Properties

Label 50.8.b.a.49.2
Level $50$
Weight $8$
Character 50.49
Analytic conductor $15.619$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [50,8,Mod(49,50)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("50.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-128,0,-1392] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6192512742\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 50.49
Dual form 50.8.b.a.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{2} +87.0000i q^{3} -64.0000 q^{4} -696.000 q^{6} -1366.00i q^{7} -512.000i q^{8} -5382.00 q^{9} -1083.00 q^{11} -5568.00i q^{12} -5468.00i q^{13} +10928.0 q^{14} +4096.00 q^{16} +25269.0i q^{17} -43056.0i q^{18} -33485.0 q^{19} +118842. q^{21} -8664.00i q^{22} -5838.00i q^{23} +44544.0 q^{24} +43744.0 q^{26} -277965. i q^{27} +87424.0i q^{28} -125280. q^{29} -73798.0 q^{31} +32768.0i q^{32} -94221.0i q^{33} -202152. q^{34} +344448. q^{36} -395926. i q^{37} -267880. i q^{38} +475716. q^{39} -22683.0 q^{41} +950736. i q^{42} -100148. i q^{43} +69312.0 q^{44} +46704.0 q^{46} +1.14524e6i q^{47} +356352. i q^{48} -1.04241e6 q^{49} -2.19840e6 q^{51} +349952. i q^{52} +354882. i q^{53} +2.22372e6 q^{54} -699392. q^{56} -2.91320e6i q^{57} -1.00224e6i q^{58} -1.09836e6 q^{59} -422998. q^{61} -590384. i q^{62} +7.35181e6i q^{63} -262144. q^{64} +753768. q^{66} +2.55858e6i q^{67} -1.61722e6i q^{68} +507906. q^{69} -2.28743e6 q^{71} +2.75558e6i q^{72} -6.37244e6i q^{73} +3.16741e6 q^{74} +2.14304e6 q^{76} +1.47938e6i q^{77} +3.80573e6i q^{78} +2.01925e6 q^{79} +1.24125e7 q^{81} -181464. i q^{82} -7.97298e6i q^{83} -7.60589e6 q^{84} +801184. q^{86} -1.08994e7i q^{87} +554496. i q^{88} -2.18594e6 q^{89} -7.46929e6 q^{91} +373632. i q^{92} -6.42043e6i q^{93} -9.16195e6 q^{94} -2.85082e6 q^{96} -5.82365e6i q^{97} -8.33930e6i q^{98} +5.82871e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} - 1392 q^{6} - 10764 q^{9} - 2166 q^{11} + 21856 q^{14} + 8192 q^{16} - 66970 q^{19} + 237684 q^{21} + 89088 q^{24} + 87488 q^{26} - 250560 q^{29} - 147596 q^{31} - 404304 q^{34} + 688896 q^{36}+ \cdots + 11657412 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 87.0000i 1.86035i 0.367115 + 0.930175i \(0.380345\pi\)
−0.367115 + 0.930175i \(0.619655\pi\)
\(4\) −64.0000 −0.500000
\(5\) 0 0
\(6\) −696.000 −1.31547
\(7\) − 1366.00i − 1.50525i −0.658452 0.752623i \(-0.728788\pi\)
0.658452 0.752623i \(-0.271212\pi\)
\(8\) − 512.000i − 0.353553i
\(9\) −5382.00 −2.46091
\(10\) 0 0
\(11\) −1083.00 −0.245332 −0.122666 0.992448i \(-0.539144\pi\)
−0.122666 + 0.992448i \(0.539144\pi\)
\(12\) − 5568.00i − 0.930175i
\(13\) − 5468.00i − 0.690282i −0.938551 0.345141i \(-0.887831\pi\)
0.938551 0.345141i \(-0.112169\pi\)
\(14\) 10928.0 1.06437
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 25269.0i 1.24743i 0.781651 + 0.623716i \(0.214378\pi\)
−0.781651 + 0.623716i \(0.785622\pi\)
\(18\) − 43056.0i − 1.74012i
\(19\) −33485.0 −1.11999 −0.559993 0.828497i \(-0.689196\pi\)
−0.559993 + 0.828497i \(0.689196\pi\)
\(20\) 0 0
\(21\) 118842. 2.80029
\(22\) − 8664.00i − 0.173476i
\(23\) − 5838.00i − 0.100050i −0.998748 0.0500250i \(-0.984070\pi\)
0.998748 0.0500250i \(-0.0159301\pi\)
\(24\) 44544.0 0.657733
\(25\) 0 0
\(26\) 43744.0 0.488103
\(27\) − 277965.i − 2.71780i
\(28\) 87424.0i 0.752623i
\(29\) −125280. −0.953869 −0.476935 0.878939i \(-0.658252\pi\)
−0.476935 + 0.878939i \(0.658252\pi\)
\(30\) 0 0
\(31\) −73798.0 −0.444917 −0.222458 0.974942i \(-0.571408\pi\)
−0.222458 + 0.974942i \(0.571408\pi\)
\(32\) 32768.0i 0.176777i
\(33\) − 94221.0i − 0.456403i
\(34\) −202152. −0.882068
\(35\) 0 0
\(36\) 344448. 1.23045
\(37\) − 395926.i − 1.28501i −0.766280 0.642507i \(-0.777894\pi\)
0.766280 0.642507i \(-0.222106\pi\)
\(38\) − 267880.i − 0.791950i
\(39\) 475716. 1.28417
\(40\) 0 0
\(41\) −22683.0 −0.0513993 −0.0256996 0.999670i \(-0.508181\pi\)
−0.0256996 + 0.999670i \(0.508181\pi\)
\(42\) 950736.i 1.98010i
\(43\) − 100148.i − 0.192089i −0.995377 0.0960445i \(-0.969381\pi\)
0.995377 0.0960445i \(-0.0306191\pi\)
\(44\) 69312.0 0.122666
\(45\) 0 0
\(46\) 46704.0 0.0707460
\(47\) 1.14524e6i 1.60900i 0.593954 + 0.804499i \(0.297566\pi\)
−0.593954 + 0.804499i \(0.702434\pi\)
\(48\) 356352.i 0.465088i
\(49\) −1.04241e6 −1.26577
\(50\) 0 0
\(51\) −2.19840e6 −2.32066
\(52\) 349952.i 0.345141i
\(53\) 354882.i 0.327430i 0.986508 + 0.163715i \(0.0523477\pi\)
−0.986508 + 0.163715i \(0.947652\pi\)
\(54\) 2.22372e6 1.92177
\(55\) 0 0
\(56\) −699392. −0.532185
\(57\) − 2.91320e6i − 2.08357i
\(58\) − 1.00224e6i − 0.674487i
\(59\) −1.09836e6 −0.696246 −0.348123 0.937449i \(-0.613181\pi\)
−0.348123 + 0.937449i \(0.613181\pi\)
\(60\) 0 0
\(61\) −422998. −0.238607 −0.119304 0.992858i \(-0.538066\pi\)
−0.119304 + 0.992858i \(0.538066\pi\)
\(62\) − 590384.i − 0.314604i
\(63\) 7.35181e6i 3.70427i
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) 753768. 0.322726
\(67\) 2.55858e6i 1.03929i 0.854382 + 0.519645i \(0.173936\pi\)
−0.854382 + 0.519645i \(0.826064\pi\)
\(68\) − 1.61722e6i − 0.623716i
\(69\) 507906. 0.186128
\(70\) 0 0
\(71\) −2.28743e6 −0.758478 −0.379239 0.925299i \(-0.623814\pi\)
−0.379239 + 0.925299i \(0.623814\pi\)
