\(672\) −14.4890 3.75068i −0.558927 0.144686i
\(673\) 43.0405 1.65909 0.829544 0.558441i \(-0.188600\pi\)
0.829544 + 0.558441i \(0.188600\pi\)
\(674\) −0.411978 3.11313i −0.0158688 0.119913i
\(675\) 9.77975i 0.376423i
\(676\) 18.7346 5.04688i 0.720560 0.194111i
\(677\) 5.91811 0.227451 0.113726 0.993512i \(-0.463722\pi\)
0.113726 + 0.993512i \(0.463722\pi\)
\(678\) 6.98540 0.924416i 0.268273 0.0355020i
\(679\) 24.2700 18.8220i 0.931395 0.722321i
\(680\) −35.0438 + 14.5984i −1.34387 + 0.559821i
\(681\) 1.48426 0.0568772
\(682\) −4.50708 34.0580i −0.172585 1.30415i
\(683\) −1.50261 −0.0574958 −0.0287479 0.999587i \(-0.509152\pi\)
−0.0287479 + 0.999587i \(0.509152\pi\)
\(684\) 0.877633 + 3.25787i 0.0335571 + 0.124568i
\(685\) 75.1954 2.87307
\(686\) −13.4591 22.4689i −0.513870 0.857868i
\(687\) 4.66934i 0.178146i
\(688\) −27.7998 + 16.1499i −1.05986 + 0.615711i
\(689\) 10.6662i 0.406350i
\(690\) −3.57086 26.9834i −0.135940 1.02724i
\(691\) 8.62599i 0.328148i 0.986448 + 0.164074i \(0.0524636\pi\)
−0.986448 + 0.164074i \(0.947536\pi\)
\(692\) 10.6102 2.85827i 0.403340 0.108655i
\(693\) −7.37148 9.50514i −0.280019 0.361070i
\(694\) 3.23173 + 24.4207i 0.122675 + 0.926998i
\(695\) 56.0941i 2.12777i
\(696\) 1.97545 + 4.74213i 0.0748794 + 0.179750i
\(697\) −31.3357 −1.18692
\(698\) 5.39603 + 40.7754i 0.204243 + 1.54337i
\(699\) 8.35650i 0.316072i
\(700\) 41.2590 + 31.2363i 1.55945 + 1.18062i
\(701\) 10.4065i 0.393050i 0.980499 + 0.196525i \(0.0629656\pi\)
−0.980499 + 0.196525i \(0.937034\pi\)
\(702\) −2.54637 + 0.336975i −0.0961066 + 0.0127183i
\(703\) 2.40659 0.0907661
\(704\) 25.6144 25.8215i 0.965378 0.973186i
\(705\) 18.5910i 0.700176i
\(706\) −9.84827 + 1.30328i −0.370645 + 0.0490494i
\(707\) −18.7001 24.1128i −0.703291 0.906857i
\(708\) −16.3506 + 4.40467i −0.614494 + 0.165538i
\(709\) 34.8737i 1.30971i 0.755755 + 0.654855i \(0.227270\pi\)
−0.755755 + 0.654855i \(0.772730\pi\)
\(710\) −7.97313 + 1.05513i −0.299226 + 0.0395982i
\(711\) 2.97813i 0.111688i
\(712\) −41.6654 + 17.3568i −1.56148 + 0.650472i
\(713\) 26.7502i 1.00180i
\(714\) −9.18313 + 9.29048i −0.343670 + 0.347688i
\(715\) 31.7450 1.18719
\(716\) −19.3707 + 5.21825i −0.723918 + 0.195015i
\(717\) 19.8547 0.741489
\(718\) −15.6334 + 2.06886i −0.583434 + 0.0772091i
\(719\) −8.74757 −0.326229 −0.163115 0.986607i \(-0.552154\pi\)
−0.163115 + 0.986607i \(0.552154\pi\)
\(720\) 13.2968 7.72462i 0.495544 0.287880i
\(721\) 1.85213 + 2.38823i 0.0689769 + 0.0889422i
