Properties

Label 450.8.c.l.199.1
Level $450$
Weight $8$
Character 450.199
Analytic conductor $140.573$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,8,Mod(199,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.199"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-128,0,0,0,0,0,0,2166] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(140.573261468\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 450.199
Dual form 450.8.c.l.199.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} -64.0000 q^{4} -1366.00i q^{7} +512.000i q^{8} +1083.00 q^{11} -5468.00i q^{13} -10928.0 q^{14} +4096.00 q^{16} -25269.0i q^{17} -33485.0 q^{19} -8664.00i q^{22} +5838.00i q^{23} -43744.0 q^{26} +87424.0i q^{28} +125280. q^{29} -73798.0 q^{31} -32768.0i q^{32} -202152. q^{34} -395926. i q^{37} +267880. i q^{38} +22683.0 q^{41} -100148. i q^{43} -69312.0 q^{44} +46704.0 q^{46} -1.14524e6i q^{47} -1.04241e6 q^{49} +349952. i q^{52} -354882. i q^{53} +699392. q^{56} -1.00224e6i q^{58} +1.09836e6 q^{59} -422998. q^{61} +590384. i q^{62} -262144. q^{64} +2.55858e6i q^{67} +1.61722e6i q^{68} +2.28743e6 q^{71} -6.37244e6i q^{73} -3.16741e6 q^{74} +2.14304e6 q^{76} -1.47938e6i q^{77} +2.01925e6 q^{79} -181464. i q^{82} +7.97298e6i q^{83} -801184. q^{86} +554496. i q^{88} +2.18594e6 q^{89} -7.46929e6 q^{91} -373632. i q^{92} -9.16195e6 q^{94} -5.82365e6i q^{97} +8.33930e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} + 2166 q^{11} - 21856 q^{14} + 8192 q^{16} - 66970 q^{19} - 87488 q^{26} + 250560 q^{29} - 147596 q^{31} - 404304 q^{34} + 45366 q^{41} - 138624 q^{44} + 93408 q^{46} - 2084826 q^{49} + 1398784 q^{56}+ \cdots - 18323904 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.00000i − 0.707107i
\(3\) 0 0
\(4\) −64.0000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 1366.00i − 1.50525i −0.658452 0.752623i \(-0.728788\pi\)
0.658452 0.752623i \(-0.271212\pi\)
\(8\) 512.000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1083.00 0.245332 0.122666 0.992448i \(-0.460856\pi\)
0.122666 + 0.992448i \(0.460856\pi\)
\(12\) 0 0
\(13\) − 5468.00i − 0.690282i −0.938551 0.345141i \(-0.887831\pi\)
0.938551 0.345141i \(-0.112169\pi\)
\(14\) −10928.0 −1.06437
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) − 25269.0i − 1.24743i −0.781651 0.623716i \(-0.785622\pi\)
0.781651 0.623716i \(-0.214378\pi\)
\(18\) 0 0
\(19\) −33485.0 −1.11999 −0.559993 0.828497i \(-0.689196\pi\)
−0.559993 + 0.828497i \(0.689196\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 8664.00i − 0.173476i
\(23\) 5838.00i 0.100050i 0.998748 + 0.0500250i \(0.0159301\pi\)
−0.998748 + 0.0500250i \(0.984070\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −43744.0 −0.488103
\(27\) 0 0
\(28\) 87424.0i 0.752623i
\(29\) 125280. 0.953869 0.476935 0.878939i \(-0.341748\pi\)
0.476935 + 0.878939i \(0.341748\pi\)
\(30\) 0 0
\(31\) −73798.0 −0.444917 −0.222458 0.974942i \(-0.571408\pi\)
−0.222458 + 0.974942i \(0.571408\pi\)
\(32\) − 32768.0i − 0.176777i
\(33\) 0 0
\(34\) −202152. −0.882068
\(35\) 0 0
\(36\) 0 0
\(37\) − 395926.i − 1.28501i −0.766280 0.642507i \(-0.777894\pi\)
0.766280 0.642507i \(-0.222106\pi\)
\(38\) 267880.i 0.791950i
\(39\) 0 0
\(40\) 0 0
\(41\) 22683.0 0.0513993 0.0256996 0.999670i \(-0.491819\pi\)
0.0256996 + 0.999670i \(0.491819\pi\)
\(42\) 0 0
\(43\) − 100148.i − 0.192089i −0.995377 0.0960445i \(-0.969381\pi\)
0.995377 0.0960445i \(-0.0306191\pi\)
\(44\) −69312.0 −0.122666
\(45\) 0 0
\(46\) 46704.0 0.0707460
\(47\) − 1.14524e6i − 1.60900i −0.593954 0.804499i \(-0.702434\pi\)
0.593954 0.804499i \(-0.297566\pi\)
\(48\) 0 0
\(49\) −1.04241e6 −1.26577
\(50\) 0 0
\(51\) 0 0
\(52\) 349952.i 0.345141i
\(53\) − 354882.i − 0.327430i −0.986508 0.163715i \(-0.947652\pi\)
0.986508 0.163715i \(-0.0523477\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 699392. 0.532185
\(57\) 0 0
\(58\) − 1.00224e6i − 0.674487i
\(59\) 1.09836e6 0.696246 0.348123 0.937449i \(-0.386819\pi\)
0.348123 + 0.937449i \(0.386819\pi\)
\(60\) 0 0
\(61\) −422998. −0.238607 −0.119304 0.992858i \(-0.538066\pi\)
−0.119304 + 0.992858i \(0.538066\pi\)
\(62\) 590384.i 0.314604i
\(63\) 0 0
\(64\) −262144. −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.55858e6i 1.03929i 0.854382 + 0.519645i \(0.173936\pi\)
−0.854382 + 0.519645i \(0.826064\pi\)
\(68\) 1.61722e6i 0.623716i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.28743e6 0.758478 0.379239 0.925299i \(-0.376186\pi\)
0.379239 + 0.925299i \(0.376186\pi\)
\(72\) 0 0
\(73\) − 6.37244e6i − 1.91724i −0.284693 0.958619i \(-0.591892\pi\)
0.284693 0.958619i \(-0.408108\pi\)
\(74\) −3.16741e6 −0.908642
\(75\) 0 0