\(72\) 2.75558e6i 0.870061i
\(73\) − 6.37244e6i − 1.91724i −0.284693 0.958619i \(-0.591892\pi\)
0.284693 0.958619i \(-0.408108\pi\)
\(74\) 3.16741e6 0.908642
\(75\) 0 0
\(76\) 2.14304e6 0.559993
\(77\) 1.47938e6i 0.369285i
\(78\) 3.80573e6i 0.908043i
\(79\) 2.01925e6 0.460782 0.230391 0.973098i \(-0.426000\pi\)
0.230391 + 0.973098i \(0.426000\pi\)
\(80\) 0 0
\(81\) 1.24125e7 2.59515
\(82\) − 181464.i − 0.0363448i
\(83\) − 7.97298e6i − 1.53055i −0.643703 0.765275i \(-0.722603\pi\)
0.643703 0.765275i \(-0.277397\pi\)
\(84\) −7.60589e6 −1.40014
\(85\) 0 0
\(86\) 801184. 0.135827
\(87\) − 1.08994e7i − 1.77453i
\(88\) 554496.i 0.0867379i
\(89\) −2.18594e6 −0.328679 −0.164340 0.986404i \(-0.552549\pi\)
−0.164340 + 0.986404i \(0.552549\pi\)
\(90\) 0 0
\(91\) −7.46929e6 −1.03904
\(92\) 373632.i 0.0500250i
\(93\) − 6.42043e6i − 0.827701i
\(94\) −9.16195e6 −1.13773
\(95\) 0 0
\(96\) −2.85082e6 −0.328867
\(97\) − 5.82365e6i − 0.647879i −0.946078 0.323939i \(-0.894993\pi\)
0.946078 0.323939i \(-0.105007\pi\)
\(98\) − 8.33930e6i − 0.895032i
\(99\) 5.82871e6 0.603739
\(100\) 0 0
\(101\) 433062. 0.0418240 0.0209120 0.999781i \(-0.493343\pi\)
0.0209120 + 0.999781i \(0.493343\pi\)
\(102\) − 1.75872e7i − 1.64096i
\(103\) 1.04295e7i 0.940444i 0.882548 + 0.470222i \(0.155826\pi\)
−0.882548 + 0.470222i \(0.844174\pi\)
\(104\) −2.79962e6 −0.244052
\(105\) 0 0
\(106\) −2.83906e6 −0.231528
\(107\) 2.13164e7i 1.68217i 0.540901 + 0.841086i \(0.318083\pi\)
−0.540901 + 0.841086i \(0.681917\pi\)
\(108\) 1.77898e7i 1.35890i
\(109\) −1.60304e7 −1.18564 −0.592819 0.805335i \(-0.701985\pi\)
−0.592819 + 0.805335i \(0.701985\pi\)
\(110\) 0 0
\(111\) 3.44456e7 2.39058
\(112\) − 5.59514e6i − 0.376312i
\(113\) − 905463.i − 0.0590332i −0.999564 0.0295166i \(-0.990603\pi\)
0.999564 0.0295166i \(-0.00939679\pi\)
\(114\) 2.33056e7 1.47330
\(115\) 0 0
\(116\) 8.01792e6 0.476935
\(117\) 2.94288e7i 1.69872i
\(118\) − 8.78688e6i − 0.492320i
\(119\) 3.45175e7 1.87769
\(120\) 0 0
\(121\) −1.83143e7 −0.939812
\(122\) − 3.38398e6i − 0.168721i
\(123\) − 1.97342e6i − 0.0956207i
\(124\) 4.72307e6 0.222458
\(125\) 0 0
\(126\) −5.88145e7 −2.61931
\(127\) 1.60352e7i 0.694642i 0.937746 + 0.347321i \(0.112909\pi\)
−0.937746 + 0.347321i \(0.887091\pi\)
\(128\) − 2.09715e6i − 0.0883883i
\(129\) 8.71288e6 0.357353
\(130\) 0 0
\(131\) 3.83077e6 0.148880 0.0744401 0.997225i \(-0.476283\pi\)
0.0744401 + 0.997225i \(0.476283\pi\)
\(132\) 6.03014e6i 0.228202i
\(133\) 4.57405e7i 1.68586i
\(134\) −2.04686e7 −0.734889
\(135\) 0 0
\(136\) 1.29377e7 0.441034
\(137\) 9.69343e6i 0.322074i 0.986948 + 0.161037i \(0.0514838\pi\)
−0.986948 + 0.161037i \(0.948516\pi\)
\(138\) 4.06325e6i 0.131612i
\(139\) −4.49406e7 −1.41934 −0.709671 0.704533i \(-0.751156\pi\)
−0.709671 + 0.704533i \(0.751156\pi\)
\(140\) 0 0
\(141\) −9.96362e7 −2.99330
\(142\) − 1.82994e7i − 0.536325i
\(143\) 5.92184e6i 0.169348i
\(144\) −2.20447e7 −0.615226
\(145\) 0 0
\(146\) 5.09795e7 1.35569
\(147\) − 9.06899e7i − 2.35477i
\(148\) 2.53393e7i 0.642507i
\(149\) 4.94208e7 1.22393 0.611967 0.790883i \(-0.290379\pi\)
0.611967 + 0.790883i \(0.290379\pi\)
\(150\) 0 0
\(151\) 2.01078e7 0.475275 0.237638 0.971354i \(-0.423627\pi\)
0.237638 + 0.971354i \(0.423627\pi\)
\(152\) 1.71443e7i 0.395975i
\(153\) − 1.35998e8i − 3.06981i
\(154\) −1.18350e7 −0.261124
\(155\) 0 0
\(156\) −3.04458e7 −0.642084
\(157\) 7.86694e7i 1.62240i 0.584771 + 0.811199i \(0.301185\pi\)
−0.584771 + 0.811199i \(0.698815\pi\)
\(158\) 1.61540e7i 0.325822i
\(159\) −3.08747e7 −0.609135
\(160\) 0 0
\(161\) −7.97471e6 −0.150600
\(162\) 9.93002e7i 1.83505i
\(163\) 6.99749e7i 1.26557i 0.774328 + 0.632784i \(0.218088\pi\)
−0.774328 + 0.632784i \(0.781912\pi\)
\(164\) 1.45171e6 0.0256996
\(165\) 0 0
\(166\) 6.37839e7 1.08226
\(167\) − 8.38918e7i − 1.39384i −0.717151 0.696918i \(-0.754554\pi\)
0.717151 0.696918i \(-0.245446\pi\)
\(168\) − 6.08471e7i − 0.990051i
\(169\) 3.28495e7 0.523510
\(170\) 0 0
\(171\) 1.80216e8 2.75618
\(172\) 6.40947e6i 0.0960445i
\(173\) 2.73668e7i 0.401849i 0.979607 + 0.200924i \(0.0643945\pi\)
−0.979607 + 0.200924i \(0.935605\pi\)
\(174\) 8.71949e7 1.25478
\(175\) 0 0
\(176\) −4.43597e6 −0.0613330
\(177\) − 9.55573e7i − 1.29526i
\(178\) − 1.74875e7i − 0.232411i
\(179\) 7.97634e7 1.03948 0.519742 0.854323i \(-0.326028\pi\)
0.519742 + 0.854323i \(0.326028\pi\)
\(180\) 0 0
\(181\) 5.28714e7 0.662744 0.331372 0.943500i \(-0.392488\pi\)
0.331372 + 0.943500i \(0.392488\pi\)
\(182\) − 5.97543e7i − 0.734716i
\(183\) − 3.68008e7i − 0.443893i
\(184\) −2.98906e6 −0.0353730
\(185\) 0 0
\(186\) 5.13634e7 0.585273
\(187\) − 2.73663e7i − 0.306035i
\(188\) − 7.32956e7i − 0.804499i
\(189\) −3.79700e8 −4.09095
\(190\) 0 0
\(191\) −1.03225e8 −1.07194 −0.535969 0.844238i \(-0.680054\pi\)
−0.535969 + 0.844238i \(0.680054\pi\)
\(192\) − 2.28065e7i − 0.232544i
\(193\) 4.99651e7i 0.500283i 0.968209 + 0.250142i \(0.0804772\pi\)
−0.968209 + 0.250142i \(0.919523\pi\)
\(194\) 4.65892e7 0.458120
\(195\) 0 0
\(196\) 6.67144e7 0.632883
\(197\) − 3.33856e7i − 0.311120i −0.987826 0.155560i \(-0.950282\pi\)
0.987826 0.155560i \(-0.0497182\pi\)
\(198\) 4.66296e7i 0.426908i
