Defining parameters
Level: | \( N \) | = | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(1200\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(50))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 553 | 162 | 391 |
Cusp forms | 497 | 162 | 335 |
Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(50))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
50.8.a | \(\chi_{50}(1, \cdot)\) | 50.8.a.a | 1 | 1 |
50.8.a.b | 1 | |||
50.8.a.c | 1 | |||
50.8.a.d | 1 | |||
50.8.a.e | 1 | |||
50.8.a.f | 1 | |||
50.8.a.g | 1 | |||
50.8.a.h | 1 | |||
50.8.a.i | 2 | |||
50.8.a.j | 2 | |||
50.8.b | \(\chi_{50}(49, \cdot)\) | 50.8.b.a | 2 | 1 |
50.8.b.b | 2 | |||
50.8.b.c | 2 | |||
50.8.b.d | 2 | |||
50.8.b.e | 2 | |||
50.8.d | \(\chi_{50}(11, \cdot)\) | 50.8.d.a | 32 | 4 |
50.8.d.b | 36 | |||
50.8.e | \(\chi_{50}(9, \cdot)\) | 50.8.e.a | 72 | 4 |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)