\(722\) −2.99710 22.6478i −0.111541 0.842863i
\(723\) −6.57701 −0.244602
\(724\) 46.8268 12.6146i 1.74031 0.468819i
\(725\) 17.7625i 0.659683i
\(726\) 13.5565 1.79401i 0.503130 0.0665820i
\(727\) 23.7851 0.882140 0.441070 0.897473i \(-0.354599\pi\)
0.441070 + 0.897473i \(0.354599\pi\)
\(728\) 6.71142 11.8190i 0.248742 0.438041i
\(729\) −1.00000 −0.0370370
\(730\) 37.6347 4.98041i 1.39292 0.184333i
\(731\) 28.0613i 1.03788i
\(732\) 1.57086 + 5.83121i 0.0580608 + 0.215528i
\(733\) −4.79132 −0.176971 −0.0884857 0.996077i \(-0.528203\pi\)
−0.0884857 + 0.996077i \(0.528203\pi\)
\(734\) 1.19276 + 9.01312i 0.0440254 + 0.332680i
\(735\) 26.0644 + 6.69753i 0.961398 + 0.247042i
\(736\) 22.4098 17.3154i 0.826035 0.638256i
\(737\) 20.1365 0.741738
\(738\) 12.5836 1.66525i 0.463208 0.0612988i
\(739\) 13.7563 0.506035 0.253018 0.967462i \(-0.418577\pi\)
0.253018 + 0.967462i \(0.418577\pi\)
\(740\) −2.85309 10.5910i −0.104882 0.389332i
\(741\) −3.06403 −0.112560
\(742\) −15.6276 15.4470i −0.573706 0.567076i
\(743\) 11.5310i 0.423033i −0.977374 0.211517i \(-0.932160\pi\)
0.977374 0.211517i \(-0.0678402\pi\)
\(744\) 13.9510 5.81164i 0.511469 0.213065i
\(745\) 70.7275i 2.59125i
\(746\) −2.46087 + 0.325660i −0.0900987 + 0.0119233i
\(747\) 10.5770i 0.386992i
\(748\) −8.25737 30.6522i −0.301919 1.12076i
\(749\) −0.129094 0.166461i −0.00471701 0.00608234i
\(750\) −25.7622 + 3.40926i −0.940704 + 0.124488i
\(751\) 40.8541i 1.49079i 0.666625 + 0.745393i \(0.267738\pi\)
−0.666625 + 0.745393i \(0.732262\pi\)
\(752\) −16.7257 + 9.71655i −0.609923 + 0.354326i
\(753\) −4.85827 −0.177045
\(754\) −4.62486 + 0.612033i −0.168427 + 0.0222889i
\(755\) 38.0123i 1.38341i
\(756\) 3.19398 4.21882i 0.116164 0.153437i
\(757\) 27.8196i 1.01112i −0.862791 0.505561i \(-0.831286\pi\)
0.862791 0.505561i \(-0.168714\pi\)
\(758\) 3.52627 + 26.6464i 0.128080 + 0.967842i
\(759\) 22.7606 0.826156
\(760\) 16.9335 7.05407i 0.614243 0.255878i
\(761\) 26.4737i 0.959672i −0.877358 0.479836i \(-0.840696\pi\)
0.877358 0.479836i \(-0.159304\pi\)
\(762\) 0.999042 + 7.54931i 0.0361915 + 0.273483i
\(763\) −42.0402 + 32.6033i −1.52196 + 1.18032i
\(764\) 4.41896 + 16.4036i 0.159872 + 0.593463i
\(765\) 13.4219i 0.485269i
\(766\) 5.28650 + 39.9477i 0.191009 + 1.44337i
\(767\) 15.3778i 0.555259i
\(768\) 13.8992 + 7.92547i 0.501543 + 0.285986i
\(769\) 31.5945i 1.13933i 0.821878 + 0.569664i \(0.192927\pi\)
−0.821878 + 0.569664i \(0.807073\pi\)
\(770\) −45.9736 + 46.5111i −1.65678 + 1.67614i