\(199\) −9.25107e7 −0.832158 −0.416079 0.909328i \(-0.636596\pi\)
−0.416079 + 0.909328i \(0.636596\pi\)
\(200\) 0 0
\(201\) −2.22596e8 −1.93345
\(202\) 3.46450e6i 0.0295740i
\(203\) 1.71132e8i 1.43581i
\(204\) 1.40698e8 1.16033
\(205\) 0 0
\(206\) −8.34359e7 −0.664994
\(207\) 3.14201e7i 0.246213i
\(208\) − 2.23969e7i − 0.172571i
\(209\) 3.62643e7 0.274768
\(210\) 0 0
\(211\) 5.61153e7 0.411238 0.205619 0.978632i \(-0.434079\pi\)
0.205619 + 0.978632i \(0.434079\pi\)
\(212\) − 2.27124e7i − 0.163715i
\(213\) − 1.99006e8i − 1.41104i
\(214\) −1.70531e8 −1.18948
\(215\) 0 0
\(216\) −1.42318e8 −0.960886
\(217\) 1.00808e8i 0.669709i
\(218\) − 1.28243e8i − 0.838373i
\(219\) 5.54403e8 3.56673
\(220\) 0 0
\(221\) 1.38171e8 0.861080
\(222\) 2.75564e8i 1.69039i
\(223\) 7.79936e7i 0.470968i 0.971878 + 0.235484i \(0.0756676\pi\)
−0.971878 + 0.235484i \(0.924332\pi\)
\(224\) 4.47611e7 0.266092
\(225\) 0 0
\(226\) 7.24370e6 0.0417428
\(227\) 1.31342e8i 0.745272i 0.927978 + 0.372636i \(0.121546\pi\)
−0.927978 + 0.372636i \(0.878454\pi\)
\(228\) 1.86444e8i 1.04178i
\(229\) −2.28442e8 −1.25705 −0.628525 0.777790i \(-0.716341\pi\)
−0.628525 + 0.777790i \(0.716341\pi\)
\(230\) 0 0
\(231\) −1.28706e8 −0.687000
\(232\) 6.41434e7i 0.337244i
\(233\) − 3.77949e8i − 1.95743i −0.205216 0.978717i \(-0.565790\pi\)
0.205216 0.978717i \(-0.434210\pi\)
\(234\) −2.35430e8 −1.20118
\(235\) 0 0
\(236\) 7.02950e7 0.348123
\(237\) 1.75675e8i 0.857216i
\(238\) 2.76140e8i 1.32773i
\(239\) 1.13186e8 0.536291 0.268146 0.963378i \(-0.413589\pi\)
0.268146 + 0.963378i \(0.413589\pi\)
\(240\) 0 0
\(241\) −2.00236e8 −0.921473 −0.460736 0.887537i \(-0.652415\pi\)
−0.460736 + 0.887537i \(0.652415\pi\)
\(242\) − 1.46514e8i − 0.664548i
\(243\) 4.71980e8i 2.11009i
\(244\) 2.70719e7 0.119304
\(245\) 0 0
\(246\) 1.57874e7 0.0676140
\(247\) 1.83096e8i 0.773107i
\(248\) 3.77846e7i 0.157302i
\(249\) 6.93650e8 2.84736
\(250\) 0 0
\(251\) −4.62823e8 −1.84738 −0.923692 0.383136i \(-0.874844\pi\)
−0.923692 + 0.383136i \(0.874844\pi\)
\(252\) − 4.70516e8i − 1.85213i
\(253\) 6.32255e6i 0.0245454i
\(254\) −1.28282e8 −0.491186
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) − 4.87751e8i − 1.79239i −0.443660 0.896195i \(-0.646320\pi\)
0.443660 0.896195i \(-0.353680\pi\)
\(258\) 6.97030e7i 0.252687i
\(259\) −5.40835e8 −1.93426
\(260\) 0 0
\(261\) 6.74257e8 2.34738
\(262\) 3.06462e7i 0.105274i
\(263\) 4.01821e8i 1.36203i 0.732268 + 0.681017i \(0.238462\pi\)
−0.732268 + 0.681017i \(0.761538\pi\)
\(264\) −4.82412e7 −0.161363
\(265\) 0 0
\(266\) −3.65924e8 −1.19208
\(267\) − 1.90176e8i − 0.611459i
\(268\) − 1.63749e8i − 0.519645i
\(269\) −4.55386e8 −1.42642 −0.713209 0.700951i \(-0.752759\pi\)
−0.713209 + 0.700951i \(0.752759\pi\)
\(270\) 0 0
\(271\) 5.08459e8 1.55190 0.775949 0.630796i \(-0.217271\pi\)
0.775949 + 0.630796i \(0.217271\pi\)
\(272\) 1.03502e8i 0.311858i
\(273\) − 6.49828e8i − 1.93299i
\(274\) −7.75474e7 −0.227741
\(275\) 0 0
\(276\) −3.25060e7 −0.0930640
\(277\) 6.46827e8i 1.82856i 0.405085 + 0.914279i \(0.367242\pi\)
−0.405085 + 0.914279i \(0.632758\pi\)
\(278\) − 3.59525e8i − 1.00363i
\(279\) 3.97181e8 1.09490
\(280\) 0 0
\(281\) 1.89546e8 0.509617 0.254808 0.966992i \(-0.417988\pi\)
0.254808 + 0.966992i \(0.417988\pi\)
\(282\) − 7.97090e8i − 2.11658i
\(283\) − 4.63384e8i − 1.21531i −0.794200 0.607657i \(-0.792110\pi\)
0.794200 0.607657i \(-0.207890\pi\)
\(284\) 1.46395e8 0.379239
\(285\) 0 0
\(286\) −4.73748e7 −0.119747
\(287\) 3.09850e7i 0.0773686i
\(288\) − 1.76357e8i − 0.435031i
\(289\) −2.28184e8 −0.556086
\(290\) 0 0
\(291\) 5.06657e8 1.20528
\(292\) 4.07836e8i 0.958619i
\(293\) − 1.23173e8i − 0.286075i −0.989717 0.143038i \(-0.954313\pi\)
0.989717 0.143038i \(-0.0456870\pi\)
\(294\) 7.25519e8 1.66507
\(295\) 0 0
\(296\) −2.02714e8 −0.454321
\(297\) 3.01036e8i 0.666762i
\(298\) 3.95366e8i 0.865452i
\(299\) −3.19222e7 −0.0690627
\(300\) 0 0
\(301\) −1.36802e8 −0.289141
\(302\) 1.60862e8i 0.336070i
\(303\) 3.76764e7i 0.0778073i
\(304\) −1.37155e8 −0.279997
\(305\) 0 0
\(306\) 1.08798e9 2.17068
\(307\) 5.64202e8i 1.11289i 0.830886 + 0.556443i \(0.187834\pi\)
−0.830886 + 0.556443i \(0.812166\pi\)
\(308\) − 9.46802e7i − 0.184642i
\(309\) −9.07366e8 −1.74956
\(310\) 0 0
\(311\) 5.51417e8 1.03949 0.519743 0.854323i \(-0.326028\pi\)
0.519743 + 0.854323i \(0.326028\pi\)
\(312\) − 2.43567e8i − 0.454022i
\(313\) 1.71416e8i 0.315970i 0.987442 + 0.157985i \(0.0504997\pi\)
−0.987442 + 0.157985i \(0.949500\pi\)
\(314\) −6.29355e8 −1.14721
\(315\) 0 0
\(316\) −1.29232e8 −0.230391
\(317\) − 1.03349e9i − 1.82222i −0.412167 0.911108i \(-0.635228\pi\)
0.412167 0.911108i \(-0.364772\pi\)
\(318\) − 2.46998e8i − 0.430723i
\(319\) 1.35678e8 0.234015
\(320\) 0 0
\(321\) −1.85453e9 −3.12943
\(322\) − 6.37977e7i − 0.106490i
\(323\) − 8.46132e8i − 1.39711i
\(324\) −7.94401e8 −1.29757
\(325\) 0 0
\(326\) −5.59799e8 −0.894892
\(327\) − 1.39465e9i − 2.20570i
\(328\) 1.16137e7i 0.0181724i
\(329\) 1.56440e9 2.42194
\(330\) 0 0
\(331\) 2.41233e7 0.0365627 0.0182813 0.999833i \(-0.494181\pi\)
0.0182813 + 0.999833i \(0.494181\pi\)
\(332\) 5.10271e8i 0.765275i
\(333\) 2.13087e9i 3.16230i
\(334\) 6.71134e8 0.985591
\(335\) 0 0
