gp: [N,k,chi] = [504,2,Mod(307,504)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(504, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("504.307");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,-1,0,-3,0,0,0,5,0,0,8,0,0,-7]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + − 7 ) \beta = \frac{1}{2}(1 + \sqrt{-7}) β = 2 1 ( 1 + − 7 ) .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 504 Z ) × \left(\mathbb{Z}/504\mathbb{Z}\right)^\times ( Z / 5 0 4 Z ) × .
n n n
73 73 7 3
127 127 1 2 7
253 253 2 5 3
281 281 2 8 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 504 , [ χ ] ) S_{2}^{\mathrm{new}}(504, [\chi]) S 2 n e w ( 5 0 4 , [ χ ] ) :
T 5 T_{5} T 5
T5
T 11 − 4 T_{11} - 4 T 1 1 − 4
T11 - 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + T + 2 T^{2} + T + 2 T 2 + T + 2
T^2 + T + 2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 7 T^{2} + 7 T 2 + 7
T^2 + 7
11 11 1 1
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
13 13 1 3
T 2 T^{2} T 2
T^2
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 T^{2} T 2
T^2
23 23 2 3
T 2 + 28 T^{2} + 28 T 2 + 2 8
T^2 + 28
29 29 2 9
T 2 + 112 T^{2} + 112 T 2 + 1 1 2
T^2 + 112
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
T 2 + 112 T^{2} + 112 T 2 + 1 1 2
T^2 + 112
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
( T − 12 ) 2 (T - 12)^{2} ( T − 1 2 ) 2
(T - 12)^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 + 112 T^{2} + 112 T 2 + 1 1 2
T^2 + 112
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
T 2 T^{2} T 2
T^2
67 67 6 7
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
71 71 7 1
T 2 + 28 T^{2} + 28 T 2 + 2 8
T^2 + 28
73 73 7 3
T 2 T^{2} T 2
T^2
79 79 7 9
T 2 + 252 T^{2} + 252 T 2 + 2 5 2
T^2 + 252
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
T 2 T^{2} T 2
T^2
show more
show less