\(771\) −9.20998 −0.331689
\(772\) 21.8133 5.87626i 0.785079 0.211491i
\(773\) 33.5413 1.20640 0.603199 0.797591i \(-0.293893\pi\)
0.603199 + 0.797591i \(0.293893\pi\)
\(774\) −1.49124 11.2687i −0.0536016 0.405044i
\(775\) −52.2560 −1.87709
\(776\) −30.3090 + 12.6260i −1.08803 + 0.453247i
\(777\) −2.31300 2.98249i −0.0829782 0.106996i
\(778\) 41.1986 5.45204i 1.47704 0.195465i
\(779\) 15.1417 0.542509
\(780\) 3.63251 + 13.4843i 0.130065 + 0.482814i
\(781\) 6.72535i 0.240652i
\(782\) −3.24280 24.5044i −0.115962 0.876274i
\(783\) −1.81625 −0.0649076
\(784\) 7.59696 + 26.9497i 0.271320 + 0.962489i
\(785\) −47.5105 −1.69572
\(786\) −2.42914 18.3559i −0.0866445 0.654733i
\(787\) 1.03147i 0.0367679i −0.999831 0.0183840i \(-0.994148\pi\)
0.999831 0.0183840i \(-0.00585213\pi\)
\(788\) 1.24061 + 4.60529i 0.0441950 + 0.164057i
\(789\) −3.90849 −0.139146
\(790\) 16.0517 2.12421i 0.571095 0.0755761i
\(791\) −8.07860 10.4169i −0.287242 0.370384i
\(792\) 4.94487 + 11.8703i 0.175708 + 0.421793i
\(793\) −5.48426 −0.194752
\(794\) −2.88397 21.7929i −0.102348 0.773400i
\(795\) 22.5770 0.800724
\(796\) 4.75716 1.28152i 0.168613 0.0454224i
\(797\) 22.2199 0.787070 0.393535 0.919310i \(-0.371252\pi\)
0.393535 + 0.919310i \(0.371252\pi\)
\(798\) 4.43738 4.48926i 0.157082 0.158918i
\(799\) 16.8830i 0.597276i
\(800\) −33.8254 43.7771i −1.19591 1.54775i
\(801\) 15.9580i 0.563848i
\(802\) 2.88680 + 21.8143i 0.101937 + 0.770288i
\(803\) 31.7450i 1.12026i
\(804\) 2.30418 + 8.55335i 0.0812620 + 0.301653i
\(805\) −40.2388 + 31.2062i −1.41823 + 1.09988i
\(806\) 1.80056 + 13.6060i 0.0634219 + 0.479251i
\(807\) 9.24872i 0.325570i
\(808\) 12.5443 + 30.1128i 0.441305 + 1.05937i
\(809\) −52.4790 −1.84506 −0.922532 0.385920i \(-0.873884\pi\)
−0.922532 + 0.385920i \(0.873884\pi\)
\(810\) 0.713272 + 5.38987i 0.0250618 + 0.189381i
\(811\) 4.40548i 0.154697i 0.997004 + 0.0773487i \(0.0246455\pi\)
−0.997004 + 0.0773487i \(0.975355\pi\)
\(812\) 5.80108 7.66246i 0.203578 0.268900i
\(813\) 16.5201i 0.579384i
\(814\) 9.09274 1.20329i 0.318700 0.0421754i
\(815\) 13.7280 0.480870
\(816\) 12.0752 7.01494i 0.422718 0.245572i
\(817\) 13.5595i 0.474387i
\(818\) 25.7356 3.40574i 0.899825 0.119079i
\(819\) 2.94487 + 3.79726i 0.102902 + 0.132687i
\(820\) −17.9510 66.6361i −0.626877 2.32703i
\(821\) 21.2067i 0.740119i −0.929008 0.370060i \(-0.879337\pi\)
0.929008 0.370060i \(-0.120663\pi\)
\(822\) −27.4222 + 3.62893i −0.956460 + 0.126574i
\(823\) 29.3609i 1.02346i 0.859148 + 0.511728i \(0.170994\pi\)