\(76\) 2.14304e6 0.559993
\(77\) − 1.47938e6i − 0.369285i
\(78\) 0 0
\(79\) 2.01925e6 0.460782 0.230391 0.973098i \(-0.426000\pi\)
0.230391 + 0.973098i \(0.426000\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 181464.i − 0.0363448i
\(83\) 7.97298e6i 1.53055i 0.643703 + 0.765275i \(0.277397\pi\)
−0.643703 + 0.765275i \(0.722603\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −801184. −0.135827
\(87\) 0 0
\(88\) 554496.i 0.0867379i
\(89\) 2.18594e6 0.328679 0.164340 0.986404i \(-0.447451\pi\)
0.164340 + 0.986404i \(0.447451\pi\)
\(90\) 0 0
\(91\) −7.46929e6 −1.03904
\(92\) − 373632.i − 0.0500250i
\(93\) 0 0
\(94\) −9.16195e6 −1.13773
\(95\) 0 0
\(96\) 0 0
\(97\) − 5.82365e6i − 0.647879i −0.946078 0.323939i \(-0.894993\pi\)
0.946078 0.323939i \(-0.105007\pi\)
\(98\) 8.33930e6i 0.895032i
\(99\) 0 0
\(100\) 0 0
\(101\) −433062. −0.0418240 −0.0209120 0.999781i \(-0.506657\pi\)
−0.0209120 + 0.999781i \(0.506657\pi\)
\(102\) 0 0
\(103\) 1.04295e7i 0.940444i 0.882548 + 0.470222i \(0.155826\pi\)
−0.882548 + 0.470222i \(0.844174\pi\)
\(104\) 2.79962e6 0.244052
\(105\) 0 0
\(106\) −2.83906e6 −0.231528
\(107\) − 2.13164e7i − 1.68217i −0.540901 0.841086i \(-0.681917\pi\)
0.540901 0.841086i \(-0.318083\pi\)
\(108\) 0 0
\(109\) −1.60304e7 −1.18564 −0.592819 0.805335i \(-0.701985\pi\)
−0.592819 + 0.805335i \(0.701985\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 5.59514e6i − 0.376312i
\(113\) 905463.i 0.0590332i 0.999564 + 0.0295166i \(0.00939679\pi\)
−0.999564 + 0.0295166i \(0.990603\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.01792e6 −0.476935
\(117\) 0 0
\(118\) − 8.78688e6i − 0.492320i
\(119\) −3.45175e7 −1.87769
\(120\) 0 0
\(121\) −1.83143e7 −0.939812
\(122\) 3.38398e6i 0.168721i
\(123\) 0 0
\(124\) 4.72307e6 0.222458
\(125\) 0 0
\(126\) 0 0
\(127\) 1.60352e7i 0.694642i 0.937746 + 0.347321i \(0.112909\pi\)
−0.937746 + 0.347321i \(0.887091\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −3.83077e6 −0.148880 −0.0744401 0.997225i \(-0.523717\pi\)
−0.0744401 + 0.997225i \(0.523717\pi\)
\(132\) 0 0
\(133\) 4.57405e7i 1.68586i
\(134\) 2.04686e7 0.734889
\(135\) 0 0
\(136\) 1.29377e7 0.441034
\(137\) − 9.69343e6i − 0.322074i −0.986948 0.161037i \(-0.948516\pi\)
0.986948 0.161037i \(-0.0514838\pi\)
\(138\) 0 0
\(139\) −4.49406e7 −1.41934 −0.709671 0.704533i \(-0.751156\pi\)
−0.709671 + 0.704533i \(0.751156\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 1.82994e7i − 0.536325i
\(143\) − 5.92184e6i − 0.169348i
\(144\) 0 0
\(145\) 0 0
\(146\) −5.09795e7 −1.35569
\(147\) 0 0
\(148\) 2.53393e7i 0.642507i
\(149\) −4.94208e7 −1.22393 −0.611967 0.790883i \(-0.709621\pi\)
−0.611967 + 0.790883i \(0.709621\pi\)
\(150\) 0 0
\(151\) 2.01078e7 0.475275 0.237638 0.971354i \(-0.423627\pi\)
0.237638 + 0.971354i \(0.423627\pi\)
\(152\) − 1.71443e7i − 0.395975i
\(153\) 0 0
\(154\) −1.18350e7 −0.261124
\(155\) 0 0
\(156\) 0 0
\(157\) 7.86694e7i 1.62240i 0.584771 + 0.811199i \(0.301185\pi\)
−0.584771 + 0.811199i \(0.698815\pi\)
\(158\) − 1.61540e7i − 0.325822i
\(159\) 0 0
\(160\) 0 0
\(161\) 7.97471e6 0.150600
\(162\) 0 0
\(163\) 6.99749e7i 1.26557i 0.774328 + 0.632784i \(0.218088\pi\)
−0.774328 + 0.632784i \(0.781912\pi\)
\(164\) −1.45171e6 −0.0256996
\(165\) 0 0
\(166\) 6.37839e7 1.08226
\(167\) 8.38918e7i 1.39384i 0.717151 + 0.696918i \(0.245446\pi\)
−0.717151 + 0.696918i \(0.754554\pi\)
\(168\) 0 0
\(169\) 3.28495e7 0.523510
\(170\) 0 0
\(171\) 0 0
\(172\) 6.40947e6i 0.0960445i
\(173\) − 2.73668e7i − 0.401849i −0.979607 0.200924i \(-0.935605\pi\)
0.979607 0.200924i \(-0.0643945\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.43597e6 0.0613330
\(177\) 0 0
\(178\) − 1.74875e7i − 0.232411i
\(179\) −7.97634e7 −1.03948 −0.519742 0.854323i \(-0.673972\pi\)
−0.519742 + 0.854323i \(0.673972\pi\)
\(180\) 0 0
\(181\) 5.28714e7 0.662744 0.331372 0.943500i \(-0.392488\pi\)
0.331372 + 0.943500i \(0.392488\pi\)
\(182\) 5.97543e7i 0.734716i
\(183\) 0 0
\(184\) −2.98906e6 −0.0353730
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.73663e7i − 0.306035i
\(188\) 7.32956e7i 0.804499i
\(189\) 0 0
\(190\) 0 0
\(191\) 1.03225e8 1.07194 0.535969 0.844238i \(-0.319946\pi\)
0.535969 + 0.844238i \(0.319946\pi\)
\(192\) 0 0
\(193\) 4.99651e7i 0.500283i 0.968209 + 0.250142i \(0.0804772\pi\)
−0.968209 + 0.250142i \(0.919523\pi\)
\(194\) −4.65892e7 −0.458120
\(195\) 0 0
\(196\) 6.67144e7 0.632883
\(197\) 3.33856e7i 0.311120i 0.987826 + 0.155560i \(0.0497182\pi\)
−0.987826 + 0.155560i \(0.950282\pi\)
\(198\) 0 0
\(199\) −9.25107e7 −0.832158 −0.416079 0.909328i \(-0.636596\pi\)
−0.416079 + 0.909328i \(0.636596\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3.46450e6i 0.0295740i
