Base field \(\Q(\sqrt{14}) \)
Generator \(w\), with minimal polynomial \(x^2 - 14\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[81, 9, 9]$ |
| Dimension: | $1$ |
| CM: | yes |
| Base change: | yes |
| Newspace dimension: | $55$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, -w - 4]$ | $-1$ |
| 5 | $[5, 5, -w + 3]$ | $\phantom{-}0$ |
| 5 | $[5, 5, w + 3]$ | $\phantom{-}0$ |
| 7 | $[7, 7, -2 w - 7]$ | $\phantom{-}0$ |
| 9 | $[9, 3, 3]$ | $\phantom{-}0$ |
| 11 | $[11, 11, w + 5]$ | $\phantom{-}4$ |
| 11 | $[11, 11, -w + 5]$ | $\phantom{-}4$ |
| 13 | $[13, 13, -w - 1]$ | $\phantom{-}0$ |
| 13 | $[13, 13, -w + 1]$ | $\phantom{-}0$ |
| 31 | $[31, 31, 2 w - 5]$ | $\phantom{-}0$ |
| 31 | $[31, 31, -2 w - 5]$ | $\phantom{-}0$ |
| 43 | $[43, 43, 7 w + 27]$ | $\phantom{-}12$ |
| 43 | $[43, 43, 3 w + 13]$ | $\phantom{-}12$ |
| 47 | $[47, 47, 2 w - 3]$ | $\phantom{-}0$ |
| 47 | $[47, 47, -2 w - 3]$ | $\phantom{-}0$ |
| 61 | $[61, 61, 7 w + 25]$ | $\phantom{-}0$ |
| 61 | $[61, 61, -5 w - 17]$ | $\phantom{-}0$ |
| 67 | $[67, 67, -w - 9]$ | $\phantom{-}4$ |
| 67 | $[67, 67, w - 9]$ | $\phantom{-}4$ |
| 101 | $[101, 101, 3 w - 5]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $9$ | $[9, 3, 3]$ | $1$ |