Properties

Label 50.8
Level 50
Weight 8
Dimension 162
Nonzero newspaces 4
Newform subspaces 18
Sturm bound 1200
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 18 \)
Sturm bound: \(1200\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(50))\).

Total New Old
Modular forms 553 162 391
Cusp forms 497 162 335
Eisenstein series 56 0 56

Trace form

\( 162 q + 8 q^{2} - 92 q^{3} + 192 q^{4} + 25 q^{5} - 1952 q^{6} - 3256 q^{7} + 512 q^{8} + 22511 q^{9} - 2040 q^{10} - 28596 q^{11} - 5888 q^{12} + 13058 q^{13} + 35776 q^{14} + 33980 q^{15} - 53248 q^{16}+ \cdots - 27750808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(50))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
50.8.a \(\chi_{50}(1, \cdot)\) 50.8.a.a 1 1
50.8.a.b 1
50.8.a.c 1
50.8.a.d 1
50.8.a.e 1
50.8.a.f 1
50.8.a.g 1
50.8.a.h 1
50.8.a.i 2
50.8.a.j 2
50.8.b \(\chi_{50}(49, \cdot)\) 50.8.b.a 2 1
50.8.b.b 2
50.8.b.c 2
50.8.b.d 2
50.8.b.e 2
50.8.d \(\chi_{50}(11, \cdot)\) 50.8.d.a 32 4
50.8.d.b 36
50.8.e \(\chi_{50}(9, \cdot)\) 50.8.e.a 72 4

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)