\(336\) 4.86777e8 0.700072
\(337\) − 8.75080e8i − 1.24550i −0.782422 0.622749i \(-0.786016\pi\)
0.782422 0.622749i \(-0.213984\pi\)
\(338\) 2.62796e8i 0.370178i
\(339\) 7.87753e7 0.109822
\(340\) 0 0
\(341\) 7.99232e7 0.109152
\(342\) 1.44173e9i 1.94891i
\(343\) 2.98976e8i 0.400044i
\(344\) −5.12758e7 −0.0679137
\(345\) 0 0
\(346\) −2.18934e8 −0.284150
\(347\) − 8.32449e7i − 0.106956i −0.998569 0.0534779i \(-0.982969\pi\)
0.998569 0.0534779i \(-0.0170307\pi\)
\(348\) 6.97559e8i 0.887266i
\(349\) −3.97607e8 −0.500685 −0.250343 0.968157i \(-0.580543\pi\)
−0.250343 + 0.968157i \(0.580543\pi\)
\(350\) 0 0
\(351\) −1.51991e9 −1.87605
\(352\) − 3.54877e7i − 0.0433690i
\(353\) 2.93710e8i 0.355392i 0.984085 + 0.177696i \(0.0568643\pi\)
−0.984085 + 0.177696i \(0.943136\pi\)
\(354\) 7.64459e8 0.915888
\(355\) 0 0
\(356\) 1.39900e8 0.164340
\(357\) 3.00302e9i 3.49317i
\(358\) 6.38107e8i 0.735027i
\(359\) 1.71667e8 0.195820 0.0979098 0.995195i \(-0.468784\pi\)
0.0979098 + 0.995195i \(0.468784\pi\)
\(360\) 0 0
\(361\) 2.27373e8 0.254369
\(362\) 4.22971e8i 0.468631i
\(363\) − 1.59334e9i − 1.74838i
\(364\) 4.78034e8 0.519522
\(365\) 0 0
\(366\) 2.94407e8 0.313880
\(367\) − 9.55463e8i − 1.00898i −0.863417 0.504490i \(-0.831680\pi\)
0.863417 0.504490i \(-0.168320\pi\)
\(368\) − 2.39124e7i − 0.0250125i
\(369\) 1.22080e8 0.126489
\(370\) 0 0
\(371\) 4.84769e8 0.492863
\(372\) 4.10907e8i 0.413851i
\(373\) − 3.44673e8i − 0.343896i −0.985106 0.171948i \(-0.944994\pi\)
0.985106 0.171948i \(-0.0550061\pi\)
\(374\) 2.18931e8 0.216399
\(375\) 0 0
\(376\) 5.86365e8 0.568867
\(377\) 6.85031e8i 0.658439i
\(378\) − 3.03760e9i − 2.89274i
\(379\) −1.45273e9 −1.37071 −0.685356 0.728208i \(-0.740353\pi\)
−0.685356 + 0.728208i \(0.740353\pi\)
\(380\) 0 0
\(381\) −1.39506e9 −1.29228
\(382\) − 8.25803e8i − 0.757974i
\(383\) 1.87839e9i 1.70840i 0.519941 + 0.854202i \(0.325954\pi\)
−0.519941 + 0.854202i \(0.674046\pi\)
\(384\) 1.82452e8 0.164433
\(385\) 0 0
\(386\) −3.99721e8 −0.353754
\(387\) 5.38997e8i 0.472713i
\(388\) 3.72713e8i 0.323939i
\(389\) 1.12632e9 0.970145 0.485072 0.874474i \(-0.338793\pi\)
0.485072 + 0.874474i \(0.338793\pi\)
\(390\) 0 0
\(391\) 1.47520e8 0.124805
\(392\) 5.33715e8i 0.447516i
\(393\) 3.33277e8i 0.276969i
\(394\) 2.67085e8 0.219995
\(395\) 0 0
\(396\) −3.73037e8 −0.301869
\(397\) − 1.45733e9i − 1.16894i −0.811415 0.584470i \(-0.801302\pi\)
0.811415 0.584470i \(-0.198698\pi\)
\(398\) − 7.40085e8i − 0.588425i
\(399\) −3.97942e9 −3.13628
\(400\) 0 0
\(401\) 1.95849e9 1.51676 0.758380 0.651813i \(-0.225991\pi\)
0.758380 + 0.651813i \(0.225991\pi\)
\(402\) − 1.78077e9i − 1.36715i
\(403\) 4.03527e8i 0.307118i
\(404\) −2.77160e7 −0.0209120
\(405\) 0 0
\(406\) −1.36906e9 −1.01527
\(407\) 4.28788e8i 0.315255i
\(408\) 1.12558e9i 0.820478i
\(409\) 1.25594e9 0.907687 0.453844 0.891081i \(-0.350052\pi\)
0.453844 + 0.891081i \(0.350052\pi\)
\(410\) 0 0
\(411\) −8.43328e8 −0.599170
\(412\) − 6.67487e8i − 0.470222i
\(413\) 1.50036e9i 1.04802i
\(414\) −2.51361e8 −0.174099
\(415\) 0 0
\(416\) 1.79175e8 0.122026
\(417\) − 3.90983e9i − 2.64047i
\(418\) 2.90114e8i 0.194291i
\(419\) 4.46548e7 0.0296564 0.0148282 0.999890i \(-0.495280\pi\)
0.0148282 + 0.999890i \(0.495280\pi\)
\(420\) 0 0
\(421\) −5.83121e7 −0.0380865 −0.0190433 0.999819i \(-0.506062\pi\)
−0.0190433 + 0.999819i \(0.506062\pi\)
\(422\) 4.48923e8i 0.290789i
\(423\) − 6.16370e9i − 3.95959i
\(424\) 1.81700e8 0.115764
\(425\) 0 0
\(426\) 1.59205e9 0.997753
\(427\) 5.77815e8i 0.359163i
\(428\) − 1.36425e9i − 0.841086i
\(429\) −5.15200e8 −0.315047
\(430\) 0 0
\(431\) 2.15807e9 1.29836 0.649179 0.760635i \(-0.275112\pi\)
0.649179 + 0.760635i \(0.275112\pi\)
\(432\) − 1.13854e9i − 0.679449i
\(433\) − 2.02867e9i − 1.20089i −0.799666 0.600446i \(-0.794990\pi\)
0.799666 0.600446i \(-0.205010\pi\)
\(434\) −8.06465e8 −0.473556
\(435\) 0 0
\(436\) 1.02595e9 0.592819
\(437\) 1.95485e8i 0.112055i
\(438\) 4.43522e9i 2.52206i
\(439\) 2.51641e9 1.41956 0.709782 0.704422i \(-0.248794\pi\)
0.709782 + 0.704422i \(0.248794\pi\)
\(440\) 0 0
\(441\) 5.61027e9 3.11493
\(442\) 1.10537e9i 0.608876i
\(443\) 2.56720e9i 1.40296i 0.712687 + 0.701482i \(0.247478\pi\)
−0.712687 + 0.701482i \(0.752522\pi\)
\(444\) −2.20452e9 −1.19529
\(445\) 0 0
\(446\) −6.23949e8 −0.333025
\(447\) 4.29961e9i 2.27695i
\(448\) 3.58089e8i 0.188156i
\(449\) −8.28489e8 −0.431941 −0.215970 0.976400i \(-0.569291\pi\)
−0.215970 + 0.976400i \(0.569291\pi\)
\(450\) 0 0
\(451\) 2.45657e7 0.0126099
\(452\) 5.79496e7i 0.0295166i
\(453\) 1.74938e9i 0.884179i
\(454\) −1.05074e9 −0.526987
\(455\) 0 0
\(456\) −1.49156e9 −0.736652
\(457\) 3.45538e8i 0.169352i 0.996409 + 0.0846758i \(0.0269855\pi\)
−0.996409 + 0.0846758i \(0.973015\pi\)
\(458\) − 1.82754e9i − 0.888868i
\(459\) 7.02390e9 3.39027
\(460\) 0 0
\(461\) 4.81628e8 0.228959 0.114480 0.993426i \(-0.463480\pi\)
0.114480 + 0.993426i \(0.463480\pi\)
\(462\) − 1.02965e9i − 0.485782i
\(463\) − 1.18307e9i − 0.553958i −0.960876 0.276979i \(-0.910667\pi\)
0.960876 0.276979i \(-0.0893333\pi\)
\(464\) −5.13147e8 −0.238467
\(465\) 0 0
\(466\) 3.02359e9 1.38411
\(467\) 1.01191e9i 0.459764i 0.973219 + 0.229882i \(0.0738340\pi\)