\(203\) − 1.71132e8i − 1.43581i
\(204\) 0 0
\(205\) 0 0
\(206\) 8.34359e7 0.664994
\(207\) 0 0
\(208\) − 2.23969e7i − 0.172571i
\(209\) −3.62643e7 −0.274768
\(210\) 0 0
\(211\) 5.61153e7 0.411238 0.205619 0.978632i \(-0.434079\pi\)
0.205619 + 0.978632i \(0.434079\pi\)
\(212\) 2.27124e7i 0.163715i
\(213\) 0 0
\(214\) −1.70531e8 −1.18948
\(215\) 0 0
\(216\) 0 0
\(217\) 1.00808e8i 0.669709i
\(218\) 1.28243e8i 0.838373i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.38171e8 −0.861080
\(222\) 0 0
\(223\) 7.79936e7i 0.470968i 0.971878 + 0.235484i \(0.0756676\pi\)
−0.971878 + 0.235484i \(0.924332\pi\)
\(224\) −4.47611e7 −0.266092
\(225\) 0 0
\(226\) 7.24370e6 0.0417428
\(227\) − 1.31342e8i − 0.745272i −0.927978 0.372636i \(-0.878454\pi\)
0.927978 0.372636i \(-0.121546\pi\)
\(228\) 0 0
\(229\) −2.28442e8 −1.25705 −0.628525 0.777790i \(-0.716341\pi\)
−0.628525 + 0.777790i \(0.716341\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.41434e7i 0.337244i
\(233\) 3.77949e8i 1.95743i 0.205216 + 0.978717i \(0.434210\pi\)
−0.205216 + 0.978717i \(0.565790\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −7.02950e7 −0.348123
\(237\) 0 0
\(238\) 2.76140e8i 1.32773i
\(239\) −1.13186e8 −0.536291 −0.268146 0.963378i \(-0.586411\pi\)
−0.268146 + 0.963378i \(0.586411\pi\)
\(240\) 0 0
\(241\) −2.00236e8 −0.921473 −0.460736 0.887537i \(-0.652415\pi\)
−0.460736 + 0.887537i \(0.652415\pi\)
\(242\) 1.46514e8i 0.664548i
\(243\) 0 0
\(244\) 2.70719e7 0.119304
\(245\) 0 0
\(246\) 0 0
\(247\) 1.83096e8i 0.773107i
\(248\) − 3.77846e7i − 0.157302i
\(249\) 0 0
\(250\) 0 0
\(251\) 4.62823e8 1.84738 0.923692 0.383136i \(-0.125156\pi\)
0.923692 + 0.383136i \(0.125156\pi\)
\(252\) 0 0
\(253\) 6.32255e6i 0.0245454i
\(254\) 1.28282e8 0.491186
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 4.87751e8i 1.79239i 0.443660 + 0.896195i \(0.353680\pi\)
−0.443660 + 0.896195i \(0.646320\pi\)
\(258\) 0 0
\(259\) −5.40835e8 −1.93426
\(260\) 0 0
\(261\) 0 0
\(262\) 3.06462e7i 0.105274i
\(263\) − 4.01821e8i − 1.36203i −0.732268 0.681017i \(-0.761538\pi\)
0.732268 0.681017i \(-0.238462\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.65924e8 1.19208
\(267\) 0 0
\(268\) − 1.63749e8i − 0.519645i
\(269\) 4.55386e8 1.42642 0.713209 0.700951i \(-0.247241\pi\)
0.713209 + 0.700951i \(0.247241\pi\)
\(270\) 0 0
\(271\) 5.08459e8 1.55190 0.775949 0.630796i \(-0.217271\pi\)
0.775949 + 0.630796i \(0.217271\pi\)
\(272\) − 1.03502e8i − 0.311858i
\(273\) 0 0
\(274\) −7.75474e7 −0.227741
\(275\) 0 0
\(276\) 0 0
\(277\) 6.46827e8i 1.82856i 0.405085 + 0.914279i \(0.367242\pi\)
−0.405085 + 0.914279i \(0.632758\pi\)
\(278\) 3.59525e8i 1.00363i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.89546e8 −0.509617 −0.254808 0.966992i \(-0.582012\pi\)
−0.254808 + 0.966992i \(0.582012\pi\)
\(282\) 0 0
\(283\) − 4.63384e8i − 1.21531i −0.794200 0.607657i \(-0.792110\pi\)
0.794200 0.607657i \(-0.207890\pi\)
\(284\) −1.46395e8 −0.379239
\(285\) 0 0
\(286\) −4.73748e7 −0.119747
\(287\) − 3.09850e7i − 0.0773686i
\(288\) 0 0
\(289\) −2.28184e8 −0.556086
\(290\) 0 0
\(291\) 0 0
\(292\) 4.07836e8i 0.958619i
\(293\) 1.23173e8i 0.286075i 0.989717 + 0.143038i \(0.0456870\pi\)
−0.989717 + 0.143038i \(0.954313\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.02714e8 0.454321
\(297\) 0 0
\(298\) 3.95366e8i 0.865452i
\(299\) 3.19222e7 0.0690627
\(300\) 0 0
\(301\) −1.36802e8 −0.289141
\(302\) − 1.60862e8i − 0.336070i
\(303\) 0 0
\(304\) −1.37155e8 −0.279997
\(305\) 0 0
\(306\) 0 0
\(307\) 5.64202e8i 1.11289i 0.830886 + 0.556443i \(0.187834\pi\)
−0.830886 + 0.556443i \(0.812166\pi\)
\(308\) 9.46802e7i 0.184642i
\(309\) 0 0
\(310\) 0 0
\(311\) −5.51417e8 −1.03949 −0.519743 0.854323i \(-0.673972\pi\)
−0.519743 + 0.854323i \(0.673972\pi\)
\(312\) 0 0
\(313\) 1.71416e8i 0.315970i 0.987442 + 0.157985i \(0.0504997\pi\)
−0.987442 + 0.157985i \(0.949500\pi\)
\(314\) 6.29355e8 1.14721
\(315\) 0 0
\(316\) −1.29232e8 −0.230391
\(317\) 1.03349e9i 1.82222i 0.412167 + 0.911108i \(0.364772\pi\)
−0.412167 + 0.911108i \(0.635228\pi\)
\(318\) 0 0
\(319\) 1.35678e8 0.234015
\(320\) 0 0
\(321\) 0 0
\(322\) − 6.37977e7i − 0.106490i
\(323\) 8.46132e8i 1.39711i
\(324\) 0 0
\(325\) 0 0
\(326\) 5.59799e8 0.894892
\(327\) 0 0
\(328\) 1.16137e7i 0.0181724i
\(329\) −1.56440e9 −2.42194
\(330\) 0 0
\(331\) 2.41233e7 0.0365627 0.0182813 0.999833i \(-0.494181\pi\)
0.0182813 + 0.999833i \(0.494181\pi\)
\(332\) − 5.10271e8i − 0.765275i
\(333\) 0 0
\(334\) 6.71134e8 0.985591
\(335\) 0 0
\(336\) 0 0
\(337\) − 8.75080e8i − 1.24550i −0.782422 0.622749i \(-0.786016\pi\)
0.782422 0.622749i \(-0.213984\pi\)