−0.859148 + 0.511728i \(0.829006\pi\)
\(824\) −1.24243 2.98249i −0.0432821 0.103900i
\(825\) 44.4624i 1.54798i
\(826\) 22.5307 + 22.2704i 0.783944 + 0.774885i
\(827\) −28.2161 −0.981171 −0.490585 0.871393i \(-0.663217\pi\)
−0.490585 + 0.871393i \(0.663217\pi\)
\(828\) 2.60444 + 9.66797i 0.0905106 + 0.335985i
\(829\) −9.77173 −0.339386 −0.169693 0.985497i \(-0.554278\pi\)
−0.169693 + 0.985497i \(0.554278\pi\)
\(830\) −57.0087 + 7.54428i −1.97880 + 0.261866i
\(831\) −3.26465 −0.113249
\(832\) −10.2328 + 10.3156i −0.354759 + 0.357629i
\(833\) 23.6698 + 6.08221i 0.820108 + 0.210736i
\(834\) −2.70711 20.4564i −0.0937395 0.708347i
\(835\) −75.2694 −2.60481
\(836\) 3.99004 + 14.8115i 0.137999 + 0.512266i
\(837\) 5.34329i 0.184691i
\(838\) −29.6773 + 3.92736i −1.02519 + 0.135668i
\(839\) −35.0785 −1.21104 −0.605522 0.795828i \(-0.707036\pi\)
−0.605522 + 0.795828i \(0.707036\pi\)
\(840\) −25.0171 14.2060i −0.863172 0.490153i
\(841\) 25.7012 0.886249
\(842\) −3.09274 + 0.409280i −0.106583 + 0.0141047i
\(843\) 19.1680i 0.660180i
\(844\) 0.0726403 0.0195685i 0.00250038 0.000673575i
\(845\) 37.2958 1.28301
\(846\) −0.897201 6.77975i −0.0308464 0.233093i
\(847\) −15.6781 20.2161i −0.538706 0.694633i
\(848\) 11.7998 + 20.3118i 0.405209 + 0.697510i
\(849\) −20.2780 −0.695938
\(850\) −47.8688 + 6.33475i −1.64189 + 0.217280i
\(851\) 7.14173 0.244815
\(852\) 2.85672 0.769567i 0.0978695 0.0263649i
\(853\) 18.3536 0.628416 0.314208 0.949354i \(-0.398261\pi\)
0.314208 + 0.949354i \(0.398261\pi\)
\(854\) 7.94241 8.03526i 0.271784 0.274961i
\(855\) 6.48559i 0.221803i
\(856\) 0.0865980 + 0.207881i 0.00295986 + 0.00710522i
\(857\) 7.62775i 0.260559i −0.991477 0.130279i \(-0.958413\pi\)
0.991477 0.130279i \(-0.0415874\pi\)
\(858\) −11.5767 + 1.53201i −0.395224 + 0.0523021i
\(859\) 13.9075i 0.474518i −0.971446 0.237259i \(-0.923751\pi\)
0.971446 0.237259i \(-0.0762491\pi\)
\(860\) −59.6730 + 16.0752i −2.03483 + 0.548161i
\(861\) −14.5529 18.7652i −0.495961 0.639516i
\(862\) −24.4304 + 3.23301i −0.832104 + 0.110117i
\(863\) 13.3074i 0.452989i −0.974012 0.226494i \(-0.927274\pi\)
0.974012 0.226494i \(-0.0727265\pi\)
\(864\) −4.47630 + 3.45872i −0.152287 + 0.117668i
\(865\) 21.1223 0.718179
\(866\) −3.06403 + 0.405480i −0.104120 + 0.0137788i
\(867\) 4.81122i 0.163398i
\(868\) −22.5424 17.0664i −0.765139 0.579270i
\(869\) 13.5397i 0.459302i
\(870\) 1.29548 + 9.78938i 0.0439210 + 0.331891i
\(871\) −8.04444 −0.272575