−0.973219 + 0.229882i \(0.926166\pi\)
\(468\) − 1.88344e9i − 0.849360i
\(469\) 3.49502e9 1.56439
\(470\) 0 0
\(471\) −6.84424e9 −3.01823
\(472\) 5.62360e8i 0.246160i
\(473\) 1.08460e8i 0.0471256i
\(474\) −1.40540e9 −0.606143
\(475\) 0 0
\(476\) −2.20912e9 −0.938846
\(477\) − 1.90997e9i − 0.805774i
\(478\) 9.05489e8i 0.379215i
\(479\) −3.78673e9 −1.57431 −0.787155 0.616755i \(-0.788447\pi\)
−0.787155 + 0.616755i \(0.788447\pi\)
\(480\) 0 0
\(481\) −2.16492e9 −0.887023
\(482\) − 1.60189e9i − 0.651579i
\(483\) − 6.93800e8i − 0.280168i
\(484\) 1.17211e9 0.469906
\(485\) 0 0
\(486\) −3.77584e9 −1.49206
\(487\) − 7.20259e8i − 0.282577i −0.989968 0.141289i \(-0.954875\pi\)
0.989968 0.141289i \(-0.0451246\pi\)
\(488\) 2.16575e8i 0.0843605i
\(489\) −6.08782e9 −2.35440
\(490\) 0 0
\(491\) −1.79667e9 −0.684988 −0.342494 0.939520i \(-0.611272\pi\)
−0.342494 + 0.939520i \(0.611272\pi\)
\(492\) 1.26299e8i 0.0478103i
\(493\) − 3.16570e9i − 1.18989i
\(494\) −1.46477e9 −0.546669
\(495\) 0 0
\(496\) −3.02277e8 −0.111229
\(497\) 3.12463e9i 1.14170i
\(498\) 5.54920e9i 2.01339i
\(499\) −2.54540e9 −0.917073 −0.458536 0.888676i \(-0.651626\pi\)
−0.458536 + 0.888676i \(0.651626\pi\)
\(500\) 0 0
\(501\) 7.29859e9 2.59303
\(502\) − 3.70259e9i − 1.30630i
\(503\) 1.31401e9i 0.460373i 0.973147 + 0.230187i \(0.0739336\pi\)
−0.973147 + 0.230187i \(0.926066\pi\)
\(504\) 3.76413e9 1.30966
\(505\) 0 0
\(506\) −5.05804e7 −0.0173562
\(507\) 2.85791e9i 0.973913i
\(508\) − 1.02625e9i − 0.347321i
\(509\) 2.50386e9 0.841583 0.420792 0.907157i \(-0.361752\pi\)
0.420792 + 0.907157i \(0.361752\pi\)
\(510\) 0 0
\(511\) −8.70476e9 −2.88591
\(512\) 1.34218e8i 0.0441942i
\(513\) 9.30766e9i 3.04389i
\(514\) 3.90201e9 1.26741
\(515\) 0 0
\(516\) −5.57624e8 −0.178677
\(517\) − 1.24030e9i − 0.394739i
\(518\) − 4.32668e9i − 1.36773i
\(519\) −2.38091e9 −0.747580
\(520\) 0 0
\(521\) −1.22028e9 −0.378032 −0.189016 0.981974i \(-0.560530\pi\)
−0.189016 + 0.981974i \(0.560530\pi\)
\(522\) 5.39406e9i 1.65985i
\(523\) − 1.93318e9i − 0.590905i −0.955357 0.295452i \(-0.904530\pi\)
0.955357 0.295452i \(-0.0954703\pi\)
\(524\) −2.45169e8 −0.0744401
\(525\) 0 0
\(526\) −3.21457e9 −0.963103
\(527\) − 1.86480e9i − 0.555003i
\(528\) − 3.85929e8i − 0.114101i
\(529\) 3.37074e9 0.989990
\(530\) 0 0
\(531\) 5.91137e9 1.71340
\(532\) − 2.92739e9i − 0.842928i
\(533\) 1.24031e8i 0.0354800i
\(534\) 1.52141e9 0.432367
\(535\) 0 0
\(536\) 1.30999e9 0.367445
\(537\) 6.93942e9i 1.93381i
\(538\) − 3.64309e9i − 1.00863i
\(539\) 1.12893e9 0.310533
\(540\) 0 0
\(541\) −2.54920e9 −0.692172 −0.346086 0.938203i \(-0.612489\pi\)
−0.346086 + 0.938203i \(0.612489\pi\)
\(542\) 4.06767e9i 1.09736i
\(543\) 4.59981e9i 1.23294i
\(544\) −8.28015e8 −0.220517
\(545\) 0 0
\(546\) 5.19862e9 1.36683
\(547\) 4.58291e9i 1.19725i 0.801028 + 0.598626i \(0.204287\pi\)
−0.801028 + 0.598626i \(0.795713\pi\)
\(548\) − 6.20379e8i − 0.161037i
\(549\) 2.27658e9 0.587190
\(550\) 0 0
\(551\) 4.19500e9 1.06832
\(552\) − 2.60048e8i − 0.0658062i
\(553\) − 2.75830e9i − 0.693590i
\(554\) −5.17461e9 −1.29299
\(555\) 0 0
\(556\) 2.87620e9 0.709671
\(557\) − 4.94207e9i − 1.21176i −0.795557 0.605879i \(-0.792822\pi\)
0.795557 0.605879i \(-0.207178\pi\)
\(558\) 3.17745e9i 0.774210i
\(559\) −5.47609e8 −0.132596
\(560\) 0 0
\(561\) 2.38087e9 0.569332
\(562\) 1.51637e9i 0.360353i
\(563\) − 7.82258e8i − 0.184744i −0.995725 0.0923721i \(-0.970555\pi\)
0.995725 0.0923721i \(-0.0294449\pi\)
\(564\) 6.37672e9 1.49665
\(565\) 0 0
\(566\) 3.70707e9 0.859356
\(567\) − 1.69555e10i − 3.90634i
\(568\) 1.17116e9i 0.268163i
\(569\) −1.19628e9 −0.272232 −0.136116 0.990693i \(-0.543462\pi\)
−0.136116 + 0.990693i \(0.543462\pi\)
\(570\) 0 0
\(571\) 2.41071e9 0.541899 0.270949 0.962594i \(-0.412662\pi\)
0.270949 + 0.962594i \(0.412662\pi\)
\(572\) − 3.78998e8i − 0.0846741i
\(573\) − 8.98060e9i − 1.99418i
\(574\) −2.47880e8 −0.0547078
\(575\) 0 0
\(576\) 1.41086e9 0.307613
\(577\) − 6.45394e9i − 1.39865i −0.714803 0.699326i \(-0.753484\pi\)
0.714803 0.699326i \(-0.246516\pi\)
\(578\) − 1.82547e9i − 0.393212i
\(579\) −4.34696e9 −0.930702
\(580\) 0 0
\(581\) −1.08911e10 −2.30385
\(582\) 4.05326e9i 0.852263i
\(583\) − 3.84337e8i − 0.0803290i
\(584\) −3.26269e9 −0.677846
\(585\) 0 0
\(586\) 9.85387e8 0.202286
\(587\) 5.27194e8i 0.107581i 0.998552 + 0.0537907i \(0.0171304\pi\)
−0.998552 + 0.0537907i \(0.982870\pi\)
\(588\) 5.80416e9i 1.17738i
\(589\) 2.47113e9 0.498301
\(590\) 0 0
\(591\) 2.90455e9 0.578792
\(592\) − 1.62171e9i − 0.321254i
\(593\) 8.99056e9i 1.77050i 0.465117 + 0.885249i \(0.346012\pi\)
−0.465117 + 0.885249i \(0.653988\pi\)
\(594\) −2.40829e9 −0.471472
\(595\) 0 0
\(596\) −3.16293e9 −0.611967
\(597\) − 8.04843e9i − 1.54811i
\(598\) − 2.55377e8i − 0.0488347i
\(599\) −3.40720e9 −0.647745 −0.323872 0.946101i \(-0.604985\pi\)
−0.323872 + 0.946101i \(0.604985\pi\)
\(600\) 0 0
\(601\) −4.00808e9 −0.753140 −0.376570 0.926388i \(-0.622897\pi\)
−0.376570 + 0.926388i \(0.622897\pi\)
\(602\) − 1.09442e9i − 0.204454i
\(603\) − 1.37703e10i − 2.55760i
\(604\) −1.28690e9 −0.237638
\(605\) 0 0
\(606\) −3.01411e8 −0.0550180
\(607\) 3.61151e9i 0.655434i 0.944776 + 0.327717i \(0.106279\pi\)