\(338\) − 2.62796e8i − 0.370178i
\(339\) 0 0
\(340\) 0 0
\(341\) −7.99232e7 −0.109152
\(342\) 0 0
\(343\) 2.98976e8i 0.400044i
\(344\) 5.12758e7 0.0679137
\(345\) 0 0
\(346\) −2.18934e8 −0.284150
\(347\) 8.32449e7i 0.106956i 0.998569 + 0.0534779i \(0.0170307\pi\)
−0.998569 + 0.0534779i \(0.982969\pi\)
\(348\) 0 0
\(349\) −3.97607e8 −0.500685 −0.250343 0.968157i \(-0.580543\pi\)
−0.250343 + 0.968157i \(0.580543\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 3.54877e7i − 0.0433690i
\(353\) − 2.93710e8i − 0.355392i −0.984085 0.177696i \(-0.943136\pi\)
0.984085 0.177696i \(-0.0568643\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.39900e8 −0.164340
\(357\) 0 0
\(358\) 6.38107e8i 0.735027i
\(359\) −1.71667e8 −0.195820 −0.0979098 0.995195i \(-0.531216\pi\)
−0.0979098 + 0.995195i \(0.531216\pi\)
\(360\) 0 0
\(361\) 2.27373e8 0.254369
\(362\) − 4.22971e8i − 0.468631i
\(363\) 0 0
\(364\) 4.78034e8 0.519522
\(365\) 0 0
\(366\) 0 0
\(367\) − 9.55463e8i − 1.00898i −0.863417 0.504490i \(-0.831680\pi\)
0.863417 0.504490i \(-0.168320\pi\)
\(368\) 2.39124e7i 0.0250125i
\(369\) 0 0
\(370\) 0 0
\(371\) −4.84769e8 −0.492863
\(372\) 0 0
\(373\) − 3.44673e8i − 0.343896i −0.985106 0.171948i \(-0.944994\pi\)
0.985106 0.171948i \(-0.0550061\pi\)
\(374\) −2.18931e8 −0.216399
\(375\) 0 0
\(376\) 5.86365e8 0.568867
\(377\) − 6.85031e8i − 0.658439i
\(378\) 0 0
\(379\) −1.45273e9 −1.37071 −0.685356 0.728208i \(-0.740353\pi\)
−0.685356 + 0.728208i \(0.740353\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 8.25803e8i − 0.757974i
\(383\) − 1.87839e9i − 1.70840i −0.519941 0.854202i \(-0.674046\pi\)
0.519941 0.854202i \(-0.325954\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.99721e8 0.353754
\(387\) 0 0
\(388\) 3.72713e8i 0.323939i
\(389\) −1.12632e9 −0.970145 −0.485072 0.874474i \(-0.661207\pi\)
−0.485072 + 0.874474i \(0.661207\pi\)
\(390\) 0 0
\(391\) 1.47520e8 0.124805
\(392\) − 5.33715e8i − 0.447516i
\(393\) 0 0
\(394\) 2.67085e8 0.219995
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.45733e9i − 1.16894i −0.811415 0.584470i \(-0.801302\pi\)
0.811415 0.584470i \(-0.198698\pi\)
\(398\) 7.40085e8i 0.588425i
\(399\) 0 0
\(400\) 0 0
\(401\) −1.95849e9 −1.51676 −0.758380 0.651813i \(-0.774009\pi\)
−0.758380 + 0.651813i \(0.774009\pi\)
\(402\) 0 0
\(403\) 4.03527e8i 0.307118i
\(404\) 2.77160e7 0.0209120
\(405\) 0 0
\(406\) −1.36906e9 −1.01527
\(407\) − 4.28788e8i − 0.315255i
\(408\) 0 0
\(409\) 1.25594e9 0.907687 0.453844 0.891081i \(-0.350052\pi\)
0.453844 + 0.891081i \(0.350052\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 6.67487e8i − 0.470222i
\(413\) − 1.50036e9i − 1.04802i
\(414\) 0 0
\(415\) 0 0
\(416\) −1.79175e8 −0.122026
\(417\) 0 0
\(418\) 2.90114e8i 0.194291i
\(419\) −4.46548e7 −0.0296564 −0.0148282 0.999890i \(-0.504720\pi\)
−0.0148282 + 0.999890i \(0.504720\pi\)
\(420\) 0 0
\(421\) −5.83121e7 −0.0380865 −0.0190433 0.999819i \(-0.506062\pi\)
−0.0190433 + 0.999819i \(0.506062\pi\)
\(422\) − 4.48923e8i − 0.290789i
\(423\) 0 0
\(424\) 1.81700e8 0.115764
\(425\) 0 0
\(426\) 0 0
\(427\) 5.77815e8i 0.359163i
\(428\) 1.36425e9i 0.841086i
\(429\) 0 0
\(430\) 0 0
\(431\) −2.15807e9 −1.29836 −0.649179 0.760635i \(-0.724888\pi\)
−0.649179 + 0.760635i \(0.724888\pi\)
\(432\) 0 0
\(433\) − 2.02867e9i − 1.20089i −0.799666 0.600446i \(-0.794990\pi\)
0.799666 0.600446i \(-0.205010\pi\)
\(434\) 8.06465e8 0.473556
\(435\) 0 0
\(436\) 1.02595e9 0.592819
\(437\) − 1.95485e8i − 0.112055i
\(438\) 0 0
\(439\) 2.51641e9 1.41956 0.709782 0.704422i \(-0.248794\pi\)
0.709782 + 0.704422i \(0.248794\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.10537e9i 0.608876i
\(443\) − 2.56720e9i − 1.40296i −0.712687 0.701482i \(-0.752522\pi\)
0.712687 0.701482i \(-0.247478\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.23949e8 0.333025
\(447\) 0 0
\(448\) 3.58089e8i 0.188156i
\(449\) 8.28489e8 0.431941 0.215970 0.976400i \(-0.430709\pi\)
0.215970 + 0.976400i \(0.430709\pi\)
\(450\) 0 0
\(451\) 2.45657e7 0.0126099
\(452\) − 5.79496e7i − 0.0295166i
\(453\) 0 0
\(454\) −1.05074e9 −0.526987
\(455\) 0 0
\(456\) 0 0
\(457\) 3.45538e8i 0.169352i 0.996409 + 0.0846758i \(0.0269855\pi\)
−0.996409 + 0.0846758i \(0.973015\pi\)
\(458\) 1.82754e9i 0.888868i
\(459\) 0 0
\(460\) 0 0
\(461\) −4.81628e8 −0.228959 −0.114480 0.993426i \(-0.536520\pi\)
−0.114480 + 0.993426i \(0.536520\pi\)
\(462\) 0 0
\(463\) − 1.18307e9i − 0.553958i −0.960876 0.276979i \(-0.910667\pi\)
0.960876 0.276979i \(-0.0893333\pi\)
\(464\) 5.13147e8 0.238467
\(465\) 0 0
\(466\) 3.02359e9 1.38411
\(467\) − 1.01191e9i − 0.459764i −0.973219 0.229882i \(-0.926166\pi\)
