Properties

Label 50.9.c
Level $50$
Weight $9$
Character orbit 50.c
Rep. character $\chi_{50}(7,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $6$
Sturm bound $67$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(67\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(50, [\chi])\).

Total New Old
Modular forms 132 24 108
Cusp forms 108 24 84
Eisenstein series 24 0 24

Trace form

\( 24 q - 140 q^{3} - 1024 q^{6} - 4540 q^{7} + 69168 q^{11} - 17920 q^{12} - 119280 q^{13} - 393216 q^{16} - 202560 q^{17} - 158720 q^{18} + 598328 q^{21} - 40960 q^{22} - 174540 q^{23} - 1841664 q^{26} + 704560 q^{27}+ \cdots - 115169280 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.9.c.a 50.c 5.c $4$ $20.369$ \(\Q(i, \sqrt{29})\) None 50.9.c.a \(-32\) \(-96\) \(0\) \(5664\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-8-8\beta _{1})q^{2}+(-24+24\beta _{1}-\beta _{3})q^{3}+\cdots\)
50.9.c.b 50.c 5.c $4$ $20.369$ \(\Q(i, \sqrt{601})\) None 10.9.c.b \(-32\) \(-86\) \(0\) \(-5726\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-8+8\beta _{1})q^{2}+(-22-22\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
50.9.c.c 50.c 5.c $4$ $20.369$ \(\Q(i, \sqrt{6})\) None 50.9.c.c \(-32\) \(144\) \(0\) \(4704\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-8+8\beta _{2})q^{2}+(6^{2}-11\beta _{1}+6^{2}\beta _{2}+\cdots)q^{3}+\cdots\)
50.9.c.d 50.c 5.c $4$ $20.369$ \(\Q(i, \sqrt{6})\) None 50.9.c.c \(32\) \(-144\) \(0\) \(-4704\) $\mathrm{SU}(2)[C_{4}]$ \(q+(8-8\beta _{2})q^{2}+(-6^{2}-11\beta _{1}-6^{2}\beta _{2}+\cdots)q^{3}+\cdots\)
50.9.c.e 50.c 5.c $4$ $20.369$ \(\Q(i, \sqrt{249})\) None 10.9.c.a \(32\) \(-54\) \(0\) \(1186\) $\mathrm{SU}(2)[C_{4}]$ \(q+(8+8\beta _{1})q^{2}+(-14+13\beta _{1}-\beta _{3})q^{3}+\cdots\)
50.9.c.f 50.c 5.c $4$ $20.369$ \(\Q(i, \sqrt{29})\) None 50.9.c.a \(32\) \(96\) \(0\) \(-5664\) $\mathrm{SU}(2)[C_{4}]$ \(q+(8+8\beta _{1})q^{2}+(24-24\beta _{1}+\beta _{3})q^{3}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)