\(872\) 52.5011 21.8706i 1.77791 0.740633i
\(873\) 11.6085i 0.392887i
\(874\) 1.56695 + 11.8408i 0.0530030 + 0.400520i
\(875\) 29.7940 + 38.4178i 1.00722 + 1.29876i
\(876\) −13.4843 + 3.63251i −0.455591 + 0.122731i
\(877\) 25.0885i 0.847179i −0.905854 0.423589i \(-0.860770\pi\)
0.905854 0.423589i \(-0.139230\pi\)
\(878\) 5.10453 + 38.5726i 0.172269 + 1.30176i
\(879\) 5.07037i 0.171019i
\(880\) 60.4524 35.1190i 2.03785 1.18386i
\(881\) 5.29180i 0.178285i 0.996019 + 0.0891426i \(0.0284127\pi\)
−0.996019 + 0.0891426i \(0.971587\pi\)
\(882\) −9.82836 1.18459i −0.330938 0.0398871i
\(883\) −21.5219 −0.724269 −0.362134 0.932126i \(-0.617952\pi\)
−0.362134 + 0.932126i \(0.617952\pi\)
\(884\) 3.29878 + 12.2454i 0.110950 + 0.411858i
\(885\) −32.5500 −1.09415
\(886\) −0.626805 4.73648i −0.0210579 0.159125i
\(887\) −14.7656 −0.495780 −0.247890 0.968788i \(-0.579737\pi\)
−0.247890 + 0.968788i \(0.579737\pi\)
\(888\) 1.55158 + 3.72462i 0.0520677 + 0.124990i
\(889\) 11.2579 8.73076i 0.377577 0.292820i
\(890\) −86.0116 + 11.3824i −2.88311 + 0.381538i
\(891\) −4.54637 −0.152309
\(892\) 24.9397 6.71848i 0.835043 0.224951i
\(893\) 8.15802i 0.272998i
\(894\) −3.41331 25.7929i −0.114158 0.862643i
\(895\) −38.5622 −1.28899
\(896\) −0.294507 29.9318i −0.00983880 0.999952i
\(897\) −9.09274 −0.303598
\(898\) −0.327565 2.47526i −0.0109310 0.0826005i
\(899\) 9.70478i 0.323672i
\(900\) 18.8862 5.08773i 0.629540 0.169591i
\(901\) 20.5028 0.683047
\(902\) 57.2096 7.57086i 1.90487 0.252082i
\(903\) −16.8043 + 13.0322i −0.559213 + 0.433684i
\(904\) 5.41922 + 13.0090i 0.180240 + 0.432672i
\(905\) 93.2205 3.09875
\(906\) 1.83448 + 13.8623i 0.0609464 + 0.460544i
\(907\) 46.8609 1.55599 0.777995 0.628271i \(-0.216237\pi\)
0.777995 + 0.628271i \(0.216237\pi\)
\(908\) 0.772161 + 2.86635i 0.0256251 + 0.0951230i
\(909\) −11.5333 −0.382536
\(910\) 18.3663 18.5810i 0.608836 0.615953i
\(911\) 54.6440i 1.81044i −0.424945 0.905219i \(-0.639707\pi\)
0.424945 0.905219i \(-0.360293\pi\)
\(912\) −5.83488 + 3.38969i −0.193212 + 0.112244i
\(913\) 48.0870i 1.59145i
\(914\) 4.53030 + 34.2335i 0.149849 + 1.13234i
\(915\) 11.6085i 0.383764i
\(916\) 9.01722 2.42914i 0.297937 0.0802610i
\(917\) −27.3731 + 21.2286i −0.903940 + 0.701029i
\(918\) 0.647741 + 4.89469i 0.0213786 + 0.161549i
\(919\) 28.6186i 0.944041i −0.881588 0.472020i \(-0.843525\pi\)
0.881588 0.472020i \(-0.156475\pi\)
\(920\) 50.2515 20.9335i 1.65674 0.690157i
\(921\) −15.2465 −0.502389
\(922\) 1.44323 + 10.9059i 0.0475304 + 0.359166i
