Properties

Label 50.9
Level 50
Weight 9
Dimension 184
Nonzero newspaces 2
Newform subspaces 8
Sturm bound 1350
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 8 \)
Sturm bound: \(1350\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(50))\).

Total New Old
Modular forms 628 184 444
Cusp forms 572 184 388
Eisenstein series 56 0 56

Trace form

\( 184 q - 280 q^{3} + 780 q^{5} - 1024 q^{6} - 9080 q^{7} + 6400 q^{10} + 69168 q^{11} - 35840 q^{12} - 238560 q^{13} + 252580 q^{15} + 262144 q^{16} + 336180 q^{17} - 317440 q^{18} - 1437800 q^{19} - 161280 q^{20}+ \cdots - 230338560 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(50))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
50.9.c \(\chi_{50}(7, \cdot)\) 50.9.c.a 4 2
50.9.c.b 4
50.9.c.c 4
50.9.c.d 4
50.9.c.e 4
50.9.c.f 4
50.9.f \(\chi_{50}(3, \cdot)\) 50.9.f.a 80 8
50.9.f.b 80

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)