−0.944776 + 0.327717i \(0.893721\pi\)
\(608\) − 1.09724e9i − 0.197987i
\(609\) −1.48885e10 −2.67111
\(610\) 0 0
\(611\) 6.26219e9 1.11066
\(612\) 8.70386e9i 1.53491i
\(613\) − 4.16268e8i − 0.0729897i −0.999334 0.0364948i \(-0.988381\pi\)
0.999334 0.0364948i \(-0.0116192\pi\)
\(614\) −4.51362e9 −0.786929
\(615\) 0 0
\(616\) 7.57442e8 0.130562
\(617\) − 2.32066e8i − 0.0397752i −0.999802 0.0198876i \(-0.993669\pi\)
0.999802 0.0198876i \(-0.00633084\pi\)
\(618\) − 7.25893e9i − 1.23712i
\(619\) 1.50914e9 0.255748 0.127874 0.991790i \(-0.459185\pi\)
0.127874 + 0.991790i \(0.459185\pi\)
\(620\) 0 0
\(621\) −1.62276e9 −0.271915
\(622\) 4.41133e9i 0.735027i
\(623\) 2.98599e9i 0.494743i
\(624\) 1.94853e9 0.321042
\(625\) 0 0
\(626\) −1.37133e9 −0.223424
\(627\) 3.15499e9i 0.511166i
\(628\) − 5.03484e9i − 0.811199i
\(629\) 1.00047e10 1.60297
\(630\) 0 0
\(631\) 1.18512e10 1.87785 0.938923 0.344127i \(-0.111825\pi\)
0.938923 + 0.344127i \(0.111825\pi\)
\(632\) − 1.03386e9i − 0.162911i
\(633\) 4.88204e9i 0.765047i
\(634\) 8.26794e9 1.28850
\(635\) 0 0
\(636\) 1.97598e9 0.304567
\(637\) 5.69991e9i 0.873736i
\(638\) 1.08543e9i 0.165473i
\(639\) 1.23109e10 1.86654
\(640\) 0 0
\(641\) −3.89475e9 −0.584086 −0.292043 0.956405i \(-0.594335\pi\)
−0.292043 + 0.956405i \(0.594335\pi\)
\(642\) − 1.48362e10i − 2.21284i
\(643\) 6.87187e8i 0.101938i 0.998700 + 0.0509690i \(0.0162310\pi\)
−0.998700 + 0.0509690i \(0.983769\pi\)
\(644\) 5.10381e8 0.0752999
\(645\) 0 0
\(646\) 6.76906e9 0.987904
\(647\) − 2.24157e9i − 0.325378i −0.986677 0.162689i \(-0.947983\pi\)
0.986677 0.162689i \(-0.0520167\pi\)
\(648\) − 6.35521e9i − 0.917524i
\(649\) 1.18952e9 0.170811
\(650\) 0 0
\(651\) −8.77030e9 −1.24589
\(652\) − 4.47839e9i − 0.632784i
\(653\) − 3.44569e9i − 0.484261i −0.970244 0.242131i \(-0.922154\pi\)
0.970244 0.242131i \(-0.0778463\pi\)
\(654\) 1.11572e10 1.55967
\(655\) 0 0
\(656\) −9.29096e7 −0.0128498
\(657\) 3.42965e10i 4.71814i
\(658\) 1.25152e10i 1.71257i
\(659\) −7.59753e9 −1.03413 −0.517063 0.855947i \(-0.672975\pi\)
−0.517063 + 0.855947i \(0.672975\pi\)
\(660\) 0 0
\(661\) −5.49901e8 −0.0740592 −0.0370296 0.999314i \(-0.511790\pi\)
−0.0370296 + 0.999314i \(0.511790\pi\)
\(662\) 1.92986e8i 0.0258537i
\(663\) 1.20209e10i 1.60191i
\(664\) −4.08217e9 −0.541131
\(665\) 0 0
\(666\) −1.70470e10 −2.23608
\(667\) 7.31385e8i 0.0954345i
\(668\) 5.36907e9i 0.696918i
\(669\) −6.78544e9 −0.876167
\(670\) 0 0
\(671\) 4.58107e8 0.0585380
\(672\) 3.89421e9i 0.495025i
\(673\) − 7.29473e7i − 0.00922478i −0.999989 0.00461239i \(-0.998532\pi\)
0.999989 0.00461239i \(-0.00146818\pi\)
\(674\) 7.00064e9 0.880700
\(675\) 0 0
\(676\) −2.10237e9 −0.261755
\(677\) − 3.97003e9i − 0.491738i −0.969303 0.245869i \(-0.920927\pi\)
0.969303 0.245869i \(-0.0790733\pi\)
\(678\) 6.30202e8i 0.0776562i
\(679\) −7.95510e9 −0.975217
\(680\) 0 0
\(681\) −1.14268e10 −1.38647
\(682\) 6.39386e8i 0.0771823i
\(683\) 1.18943e10i 1.42845i 0.699914 + 0.714227i \(0.253221\pi\)
−0.699914 + 0.714227i \(0.746779\pi\)
\(684\) −1.15338e10 −1.37809
\(685\) 0 0
\(686\) −2.39181e9 −0.282874
\(687\) − 1.98745e10i − 2.33855i
\(688\) − 4.10206e8i − 0.0480223i
\(689\) 1.94049e9 0.226019
\(690\) 0 0
\(691\) 2.08948e9 0.240916 0.120458 0.992718i \(-0.461564\pi\)
0.120458 + 0.992718i \(0.461564\pi\)
\(692\) − 1.75147e9i − 0.200924i
\(693\) − 7.96201e9i − 0.908775i
\(694\) 6.65959e8 0.0756292
\(695\) 0 0
\(696\) −5.58047e9 −0.627391
\(697\) − 5.73177e8i − 0.0641171i
\(698\) − 3.18085e9i − 0.354038i
\(699\) 3.28815e10 3.64151
\(700\) 0 0
\(701\) 1.21818e10 1.33567 0.667834 0.744311i \(-0.267222\pi\)
0.667834 + 0.744311i \(0.267222\pi\)
\(702\) − 1.21593e10i − 1.32657i
\(703\) 1.32576e10i 1.43920i
\(704\) 2.83902e8 0.0306665
\(705\) 0 0
\(706\) −2.34968e9 −0.251300
\(707\) − 5.91563e8i − 0.0629554i
\(708\) 6.11567e9i 0.647631i
\(709\) −3.80726e9 −0.401191 −0.200595 0.979674i \(-0.564288\pi\)
−0.200595 + 0.979674i \(0.564288\pi\)
\(710\) 0 0
\(711\) −1.08676e10 −1.13394
\(712\) 1.11920e9i 0.116206i
\(713\) 4.30833e8i 0.0445139i
\(714\) −2.40241e10 −2.47004
\(715\) 0 0
\(716\) −5.10486e9 −0.519742
\(717\) 9.84720e9i 0.997690i
\(718\) 1.37334e9i 0.138465i
\(719\) −2.74426e9 −0.275343 −0.137671 0.990478i \(-0.543962\pi\)
−0.137671 + 0.990478i \(0.543962\pi\)
\(720\) 0 0
\(721\) 1.42467e10 1.41560
\(722\) 1.81899e9i 0.179866i
\(723\) − 1.74205e10i − 1.71426i
\(724\) −3.38377e9 −0.331372
\(725\) 0 0
\(726\) 1.27467e10 1.23629
\(727\) 5.15574e8i 0.0497647i 0.999690 + 0.0248823i \(0.00792111\pi\)
−0.999690 + 0.0248823i \(0.992079\pi\)
\(728\) 3.82428e9i 0.367358i
\(729\) −1.39161e10 −1.33036
\(730\) 0 0
\(731\) 2.53064e9 0.239618
\(732\) 2.35525e9i 0.221947i
\(733\) − 9.16791e9i − 0.859818i −0.902872 0.429909i \(-0.858546\pi\)
0.902872 0.429909i \(-0.141454\pi\)
\(734\) 7.64371e9 0.713457
\(735\) 0 0
\(736\) 1.91300e8 0.0176865
\(737\) − 2.77094e9i − 0.254971i
\(738\) 9.76639e8i 0.0894411i
\(739\) 7.95134e9 0.724744 0.362372 0.932034i \(-0.381967\pi\)
0.362372 + 0.932034i \(0.381967\pi\)
\(740\) 0 0
\(741\) −1.59294e10 −1.43825
\(742\) 3.87815e9i 0.348507i
\(743\) − 1.20333e10i − 1.07628i −0.842856 0.538139i \(-0.819128\pi\)