\(923\) 2.68675i 0.0884353i
\(924\) 14.5210 19.1803i 0.477707 0.630987i
\(925\) 13.9512i 0.458714i
\(926\) −23.2191 + 3.07271i −0.763026 + 0.100975i
\(927\) 1.14230 0.0375182
\(928\) −8.13010 + 6.28191i −0.266884 + 0.206214i
\(929\) 29.6885i 0.974048i 0.873389 + 0.487024i \(0.161918\pi\)
−0.873389 + 0.487024i \(0.838082\pi\)
\(930\) 28.7997 3.81122i 0.944378 0.124975i
\(931\) −11.4375 2.93899i −0.374848 0.0963214i
\(932\) 16.1377 4.34731i 0.528608 0.142401i
\(933\) 8.91481i 0.291858i
\(934\) 19.7824 2.61792i 0.647301 0.0856609i
\(935\) 61.0209i 1.99560i
\(936\) −1.97545 4.74213i −0.0645697 0.155001i
\(937\) 32.4055i 1.05864i −0.848422 0.529320i \(-0.822447\pi\)
0.848422 0.529320i \(-0.177553\pi\)
\(938\) 11.6501 11.7863i 0.380389 0.384836i
\(939\) 24.9335 0.813674
\(940\) −35.9020 + 9.67160i −1.17100 + 0.315453i
\(941\) −10.5656 −0.344429 −0.172214 0.985060i \(-0.555092\pi\)
−0.172214 + 0.985060i \(0.555092\pi\)
\(942\) 17.3261 2.29286i 0.564515 0.0747054i
\(943\) 44.9342 1.46326
\(944\) −17.0122 29.2841i −0.553700 0.953117i
\(945\) 8.03761 6.23338i 0.261464 0.202772i
\(946\) −6.77975 51.2315i −0.220429 1.66568i
\(947\) −3.44186 −0.111845 −0.0559226 0.998435i \(-0.517810\pi\)
−0.0559226 + 0.998435i \(0.517810\pi\)
\(948\) −5.75122 + 1.54931i −0.186791 + 0.0503194i
\(949\) 12.6820i 0.411674i
\(950\) 23.1307 3.06101i 0.750459 0.0993124i
\(951\) −16.1127 −0.522491
\(952\) −22.7187 12.9008i −0.736318 0.418119i
\(953\) −38.5559 −1.24895 −0.624475 0.781045i \(-0.714687\pi\)
−0.624475 + 0.781045i \(0.714687\pi\)
\(954\) −8.23338 + 1.08957i −0.266565 + 0.0352761i
\(955\) 32.6555i 1.05671i
\(956\) 10.3291 + 38.3426i 0.334066 + 1.24009i
\(957\) −8.25737 −0.266923
\(958\) 1.62296 + 12.2640i 0.0524356 + 0.396232i
\(959\) 31.7137 + 40.8932i 1.02409 + 1.32051i
\(960\) 21.8349 + 21.6597i 0.704718 + 0.699063i
\(961\) −2.44924 −0.0790077
\(962\) −3.63251 + 0.480710i −0.117117 + 0.0154987i
\(963\) −0.0796192 −0.00256569
\(964\) −3.42157 12.7012i −0.110201 0.409079i
\(965\) 43.4248 1.39790
\(966\) 13.1683 13.3222i 0.423682 0.428635i
\(967\) 10.0322i 0.322614i 0.986904 + 0.161307i \(0.0515709\pi\)
−0.986904 + 0.161307i \(0.948429\pi\)
\(968\) 10.5170 + 25.2465i 0.338031 + 0.811452i
\(969\) 5.88974i 0.189206i
\(970\) −62.5682 + 8.28000i −2.00894 + 0.265855i
\(971\) 28.4807i 0.913989i 0.889469 + 0.456995i \(0.151074\pi\)
−0.889469 + 0.456995i \(0.848926\pi\)
\(972\) −0.520231 1.93115i −0.0166864 0.0619418i
