Properties

Label 50.4.a.b
Level $50$
Weight $4$
Character orbit 50.a
Self dual yes
Analytic conductor $2.950$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,4,Mod(1,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.95009550029\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{6} - 26 q^{7} - 8 q^{8} - 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} - 2 q^{3} + 4 q^{4} + 4 q^{6} - 26 q^{7} - 8 q^{8} - 23 q^{9} - 28 q^{11} - 8 q^{12} - 12 q^{13} + 52 q^{14} + 16 q^{16} + 64 q^{17} + 46 q^{18} - 60 q^{19} + 52 q^{21} + 56 q^{22} + 58 q^{23} + 16 q^{24} + 24 q^{26} + 100 q^{27} - 104 q^{28} + 90 q^{29} - 128 q^{31} - 32 q^{32} + 56 q^{33} - 128 q^{34} - 92 q^{36} - 236 q^{37} + 120 q^{38} + 24 q^{39} + 242 q^{41} - 104 q^{42} - 362 q^{43} - 112 q^{44} - 116 q^{46} - 226 q^{47} - 32 q^{48} + 333 q^{49} - 128 q^{51} - 48 q^{52} + 108 q^{53} - 200 q^{54} + 208 q^{56} + 120 q^{57} - 180 q^{58} - 20 q^{59} + 542 q^{61} + 256 q^{62} + 598 q^{63} + 64 q^{64} - 112 q^{66} + 434 q^{67} + 256 q^{68} - 116 q^{69} - 1128 q^{71} + 184 q^{72} - 632 q^{73} + 472 q^{74} - 240 q^{76} + 728 q^{77} - 48 q^{78} - 720 q^{79} + 421 q^{81} - 484 q^{82} + 478 q^{83} + 208 q^{84} + 724 q^{86} - 180 q^{87} + 224 q^{88} - 490 q^{89} + 312 q^{91} + 232 q^{92} + 256 q^{93} + 452 q^{94} + 64 q^{96} - 1456 q^{97} - 666 q^{98} + 644 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 −2.00000 4.00000 0 4.00000 −26.0000 −8.00000 −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.4.a.b 1
3.b odd 2 1 450.4.a.k 1
4.b odd 2 1 400.4.a.n 1
5.b even 2 1 50.4.a.d 1
5.c odd 4 2 10.4.b.a 2
7.b odd 2 1 2450.4.a.o 1
8.b even 2 1 1600.4.a.bh 1
8.d odd 2 1 1600.4.a.t 1
15.d odd 2 1 450.4.a.j 1
15.e even 4 2 90.4.c.b 2
20.d odd 2 1 400.4.a.h 1
20.e even 4 2 80.4.c.a 2
35.c odd 2 1 2450.4.a.bb 1
35.f even 4 2 490.4.c.b 2
40.e odd 2 1 1600.4.a.bg 1
40.f even 2 1 1600.4.a.u 1
40.i odd 4 2 320.4.c.d 2
40.k even 4 2 320.4.c.c 2
60.l odd 4 2 720.4.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.b.a 2 5.c odd 4 2
50.4.a.b 1 1.a even 1 1 trivial
50.4.a.d 1 5.b even 2 1
80.4.c.a 2 20.e even 4 2
90.4.c.b 2 15.e even 4 2
320.4.c.c 2 40.k even 4 2
320.4.c.d 2 40.i odd 4 2
400.4.a.h 1 20.d odd 2 1
400.4.a.n 1 4.b odd 2 1
450.4.a.j 1 15.d odd 2 1
450.4.a.k 1 3.b odd 2 1
490.4.c.b 2 35.f even 4 2
720.4.f.f 2 60.l odd 4 2
1600.4.a.t 1 8.d odd 2 1
1600.4.a.u 1 40.f even 2 1
1600.4.a.bg 1 40.e odd 2 1
1600.4.a.bh 1 8.b even 2 1
2450.4.a.o 1 7.b odd 2 1
2450.4.a.bb 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(50))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 26 \) Copy content Toggle raw display
$11$ \( T + 28 \) Copy content Toggle raw display
$13$ \( T + 12 \) Copy content Toggle raw display
$17$ \( T - 64 \) Copy content Toggle raw display
$19$ \( T + 60 \) Copy content Toggle raw display
$23$ \( T - 58 \) Copy content Toggle raw display
$29$ \( T - 90 \) Copy content Toggle raw display
$31$ \( T + 128 \) Copy content Toggle raw display
$37$ \( T + 236 \) Copy content Toggle raw display
$41$ \( T - 242 \) Copy content Toggle raw display
$43$ \( T + 362 \) Copy content Toggle raw display
$47$ \( T + 226 \) Copy content Toggle raw display
$53$ \( T - 108 \) Copy content Toggle raw display
$59$ \( T + 20 \) Copy content Toggle raw display
$61$ \( T - 542 \) Copy content Toggle raw display
$67$ \( T - 434 \) Copy content Toggle raw display
$71$ \( T + 1128 \) Copy content Toggle raw display
$73$ \( T + 632 \) Copy content Toggle raw display
$79$ \( T + 720 \) Copy content Toggle raw display
$83$ \( T - 478 \) Copy content Toggle raw display
$89$ \( T + 490 \) Copy content Toggle raw display
$97$ \( T + 1456 \) Copy content Toggle raw display
show more
show less