0.973219 0.229882i \(-0.0738340\pi\)
\(468\) 0 0
\(469\) 3.49502e9 1.56439
\(470\) 0 0
\(471\) 0 0
\(472\) 5.62360e8i 0.246160i
\(473\) − 1.08460e8i − 0.0471256i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.20912e9 0.938846
\(477\) 0 0
\(478\) 9.05489e8i 0.379215i
\(479\) 3.78673e9 1.57431 0.787155 0.616755i \(-0.211553\pi\)
0.787155 + 0.616755i \(0.211553\pi\)
\(480\) 0 0
\(481\) −2.16492e9 −0.887023
\(482\) 1.60189e9i 0.651579i
\(483\) 0 0
\(484\) 1.17211e9 0.469906
\(485\) 0 0
\(486\) 0 0
\(487\) − 7.20259e8i − 0.282577i −0.989968 0.141289i \(-0.954875\pi\)
0.989968 0.141289i \(-0.0451246\pi\)
\(488\) − 2.16575e8i − 0.0843605i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.79667e9 0.684988 0.342494 0.939520i \(-0.388728\pi\)
0.342494 + 0.939520i \(0.388728\pi\)
\(492\) 0 0
\(493\) − 3.16570e9i − 1.18989i
\(494\) 1.46477e9 0.546669
\(495\) 0 0
\(496\) −3.02277e8 −0.111229
\(497\) − 3.12463e9i − 1.14170i
\(498\) 0 0
\(499\) −2.54540e9 −0.917073 −0.458536 0.888676i \(-0.651626\pi\)
−0.458536 + 0.888676i \(0.651626\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 3.70259e9i − 1.30630i
\(503\) − 1.31401e9i − 0.460373i −0.973147 0.230187i \(-0.926066\pi\)
0.973147 0.230187i \(-0.0739336\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5.05804e7 0.0173562
\(507\) 0 0
\(508\) − 1.02625e9i − 0.347321i
\(509\) −2.50386e9 −0.841583 −0.420792 0.907157i \(-0.638248\pi\)
−0.420792 + 0.907157i \(0.638248\pi\)
\(510\) 0 0
\(511\) −8.70476e9 −2.88591
\(512\) − 1.34218e8i − 0.0441942i
\(513\) 0 0
\(514\) 3.90201e9 1.26741
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.24030e9i − 0.394739i
\(518\) 4.32668e9i 1.36773i
\(519\) 0 0
\(520\) 0 0
\(521\) 1.22028e9 0.378032 0.189016 0.981974i \(-0.439470\pi\)
0.189016 + 0.981974i \(0.439470\pi\)
\(522\) 0 0
\(523\) − 1.93318e9i − 0.590905i −0.955357 0.295452i \(-0.904530\pi\)
0.955357 0.295452i \(-0.0954703\pi\)
\(524\) 2.45169e8 0.0744401
\(525\) 0 0
\(526\) −3.21457e9 −0.963103
\(527\) 1.86480e9i 0.555003i
\(528\) 0 0
\(529\) 3.37074e9 0.989990
\(530\) 0 0
\(531\) 0 0
\(532\) − 2.92739e9i − 0.842928i
\(533\) − 1.24031e8i − 0.0354800i
\(534\) 0 0
\(535\) 0 0
\(536\) −1.30999e9 −0.367445
\(537\) 0 0
\(538\) − 3.64309e9i − 1.00863i
\(539\) −1.12893e9 −0.310533
\(540\) 0 0
\(541\) −2.54920e9 −0.692172 −0.346086 0.938203i \(-0.612489\pi\)
−0.346086 + 0.938203i \(0.612489\pi\)
\(542\) − 4.06767e9i − 1.09736i
\(543\) 0 0
\(544\) −8.28015e8 −0.220517
\(545\) 0 0
\(546\) 0 0
\(547\) 4.58291e9i 1.19725i 0.801028 + 0.598626i \(0.204287\pi\)
−0.801028 + 0.598626i \(0.795713\pi\)
\(548\) 6.20379e8i 0.161037i
\(549\) 0 0
\(550\) 0 0
\(551\) −4.19500e9 −1.06832
\(552\) 0 0
\(553\) − 2.75830e9i − 0.693590i
\(554\) 5.17461e9 1.29299
\(555\) 0 0
\(556\) 2.87620e9 0.709671
\(557\) 4.94207e9i 1.21176i 0.795557 + 0.605879i \(0.207178\pi\)
−0.795557 + 0.605879i \(0.792822\pi\)
\(558\) 0 0
\(559\) −5.47609e8 −0.132596
\(560\) 0 0
\(561\) 0 0
\(562\) 1.51637e9i 0.360353i
\(563\) 7.82258e8i 0.184744i 0.995725 + 0.0923721i \(0.0294449\pi\)
−0.995725 + 0.0923721i \(0.970555\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3.70707e9 −0.859356
\(567\) 0 0
\(568\) 1.17116e9i 0.268163i
\(569\) 1.19628e9 0.272232 0.136116 0.990693i \(-0.456538\pi\)
0.136116 + 0.990693i \(0.456538\pi\)
\(570\) 0 0
\(571\) 2.41071e9 0.541899 0.270949 0.962594i \(-0.412662\pi\)
0.270949 + 0.962594i \(0.412662\pi\)
\(572\) 3.78998e8i 0.0846741i
\(573\) 0 0
\(574\) −2.47880e8 −0.0547078
\(575\) 0 0
\(576\) 0 0
\(577\) − 6.45394e9i − 1.39865i −0.714803 0.699326i \(-0.753484\pi\)
0.714803 0.699326i \(-0.246516\pi\)
\(578\) 1.82547e9i 0.393212i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.08911e10 2.30385
\(582\) 0 0
\(583\) − 3.84337e8i − 0.0803290i
\(584\) 3.26269e9 0.677846
\(585\) 0 0
\(586\) 9.85387e8 0.202286
\(587\) − 5.27194e8i − 0.107581i −0.998552 0.0537907i \(-0.982870\pi\)
0.998552 0.0537907i \(-0.0171304\pi\)
\(588\) 0 0
\(589\) 2.47113e9 0.498301
\(590\) 0 0
\(591\) 0 0
\(592\) − 1.62171e9i − 0.321254i
\(593\) − 8.99056e9i − 1.77050i −0.465117 0.885249i \(-0.653988\pi\)
0.465117 0.885249i \(-0.346012\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.16293e9 0.611967
\(597\) 0 0
\(598\) − 2.55377e8i − 0.0488347i
\(599\) 3.40720e9 0.647745 0.323872 0.946101i \(-0.395015\pi\)
0.323872 + 0.946101i \(0.395015\pi\)
\(600\) 0 0
\(601\) −4.00808e9 −0.753140 −0.376570 0.926388i \(-0.622897\pi\)
−0.376570 + 0.926388i \(0.622897\pi\)
\(602\) 1.09442e9i 0.204454i
\(603\) 0 0
\(604\) −1.28690e9 −0.237638
\(605\) 0 0
\(606\) 0 0
\(607\) 3.61151e9i 0.655434i 0.944776 + 0.327717i \(0.106279\pi\)
−0.944776 + 0.327717i \(0.893721\pi\)