0.842856 0.538139i \(-0.180872\pi\)
\(744\) −3.28726e9 −0.292637
\(745\) 0 0
\(746\) 2.75739e9 0.243171
\(747\) 4.29106e10i 3.76654i
\(748\) 1.75144e9i 0.153017i
\(749\) 2.91182e10 2.53208
\(750\) 0 0
\(751\) −1.46650e10 −1.26341 −0.631704 0.775210i \(-0.717644\pi\)
−0.631704 + 0.775210i \(0.717644\pi\)
\(752\) 4.69092e9i 0.402250i
\(753\) − 4.02656e10i − 3.43678i
\(754\) −5.48025e9 −0.465587
\(755\) 0 0
\(756\) 2.43008e10 2.04548
\(757\) − 1.86757e10i − 1.56474i −0.622816 0.782368i \(-0.714012\pi\)
0.622816 0.782368i \(-0.285988\pi\)
\(758\) − 1.16218e10i − 0.969240i
\(759\) −5.50062e8 −0.0456631
\(760\) 0 0
\(761\) 1.45502e10 1.19680 0.598400 0.801198i \(-0.295803\pi\)
0.598400 + 0.801198i \(0.295803\pi\)
\(762\) − 1.11605e10i − 0.913779i
\(763\) 2.18976e10i 1.78468i
\(764\) 6.60642e9 0.535969
\(765\) 0 0
\(766\) −1.50271e10 −1.20802
\(767\) 6.00583e9i 0.480606i
\(768\) 1.45962e9i 0.116272i
\(769\) −7.45506e9 −0.591166 −0.295583 0.955317i \(-0.595514\pi\)
−0.295583 + 0.955317i \(0.595514\pi\)
\(770\) 0 0
\(771\) 4.24344e10 3.33447
\(772\) − 3.19776e9i − 0.250142i
\(773\) − 1.85671e10i − 1.44582i −0.690941 0.722911i \(-0.742803\pi\)
0.690941 0.722911i \(-0.257197\pi\)
\(774\) −4.31197e9 −0.334259
\(775\) 0 0
\(776\) −2.98171e9 −0.229060
\(777\) − 4.70526e10i − 3.59841i
\(778\) 9.01053e9i 0.685996i
\(779\) 7.59540e8 0.0575665
\(780\) 0 0
\(781\) 2.47728e9 0.186079
\(782\) 1.18016e9i 0.0882508i
\(783\) 3.48235e10i 2.59242i
\(784\) −4.26972e9 −0.316442
\(785\) 0 0
\(786\) −2.66622e9 −0.195847
\(787\) − 2.17240e8i − 0.0158865i −0.999968 0.00794324i \(-0.997472\pi\)
0.999968 0.00794324i \(-0.00252844\pi\)
\(788\) 2.13668e9i 0.155560i
\(789\) −3.49584e10 −2.53386
\(790\) 0 0
\(791\) −1.23686e9 −0.0888595
\(792\) − 2.98430e9i − 0.213454i
\(793\) 2.31295e9i 0.164706i
\(794\) 1.16587e10 0.826566
\(795\) 0 0
\(796\) 5.92068e9 0.416079
\(797\) 1.04021e10i 0.727807i 0.931437 + 0.363903i \(0.118556\pi\)
−0.931437 + 0.363903i \(0.881444\pi\)
\(798\) − 3.18354e10i − 2.21769i
\(799\) −2.89392e10 −2.00712
\(800\) 0 0
\(801\) 1.17647e10 0.808848
\(802\) 1.56679e10i 1.07251i
\(803\) 6.90136e9i 0.470360i
\(804\) 1.42462e10 0.966723
\(805\) 0 0
\(806\) −3.22822e9 −0.217165
\(807\) − 3.96186e10i − 2.65364i
\(808\) − 2.21728e8i − 0.0147870i
\(809\) −1.54020e10 −1.02272 −0.511360 0.859367i \(-0.670858\pi\)
−0.511360 + 0.859367i \(0.670858\pi\)
\(810\) 0 0
\(811\) 9.37914e9 0.617433 0.308717 0.951154i \(-0.400101\pi\)
0.308717 + 0.951154i \(0.400101\pi\)
\(812\) − 1.09525e10i − 0.717904i
\(813\) 4.42359e10i 2.88707i
\(814\) −3.43030e9 −0.222919
\(815\) 0 0
\(816\) −9.00466e9 −0.580165
\(817\) 3.35346e9i 0.215137i
\(818\) 1.00475e10i 0.641832i
\(819\) 4.01997e10 2.55699
\(820\) 0 0
\(821\) −1.49190e10 −0.940887 −0.470443 0.882430i \(-0.655906\pi\)
−0.470443 + 0.882430i \(0.655906\pi\)
\(822\) − 6.74663e9i − 0.423677i
\(823\) − 1.72905e10i − 1.08121i −0.841278 0.540603i \(-0.818196\pi\)
0.841278 0.540603i \(-0.181804\pi\)
\(824\) 5.33990e9 0.332497
\(825\) 0 0
\(826\) −1.20029e10 −0.741063
\(827\) − 1.92633e8i − 0.0118430i −0.999982 0.00592149i \(-0.998115\pi\)
0.999982 0.00592149i \(-0.00188488\pi\)
\(828\) − 2.01089e9i − 0.123107i
\(829\) −1.55199e10 −0.946124 −0.473062 0.881029i \(-0.656851\pi\)
−0.473062 + 0.881029i \(0.656851\pi\)
\(830\) 0 0
\(831\) −5.62739e10 −3.40176
\(832\) 1.43340e9i 0.0862853i
\(833\) − 2.63407e10i − 1.57896i
\(834\) 3.12787e10 1.86710
\(835\) 0 0
\(836\) −2.32091e9 −0.137384
\(837\) 2.05133e10i 1.20919i
\(838\) 3.57238e8i 0.0209703i
\(839\) −1.04108e10 −0.608580 −0.304290 0.952579i \(-0.598419\pi\)
−0.304290 + 0.952579i \(0.598419\pi\)
\(840\) 0 0
\(841\) −1.55480e9 −0.0901339
\(842\) − 4.66497e8i − 0.0269312i
\(843\) 1.64905e10i 0.948066i
\(844\) −3.59138e9 −0.205619
\(845\) 0 0
\(846\) 4.93096e10 2.79985
\(847\) 2.50173e10i 1.41465i
\(848\) 1.45360e9i 0.0818575i
\(849\) 4.03144e10 2.26091
\(850\) 0 0
\(851\) −2.31142e9 −0.128566
\(852\) 1.27364e10i 0.705518i
\(853\) 1.54506e10i 0.852362i 0.904638 + 0.426181i \(0.140141\pi\)
−0.904638 + 0.426181i \(0.859859\pi\)
\(854\) −4.62252e9 −0.253967
\(855\) 0 0
\(856\) 1.09140e10 0.594738
\(857\) 2.50311e9i 0.135846i 0.997691 + 0.0679231i \(0.0216373\pi\)
−0.997691 + 0.0679231i \(0.978363\pi\)
\(858\) − 4.12160e9i − 0.222772i
\(859\) −2.05842e10 −1.10805 −0.554024 0.832500i \(-0.686909\pi\)
−0.554024 + 0.832500i \(0.686909\pi\)
\(860\) 0 0
\(861\) −2.69569e9 −0.143933
\(862\) 1.72645e10i 0.918078i
\(863\) − 1.91073e10i − 1.01196i −0.862546 0.505978i \(-0.831132\pi\)
0.862546 0.505978i \(-0.168868\pi\)
\(864\) 9.10836e9 0.480443
\(865\) 0 0
\(866\) 1.62294e10 0.849158
\(867\) − 1.98520e10i − 1.03452i
\(868\) − 6.45172e9i − 0.334855i
\(869\) −2.18685e9 −0.113044
\(870\) 0 0
\(871\) 1.39903e10 0.717404
\(872\) 8.20758e9i 0.419187i
\(873\) 3.13429e10i 1.59437i
\(874\) −1.56388e9 −0.0792345
\(875\) 0 0
\(876\) −3.54818e10 −1.78337
\(877\) 3.33063e10i 1.66736i 0.552251 + 0.833678i \(0.313769\pi\)
−0.552251 + 0.833678i \(0.686231\pi\)
\(878\) 2.01312e10i 1.00378i
\(879\) 1.07161e10 0.532200
\(880\) 0 0
\(881\) −9.31313e9 −0.458860 −0.229430 0.973325i \(-0.573686\pi\)
−0.229430 + 0.973325i \(0.573686\pi\)
