Properties

Label 50.9.c.e
Level $50$
Weight $9$
Character orbit 50.c
Analytic conductor $20.369$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [50,9,Mod(7,50)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("50.7"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,32,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3689305031\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{249})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 125x^{2} + 3844 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (8 \beta_1 + 8) q^{2} + ( - \beta_{3} + 13 \beta_1 - 14) q^{3} + 128 \beta_1 q^{4} + ( - 8 \beta_{3} + 8 \beta_{2} + \cdots - 224) q^{6} + ( - 59 \beta_{2} + 326 \beta_1 + 326) q^{7} + (1024 \beta_1 - 1024) q^{8}+ \cdots + ( - 538005 \beta_{3} + \cdots - 37323717 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{2} - 54 q^{3} - 864 q^{6} + 1186 q^{7} - 4096 q^{8} - 19852 q^{11} - 6912 q^{12} - 73704 q^{13} - 65536 q^{16} - 198944 q^{17} - 98688 q^{18} - 766572 q^{21} - 158816 q^{22} - 631334 q^{23}+ \cdots - 167860352 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 125x^{2} + 3844 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 63\nu ) / 62 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{3} + 310\nu^{2} + 499\nu + 19406 ) / 62 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 155\nu^{2} + 218\nu - 9703 ) / 31 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 5\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta _1 - 626 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -63\beta_{3} - 63\beta_{2} + 935\beta_1 ) / 10 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
8.38987i
7.38987i
8.38987i
7.38987i
8.00000 + 8.00000i −52.9493 + 52.9493i 128.000i 0 −847.189 2624.01 + 2624.01i −1024.00 + 1024.00i 953.736i 0
7.2 8.00000 + 8.00000i 25.9493 25.9493i 128.000i 0 415.189 −2031.01 2031.01i −1024.00 + 1024.00i 5214.26i 0
43.1 8.00000 8.00000i −52.9493 52.9493i 128.000i 0 −847.189 2624.01 2624.01i −1024.00 1024.00i 953.736i 0
43.2 8.00000 8.00000i 25.9493 + 25.9493i 128.000i 0 415.189 −2031.01 + 2031.01i −1024.00 1024.00i 5214.26i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.9.c.e 4
5.b even 2 1 10.9.c.a 4
5.c odd 4 1 10.9.c.a 4
5.c odd 4 1 inner 50.9.c.e 4
15.d odd 2 1 90.9.g.b 4
15.e even 4 1 90.9.g.b 4
20.d odd 2 1 80.9.p.b 4
20.e even 4 1 80.9.p.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.9.c.a 4 5.b even 2 1
10.9.c.a 4 5.c odd 4 1
50.9.c.e 4 1.a even 1 1 trivial
50.9.c.e 4 5.c odd 4 1 inner
80.9.p.b 4 20.d odd 2 1
80.9.p.b 4 20.e even 4 1
90.9.g.b 4 15.d odd 2 1
90.9.g.b 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 54T_{3}^{3} + 1458T_{3}^{2} - 148392T_{3} + 7551504 \) acting on \(S_{9}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 16 T + 128)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 54 T^{3} + \cdots + 7551504 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 113609761628944 \) Copy content Toggle raw display
$11$ \( (T^{2} + 9926 T - 82195856)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 24\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 24\!\cdots\!64 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 75\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{2} + 1164946 T - 344028072296)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 37\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots - 8475379721456)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 31\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 42\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 454269173871504)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 793510166720824)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 19\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 60\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 30\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 55\!\cdots\!04 \) Copy content Toggle raw display
show more
show less