\(608\) 1.09724e9i 0.197987i
\(609\) 0 0
\(610\) 0 0
\(611\) −6.26219e9 −1.11066
\(612\) 0 0
\(613\) − 4.16268e8i − 0.0729897i −0.999334 0.0364948i \(-0.988381\pi\)
0.999334 0.0364948i \(-0.0116192\pi\)
\(614\) 4.51362e9 0.786929
\(615\) 0 0
\(616\) 7.57442e8 0.130562
\(617\) 2.32066e8i 0.0397752i 0.999802 + 0.0198876i \(0.00633084\pi\)
−0.999802 + 0.0198876i \(0.993669\pi\)
\(618\) 0 0
\(619\) 1.50914e9 0.255748 0.127874 0.991790i \(-0.459185\pi\)
0.127874 + 0.991790i \(0.459185\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.41133e9i 0.735027i
\(623\) − 2.98599e9i − 0.494743i
\(624\) 0 0
\(625\) 0 0
\(626\) 1.37133e9 0.223424
\(627\) 0 0
\(628\) − 5.03484e9i − 0.811199i
\(629\) −1.00047e10 −1.60297
\(630\) 0 0
\(631\) 1.18512e10 1.87785 0.938923 0.344127i \(-0.111825\pi\)
0.938923 + 0.344127i \(0.111825\pi\)
\(632\) 1.03386e9i 0.162911i
\(633\) 0 0
\(634\) 8.26794e9 1.28850
\(635\) 0 0
\(636\) 0 0
\(637\) 5.69991e9i 0.873736i
\(638\) − 1.08543e9i − 0.165473i
\(639\) 0 0
\(640\) 0 0
\(641\) 3.89475e9 0.584086 0.292043 0.956405i \(-0.405665\pi\)
0.292043 + 0.956405i \(0.405665\pi\)
\(642\) 0 0
\(643\) 6.87187e8i 0.101938i 0.998700 + 0.0509690i \(0.0162310\pi\)
−0.998700 + 0.0509690i \(0.983769\pi\)
\(644\) −5.10381e8 −0.0752999
\(645\) 0 0
\(646\) 6.76906e9 0.987904
\(647\) 2.24157e9i 0.325378i 0.986677 + 0.162689i \(0.0520167\pi\)
−0.986677 + 0.162689i \(0.947983\pi\)
\(648\) 0 0
\(649\) 1.18952e9 0.170811
\(650\) 0 0
\(651\) 0 0
\(652\) − 4.47839e9i − 0.632784i
\(653\) 3.44569e9i 0.484261i 0.970244 + 0.242131i \(0.0778463\pi\)
−0.970244 + 0.242131i \(0.922154\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.29096e7 0.0128498
\(657\) 0 0
\(658\) 1.25152e10i 1.71257i
\(659\) 7.59753e9 1.03413 0.517063 0.855947i \(-0.327025\pi\)
0.517063 + 0.855947i \(0.327025\pi\)
\(660\) 0 0
\(661\) −5.49901e8 −0.0740592 −0.0370296 0.999314i \(-0.511790\pi\)
−0.0370296 + 0.999314i \(0.511790\pi\)
\(662\) − 1.92986e8i − 0.0258537i
\(663\) 0 0
\(664\) −4.08217e9 −0.541131
\(665\) 0 0
\(666\) 0 0
\(667\) 7.31385e8i 0.0954345i
\(668\) − 5.36907e9i − 0.696918i
\(669\) 0 0
\(670\) 0 0
\(671\) −4.58107e8 −0.0585380
\(672\) 0 0
\(673\) − 7.29473e7i − 0.00922478i −0.999989 0.00461239i \(-0.998532\pi\)
0.999989 0.00461239i \(-0.00146818\pi\)
\(674\) −7.00064e9 −0.880700
\(675\) 0 0
\(676\) −2.10237e9 −0.261755
\(677\) 3.97003e9i 0.491738i 0.969303 + 0.245869i \(0.0790733\pi\)
−0.969303 + 0.245869i \(0.920927\pi\)
\(678\) 0 0
\(679\) −7.95510e9 −0.975217
\(680\) 0 0
\(681\) 0 0
\(682\) 6.39386e8i 0.0771823i
\(683\) − 1.18943e10i − 1.42845i −0.699914 0.714227i \(-0.746779\pi\)
0.699914 0.714227i \(-0.253221\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.39181e9 0.282874
\(687\) 0 0
\(688\) − 4.10206e8i − 0.0480223i
\(689\) −1.94049e9 −0.226019
\(690\) 0 0
\(691\) 2.08948e9 0.240916 0.120458 0.992718i \(-0.461564\pi\)
0.120458 + 0.992718i \(0.461564\pi\)
\(692\) 1.75147e9i 0.200924i
\(693\) 0 0
\(694\) 6.65959e8 0.0756292
\(695\) 0 0
\(696\) 0 0
\(697\) − 5.73177e8i − 0.0641171i
\(698\) 3.18085e9i 0.354038i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.21818e10 −1.33567 −0.667834 0.744311i \(-0.732778\pi\)
−0.667834 + 0.744311i \(0.732778\pi\)
\(702\) 0 0
\(703\) 1.32576e10i 1.43920i
\(704\) −2.83902e8 −0.0306665
\(705\) 0 0
\(706\) −2.34968e9 −0.251300
\(707\) 5.91563e8i 0.0629554i
\(708\) 0 0
\(709\) −3.80726e9 −0.401191 −0.200595 0.979674i \(-0.564288\pi\)
−0.200595 + 0.979674i \(0.564288\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.11920e9i 0.116206i
\(713\) − 4.30833e8i − 0.0445139i
\(714\) 0 0
\(715\) 0 0
\(716\) 5.10486e9 0.519742
\(717\) 0 0
\(718\) 1.37334e9i 0.138465i
\(719\) 2.74426e9 0.275343 0.137671 0.990478i \(-0.456038\pi\)
0.137671 + 0.990478i \(0.456038\pi\)
\(720\) 0 0
\(721\) 1.42467e10 1.41560
\(722\) − 1.81899e9i − 0.179866i
\(723\) 0 0
\(724\) −3.38377e9 −0.331372
\(725\) 0 0
\(726\) 0 0
\(727\) 5.15574e8i 0.0497647i 0.999690 + 0.0248823i \(0.00792111\pi\)
−0.999690 + 0.0248823i \(0.992079\pi\)
\(728\) − 3.82428e9i − 0.367358i
\(729\) 0 0
\(730\) 0 0
\(731\) −2.53064e9 −0.239618
\(732\) 0 0
\(733\) − 9.16791e9i − 0.859818i −0.902872 0.429909i \(-0.858546\pi\)
0.902872 0.429909i \(-0.141454\pi\)
\(734\) −7.64371e9 −0.713457
\(735\) 0 0
\(736\) 1.91300e8 0.0176865
\(737\) 2.77094e9i 0.254971i
\(738\) 0 0
\(739\) 7.95134e9 0.724744 0.362372 0.932034i \(-0.381967\pi\)
0.362372 + 0.932034i \(0.381967\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.87815e9i 0.348507i
\(743\) 1.20333e10i 1.07628i 0.842856 + 0.538139i \(0.180872\pi\)
−0.842856 + 0.538139i \(0.819128\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.75739e9 −0.243171