\(882\) 4.48821e10i 2.20259i
\(883\) − 4.38514e9i − 0.214349i −0.994240 0.107174i \(-0.965820\pi\)
0.994240 0.107174i \(-0.0341803\pi\)
\(884\) −8.84294e9 −0.430540
\(885\) 0 0
\(886\) −2.05376e10 −0.992045
\(887\) − 1.78764e10i − 0.860098i −0.902806 0.430049i \(-0.858496\pi\)
0.902806 0.430049i \(-0.141504\pi\)
\(888\) − 1.76361e10i − 0.845197i
\(889\) 2.19041e10 1.04561
\(890\) 0 0
\(891\) −1.34428e10 −0.636673
\(892\) − 4.99159e9i − 0.235484i
\(893\) − 3.83485e10i − 1.80206i
\(894\) −3.43969e10 −1.61004
\(895\) 0 0
\(896\) −2.86471e9 −0.133046
\(897\) − 2.77723e9i − 0.128481i
\(898\) − 6.62791e9i − 0.305428i
\(899\) 9.24541e9 0.424392
\(900\) 0 0
\(901\) −8.96751e9 −0.408447
\(902\) 1.96526e8i 0.00891653i
\(903\) − 1.19018e10i − 0.537904i
\(904\) −4.63597e8 −0.0208714
\(905\) 0 0
\(906\) −1.39950e10 −0.625209
\(907\) − 2.84742e9i − 0.126714i −0.997991 0.0633572i \(-0.979819\pi\)
0.997991 0.0633572i \(-0.0201807\pi\)
\(908\) − 8.40592e9i − 0.372636i
\(909\) −2.33074e9 −0.102925
\(910\) 0 0
\(911\) −3.84643e10 −1.68556 −0.842779 0.538260i \(-0.819082\pi\)
−0.842779 + 0.538260i \(0.819082\pi\)
\(912\) − 1.19324e10i − 0.520892i
\(913\) 8.63474e9i 0.375493i
\(914\) −2.76431e9 −0.119750
\(915\) 0 0
\(916\) 1.46203e10 0.628525
\(917\) − 5.23283e9i − 0.224101i
\(918\) 5.61912e10i 2.39728i
\(919\) −1.07375e10 −0.456352 −0.228176 0.973620i \(-0.573276\pi\)
−0.228176 + 0.973620i \(0.573276\pi\)
\(920\) 0 0
\(921\) −4.90856e10 −2.07036
\(922\) 3.85303e9i 0.161899i
\(923\) 1.25077e10i 0.523564i
\(924\) 8.23718e9 0.343500
\(925\) 0 0
\(926\) 9.46456e9 0.391708
\(927\) − 5.61315e10i − 2.31434i
\(928\) − 4.10518e9i − 0.168622i
\(929\) −5.34493e9 −0.218719 −0.109360 0.994002i \(-0.534880\pi\)
−0.109360 + 0.994002i \(0.534880\pi\)
\(930\) 0 0
\(931\) 3.49052e10 1.41764
\(932\) 2.41887e10i 0.978717i
\(933\) 4.79732e10i 1.93381i
\(934\) −8.09531e9 −0.325102
\(935\) 0 0
\(936\) 1.50675e10 0.600588
\(937\) − 1.48125e10i − 0.588218i −0.955772 0.294109i \(-0.904977\pi\)
0.955772 0.294109i \(-0.0950229\pi\)
\(938\) 2.79602e10i 1.10619i
\(939\) −1.49132e10 −0.587814
\(940\) 0 0
\(941\) 2.18734e10 0.855763 0.427882 0.903835i \(-0.359260\pi\)
0.427882 + 0.903835i \(0.359260\pi\)
\(942\) − 5.47539e10i − 2.13421i
\(943\) 1.32423e8i 0.00514249i
\(944\) −4.49888e9 −0.174061
\(945\) 0 0
\(946\) −8.67682e8 −0.0333228
\(947\) 2.45163e10i 0.938060i 0.883182 + 0.469030i \(0.155396\pi\)
−0.883182 + 0.469030i \(0.844604\pi\)
\(948\) − 1.12432e10i − 0.428608i
\(949\) −3.48445e10 −1.32344
\(950\) 0 0
\(951\) 8.99139e10 3.38996
\(952\) − 1.76729e10i − 0.663864i
\(953\) − 1.34056e10i − 0.501721i −0.968023 0.250860i \(-0.919286\pi\)
0.968023 0.250860i \(-0.0807135\pi\)
\(954\) 1.52798e10 0.569768
\(955\) 0 0
\(956\) −7.24391e9 −0.268146
\(957\) 1.18040e10i 0.435349i
\(958\) − 3.02939e10i − 1.11321i
\(959\) 1.32412e10 0.484800
\(960\) 0 0
\(961\) −2.20665e10 −0.802049
\(962\) − 1.73194e10i − 0.627220i
\(963\) − 1.14725e11i − 4.13967i
\(964\) 1.28151e10 0.460736
\(965\) 0 0
\(966\) 5.55040e9 0.198109
\(967\) − 4.64740e9i − 0.165279i −0.996580 0.0826395i \(-0.973665\pi\)
0.996580 0.0826395i \(-0.0263350\pi\)
\(968\) 9.37691e9i 0.332274i
\(969\) 7.36135e10 2.59911
\(970\) 0 0
\(971\) −3.24860e10 −1.13875 −0.569375 0.822078i \(-0.692815\pi\)
−0.569375 + 0.822078i \(0.692815\pi\)
\(972\) − 3.02067e10i − 1.05505i
\(973\) 6.13889e10i 2.13646i
\(974\) 5.76207e9 0.199812
\(975\) 0 0
\(976\) −1.73260e9 −0.0596518
\(977\) − 6.06506e9i − 0.208067i −0.994574 0.104034i \(-0.966825\pi\)
0.994574 0.104034i \(-0.0331750\pi\)
\(978\) − 4.87025e10i − 1.66481i
\(979\) 2.36737e9 0.0806355
\(980\) 0 0
\(981\) 8.62758e10 2.91775
\(982\) − 1.43734e10i − 0.484360i
\(983\) 2.10842e10i 0.707979i 0.935249 + 0.353989i \(0.115175\pi\)
−0.935249 + 0.353989i \(0.884825\pi\)
\(984\) −1.01039e9 −0.0338070
\(985\) 0 0
\(986\) 2.53256e10 0.841377
\(987\) 1.36103e11i 4.50566i
\(988\) − 1.17181e10i − 0.386553i
\(989\) −5.84664e8 −0.0192185
\(990\) 0 0
\(991\) 4.26476e10 1.39199 0.695997 0.718045i \(-0.254963\pi\)
0.695997 + 0.718045i \(0.254963\pi\)
\(992\) − 2.41821e9i − 0.0786509i
\(993\) 2.09872e9i 0.0680194i
\(994\) −2.49970e10 −0.807302
\(995\) 0 0
\(996\) −4.43936e10 −1.42368
\(997\) − 1.59226e10i − 0.508841i −0.967094 0.254420i \(-0.918115\pi\)
0.967094 0.254420i \(-0.0818847\pi\)
\(998\) − 2.03632e10i − 0.648468i
\(999\) −1.10054e11 −3.49241
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 50.8.b.a.49.2 2
3.2 odd 2 450.8.c.l.199.1 2
4.3 odd 2 400.8.c.a.49.1 2
5.2 odd 4 50.8.a.d.1.1 1
5.3 odd 4 50.8.a.e.1.1 yes 1
5.4 even 2 inner 50.8.b.a.49.1 2
15.2 even 4 450.8.a.z.1.1 1
15.8 even 4 450.8.a.a.1.1 1
15.14 odd 2 450.8.c.l.199.2 2
20.3 even 4 400.8.a.s.1.1 1
20.7 even 4 400.8.a.a.1.1 1
20.19 odd 2 400.8.c.a.49.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.8.a.d.1.1 1 5.2 odd 4
50.8.a.e.1.1 yes 1 5.3 odd 4
50.8.b.a.49.1 2 5.4 even 2 inner
50.8.b.a.49.2 2 1.1 even 1 trivial
400.8.a.a.1.1 1 20.7 even 4
400.8.a.s.1.1 1 20.3 even 4
400.8.c.a.49.1 2 4.3 odd 2
400.8.c.a.49.2 2 20.19 odd 2
450.8.a.a.1.1 1 15.8 even 4
450.8.a.z.1.1 1 15.2 even 4
450.8.c.l.199.1 2 3.2 odd 2
450.8.c.l.199.2 2 15.14 odd 2