\(973\) −30.5055 + 23.6578i −0.977960 + 0.758433i
\(974\) 43.4970 5.75620i 1.39373 0.184441i
\(975\) 17.7625i 0.568856i
\(976\) −10.4438 + 6.06716i −0.334297 + 0.194205i
\(977\) 8.98249 0.287375 0.143688 0.989623i \(-0.454104\pi\)
0.143688 + 0.989623i \(0.454104\pi\)
\(978\) −5.00632 + 0.662513i −0.160084 + 0.0211848i
\(979\) 72.5510i 2.31874i
\(980\) 0.625527 + 53.8186i 0.0199817 + 1.71917i
\(981\) 20.1081i 0.642002i
\(982\) 4.09000 + 30.9063i 0.130517 + 0.986260i
\(983\) 11.1768 0.356484 0.178242 0.983987i \(-0.442959\pi\)
0.178242 + 0.983987i \(0.442959\pi\)
\(984\) 9.76223 + 23.4345i 0.311209 + 0.747065i
\(985\) 9.16797i 0.292116i
\(986\) 1.17646 + 8.89000i 0.0374662 + 0.283115i
\(987\) −10.1103 + 7.84076i −0.321813 + 0.249574i
\(988\) −1.59400 5.91712i −0.0507120 0.188249i
\(989\) 40.2388i 1.27952i
\(990\) 3.24280 + 24.5044i 0.103063 + 0.778800i
\(991\) 21.5500i 0.684559i 0.939598 + 0.342279i \(0.111199\pi\)
−0.939598 + 0.342279i \(0.888801\pi\)
\(992\) 18.4809 + 23.9182i 0.586770 + 0.759403i
\(993\) 22.3802i 0.710213i
\(994\) −3.93648 3.89099i −0.124858 0.123415i
\(995\) 9.47031 0.300229
\(996\) 20.4258 5.50249i 0.647218 0.174353i
\(997\) −38.2116 −1.21017 −0.605087 0.796159i \(-0.706862\pi\)
−0.605087 + 0.796159i \(0.706862\pi\)
\(998\) −7.54023 56.9781i −0.238682 1.80361i
\(999\) −1.42654 −0.0451338
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.2.p.a.139.6 yes 16
3.2 odd 2 504.2.p.g.307.12 16
4.3 odd 2 672.2.p.a.559.1 16
7.6 odd 2 inner 168.2.p.a.139.5 16
8.3 odd 2 inner 168.2.p.a.139.8 yes 16
8.5 even 2 672.2.p.a.559.8 16
12.11 even 2 2016.2.p.g.559.16 16
21.20 even 2 504.2.p.g.307.11 16
24.5 odd 2 2016.2.p.g.559.1 16
24.11 even 2 504.2.p.g.307.9 16
28.27 even 2 672.2.p.a.559.16 16
56.13 odd 2 672.2.p.a.559.9 16
56.27 even 2 inner 168.2.p.a.139.7 yes 16
84.83 odd 2 2016.2.p.g.559.2 16
168.83 odd 2 504.2.p.g.307.10 16
168.125 even 2 2016.2.p.g.559.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.p.a.139.5 16 7.6 odd 2 inner
168.2.p.a.139.6 yes 16 1.1 even 1 trivial
168.2.p.a.139.7 yes 16 56.27 even 2 inner
168.2.p.a.139.8 yes 16 8.3 odd 2 inner
504.2.p.g.307.9 16 24.11 even 2
504.2.p.g.307.10 16 168.83 odd 2
504.2.p.g.307.11 16 21.20 even 2
504.2.p.g.307.12 16 3.2 odd 2
672.2.p.a.559.1 16 4.3 odd 2
672.2.p.a.559.8 16 8.5 even 2
672.2.p.a.559.9 16 56.13 odd 2
672.2.p.a.559.16 16 28.27 even 2
2016.2.p.g.559.1 16 24.5 odd 2
2016.2.p.g.559.2 16 84.83 odd 2
2016.2.p.g.559.15 16 168.125 even 2
2016.2.p.g.559.16 16 12.11 even 2