\(747\) 0 0
\(748\) 1.75144e9i 0.153017i
\(749\) −2.91182e10 −2.53208
\(750\) 0 0
\(751\) −1.46650e10 −1.26341 −0.631704 0.775210i \(-0.717644\pi\)
−0.631704 + 0.775210i \(0.717644\pi\)
\(752\) − 4.69092e9i − 0.402250i
\(753\) 0 0
\(754\) −5.48025e9 −0.465587
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.86757e10i − 1.56474i −0.622816 0.782368i \(-0.714012\pi\)
0.622816 0.782368i \(-0.285988\pi\)
\(758\) 1.16218e10i 0.969240i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.45502e10 −1.19680 −0.598400 0.801198i \(-0.704197\pi\)
−0.598400 + 0.801198i \(0.704197\pi\)
\(762\) 0 0
\(763\) 2.18976e10i 1.78468i
\(764\) −6.60642e9 −0.535969
\(765\) 0 0
\(766\) −1.50271e10 −1.20802
\(767\) − 6.00583e9i − 0.480606i
\(768\) 0 0
\(769\) −7.45506e9 −0.591166 −0.295583 0.955317i \(-0.595514\pi\)
−0.295583 + 0.955317i \(0.595514\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 3.19776e9i − 0.250142i
\(773\) 1.85671e10i 1.44582i 0.690941 + 0.722911i \(0.257197\pi\)
−0.690941 + 0.722911i \(0.742803\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.98171e9 0.229060
\(777\) 0 0
\(778\) 9.01053e9i 0.685996i
\(779\) −7.59540e8 −0.0575665
\(780\) 0 0
\(781\) 2.47728e9 0.186079
\(782\) − 1.18016e9i − 0.0882508i
\(783\) 0 0
\(784\) −4.26972e9 −0.316442
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.17240e8i − 0.0158865i −0.999968 0.00794324i \(-0.997472\pi\)
0.999968 0.00794324i \(-0.00252844\pi\)
\(788\) − 2.13668e9i − 0.155560i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.23686e9 0.0888595
\(792\) 0 0
\(793\) 2.31295e9i 0.164706i
\(794\) −1.16587e10 −0.826566
\(795\) 0 0
\(796\) 5.92068e9 0.416079
\(797\) − 1.04021e10i − 0.727807i −0.931437 0.363903i \(-0.881444\pi\)
0.931437 0.363903i \(-0.118556\pi\)
\(798\) 0 0
\(799\) −2.89392e10 −2.00712
\(800\) 0 0
\(801\) 0 0
\(802\) 1.56679e10i 1.07251i
\(803\) − 6.90136e9i − 0.470360i
\(804\) 0 0
\(805\) 0 0
\(806\) 3.22822e9 0.217165
\(807\) 0 0
\(808\) − 2.21728e8i − 0.0147870i
\(809\) 1.54020e10 1.02272 0.511360 0.859367i \(-0.329142\pi\)
0.511360 + 0.859367i \(0.329142\pi\)
\(810\) 0 0
\(811\) 9.37914e9 0.617433 0.308717 0.951154i \(-0.400101\pi\)
0.308717 + 0.951154i \(0.400101\pi\)
\(812\) 1.09525e10i 0.717904i
\(813\) 0 0
\(814\) −3.43030e9 −0.222919
\(815\) 0 0
\(816\) 0 0
\(817\) 3.35346e9i 0.215137i
\(818\) − 1.00475e10i − 0.641832i
\(819\) 0 0
\(820\) 0 0
\(821\) 1.49190e10 0.940887 0.470443 0.882430i \(-0.344094\pi\)
0.470443 + 0.882430i \(0.344094\pi\)
\(822\) 0 0
\(823\) − 1.72905e10i − 1.08121i −0.841278 0.540603i \(-0.818196\pi\)
0.841278 0.540603i \(-0.181804\pi\)
\(824\) −5.33990e9 −0.332497
\(825\) 0 0
\(826\) −1.20029e10 −0.741063
\(827\) 1.92633e8i 0.0118430i 0.999982 + 0.00592149i \(0.00188488\pi\)
−0.999982 + 0.00592149i \(0.998115\pi\)
\(828\) 0 0
\(829\) −1.55199e10 −0.946124 −0.473062 0.881029i \(-0.656851\pi\)
−0.473062 + 0.881029i \(0.656851\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.43340e9i 0.0862853i
\(833\) 2.63407e10i 1.57896i
\(834\) 0 0
\(835\) 0 0
\(836\) 2.32091e9 0.137384
\(837\) 0 0
\(838\) 3.57238e8i 0.0209703i
\(839\) 1.04108e10 0.608580 0.304290 0.952579i \(-0.401581\pi\)
0.304290 + 0.952579i \(0.401581\pi\)
\(840\) 0 0
\(841\) −1.55480e9 −0.0901339
\(842\) 4.66497e8i 0.0269312i
\(843\) 0 0
\(844\) −3.59138e9 −0.205619
\(845\) 0 0
\(846\) 0 0
\(847\) 2.50173e10i 1.41465i
\(848\) − 1.45360e9i − 0.0818575i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.31142e9 0.128566
\(852\) 0 0
\(853\) 1.54506e10i 0.852362i 0.904638 + 0.426181i \(0.140141\pi\)
−0.904638 + 0.426181i \(0.859859\pi\)
\(854\) 4.62252e9 0.253967
\(855\) 0 0
\(856\) 1.09140e10 0.594738
\(857\) − 2.50311e9i − 0.135846i −0.997691 0.0679231i \(-0.978363\pi\)
0.997691 0.0679231i \(-0.0216373\pi\)
\(858\) 0 0
\(859\) −2.05842e10 −1.10805 −0.554024 0.832500i \(-0.686909\pi\)
−0.554024 + 0.832500i \(0.686909\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.72645e10i 0.918078i
\(863\) 1.91073e10i 1.01196i 0.862546 + 0.505978i \(0.168868\pi\)
−0.862546 + 0.505978i \(0.831132\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −1.62294e10 −0.849158
\(867\) 0 0
\(868\) − 6.45172e9i − 0.334855i
\(869\) 2.18685e9 0.113044
\(870\) 0 0
\(871\) 1.39903e10 0.717404
\(872\) − 8.20758e9i − 0.419187i
\(873\) 0 0
\(874\) −1.56388e9 −0.0792345
\(875\) 0 0
\(876\) 0 0
\(877\) 3.33063e10i 1.66736i 0.552251 + 0.833678i \(0.313769\pi\)
−0.552251 + 0.833678i \(0.686231\pi\)
\(878\) − 2.01312e10i − 1.00378i
\(879\) 0 0
\(880\) 0 0
\(881\) 9.31313e9 0.458860 0.229430 0.973325i \(-0.426314\pi\)
0.229430 + 0.973325i \(0.426314\pi\)
\(882\) 0 0
