Properties

Label 50.4
Level 50
Weight 4
Dimension 69
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 600
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(600\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(50))\).

Total New Old
Modular forms 253 69 184
Cusp forms 197 69 128
Eisenstein series 56 0 56

Trace form

\( 69 q - 4 q^{2} + 16 q^{3} + 8 q^{4} + 5 q^{5} + 16 q^{6} + 8 q^{7} - 16 q^{8} - 166 q^{9} - 50 q^{10} + 88 q^{11} + 64 q^{12} + 116 q^{13} + 224 q^{14} + 80 q^{15} - 96 q^{16} + 508 q^{17} + 302 q^{18}+ \cdots - 4252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
50.4.a \(\chi_{50}(1, \cdot)\) 50.4.a.a 1 1
50.4.a.b 1
50.4.a.c 1
50.4.a.d 1
50.4.a.e 1
50.4.b \(\chi_{50}(49, \cdot)\) 50.4.b.a 2 1
50.4.b.b 2
50.4.d \(\chi_{50}(11, \cdot)\) 50.4.d.a 12 4
50.4.d.b 16
50.4.e \(\chi_{50}(9, \cdot)\) 50.4.e.a 32 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)