\(883\) − 4.38514e9i − 0.214349i −0.994240 0.107174i \(-0.965820\pi\)
0.994240 0.107174i \(-0.0341803\pi\)
\(884\) 8.84294e9 0.430540
\(885\) 0 0
\(886\) −2.05376e10 −0.992045
\(887\) 1.78764e10i 0.860098i 0.902806 + 0.430049i \(0.141504\pi\)
−0.902806 + 0.430049i \(0.858496\pi\)
\(888\) 0 0
\(889\) 2.19041e10 1.04561
\(890\) 0 0
\(891\) 0 0
\(892\) − 4.99159e9i − 0.235484i
\(893\) 3.83485e10i 1.80206i
\(894\) 0 0
\(895\) 0 0
\(896\) 2.86471e9 0.133046
\(897\) 0 0
\(898\) − 6.62791e9i − 0.305428i
\(899\) −9.24541e9 −0.424392
\(900\) 0 0
\(901\) −8.96751e9 −0.408447
\(902\) − 1.96526e8i − 0.00891653i
\(903\) 0 0
\(904\) −4.63597e8 −0.0208714
\(905\) 0 0
\(906\) 0 0
\(907\) − 2.84742e9i − 0.126714i −0.997991 0.0633572i \(-0.979819\pi\)
0.997991 0.0633572i \(-0.0201807\pi\)
\(908\) 8.40592e9i 0.372636i
\(909\) 0 0
\(910\) 0 0
\(911\) 3.84643e10 1.68556 0.842779 0.538260i \(-0.180918\pi\)
0.842779 + 0.538260i \(0.180918\pi\)
\(912\) 0 0
\(913\) 8.63474e9i 0.375493i
\(914\) 2.76431e9 0.119750
\(915\) 0 0
\(916\) 1.46203e10 0.628525
\(917\) 5.23283e9i 0.224101i
\(918\) 0 0
\(919\) −1.07375e10 −0.456352 −0.228176 0.973620i \(-0.573276\pi\)
−0.228176 + 0.973620i \(0.573276\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 3.85303e9i 0.161899i
\(923\) − 1.25077e10i − 0.523564i
\(924\) 0 0
\(925\) 0 0
\(926\) −9.46456e9 −0.391708
\(927\) 0 0
\(928\) − 4.10518e9i − 0.168622i
\(929\) 5.34493e9 0.218719 0.109360 0.994002i \(-0.465120\pi\)
0.109360 + 0.994002i \(0.465120\pi\)
\(930\) 0 0
\(931\) 3.49052e10 1.41764
\(932\) − 2.41887e10i − 0.978717i
\(933\) 0 0
\(934\) −8.09531e9 −0.325102
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.48125e10i − 0.588218i −0.955772 0.294109i \(-0.904977\pi\)
0.955772 0.294109i \(-0.0950229\pi\)
\(938\) − 2.79602e10i − 1.10619i
\(939\) 0 0
\(940\) 0 0
\(941\) −2.18734e10 −0.855763 −0.427882 0.903835i \(-0.640740\pi\)
−0.427882 + 0.903835i \(0.640740\pi\)
\(942\) 0 0
\(943\) 1.32423e8i 0.00514249i
\(944\) 4.49888e9 0.174061
\(945\) 0 0
\(946\) −8.67682e8 −0.0333228
\(947\) − 2.45163e10i − 0.938060i −0.883182 0.469030i \(-0.844604\pi\)
0.883182 0.469030i \(-0.155396\pi\)
\(948\) 0 0
\(949\) −3.48445e10 −1.32344
\(950\) 0 0
\(951\) 0 0
\(952\) − 1.76729e10i − 0.663864i
\(953\) 1.34056e10i 0.501721i 0.968023 + 0.250860i \(0.0807135\pi\)
−0.968023 + 0.250860i \(0.919286\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.24391e9 0.268146
\(957\) 0 0
\(958\) − 3.02939e10i − 1.11321i
\(959\) −1.32412e10 −0.484800
\(960\) 0 0
\(961\) −2.20665e10 −0.802049
\(962\) 1.73194e10i 0.627220i
\(963\) 0 0
\(964\) 1.28151e10 0.460736
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.64740e9i − 0.165279i −0.996580 0.0826395i \(-0.973665\pi\)
0.996580 0.0826395i \(-0.0263350\pi\)
\(968\) − 9.37691e9i − 0.332274i
\(969\) 0 0
\(970\) 0 0
\(971\) 3.24860e10 1.13875 0.569375 0.822078i \(-0.307185\pi\)
0.569375 + 0.822078i \(0.307185\pi\)
\(972\) 0 0
\(973\) 6.13889e10i 2.13646i
\(974\) −5.76207e9 −0.199812
\(975\) 0 0
\(976\) −1.73260e9 −0.0596518
\(977\) 6.06506e9i 0.208067i 0.994574 + 0.104034i \(0.0331750\pi\)
−0.994574 + 0.104034i \(0.966825\pi\)
\(978\) 0 0
\(979\) 2.36737e9 0.0806355
\(980\) 0 0
\(981\) 0 0
\(982\) − 1.43734e10i − 0.484360i
\(983\) − 2.10842e10i − 0.707979i −0.935249 0.353989i \(-0.884825\pi\)
0.935249 0.353989i \(-0.115175\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.53256e10 −0.841377
\(987\) 0 0
\(988\) − 1.17181e10i − 0.386553i
\(989\) 5.84664e8 0.0192185
\(990\) 0 0
\(991\) 4.26476e10 1.39199 0.695997 0.718045i \(-0.254963\pi\)
0.695997 + 0.718045i \(0.254963\pi\)
\(992\) 2.41821e9i 0.0786509i
\(993\) 0 0
\(994\) −2.49970e10 −0.807302
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.59226e10i − 0.508841i −0.967094 0.254420i \(-0.918115\pi\)
0.967094 0.254420i \(-0.0818847\pi\)
\(998\) 2.03632e10i 0.648468i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.8.c.l.199.1 2
3.2 odd 2 50.8.b.a.49.2 2
5.2 odd 4 450.8.a.z.1.1 1
5.3 odd 4 450.8.a.a.1.1 1
5.4 even 2 inner 450.8.c.l.199.2 2
12.11 even 2 400.8.c.a.49.1 2
15.2 even 4 50.8.a.d.1.1 1
15.8 even 4 50.8.a.e.1.1 yes 1
15.14 odd 2 50.8.b.a.49.1 2
60.23 odd 4 400.8.a.s.1.1 1
60.47 odd 4 400.8.a.a.1.1 1
60.59 even 2 400.8.c.a.49.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.8.a.d.1.1 1 15.2 even 4
50.8.a.e.1.1 yes 1 15.8 even 4
50.8.b.a.49.1 2 15.14 odd 2
50.8.b.a.49.2 2 3.2 odd 2
400.8.a.a.1.1 1 60.47 odd 4
400.8.a.s.1.1 1 60.23 odd 4
400.8.c.a.49.1 2 12.11 even 2
400.8.c.a.49.2 2 60.59 even 2
450.8.a.a.1.1 1 5.3 odd 4
450.8.a.z.1.1 1 5.2 odd 4
450.8.c.l.199.1 2 1.1 even 1 trivial
450.8.c.l.199.2 2 5.4 even 2 inner