Properties

Label 320.4.c.d
Level $320$
Weight $4$
Character orbit 320.c
Analytic conductor $18.881$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(129,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.129"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,10,0,0,0,46,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + (5 \beta + 5) q^{5} + 13 \beta q^{7} + 23 q^{9} + 28 q^{11} + 6 \beta q^{13} + (5 \beta - 20) q^{15} - 32 \beta q^{17} - 60 q^{19} - 52 q^{21} + 29 \beta q^{23} + (50 \beta - 75) q^{25} + \cdots + 644 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{5} + 46 q^{9} + 56 q^{11} - 40 q^{15} - 120 q^{19} - 104 q^{21} - 150 q^{25} + 180 q^{29} - 256 q^{31} - 520 q^{35} - 48 q^{39} + 484 q^{41} + 230 q^{45} - 666 q^{49} + 256 q^{51} + 280 q^{55}+ \cdots + 1288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
1.00000i
1.00000i
0 2.00000i 0 5.00000 10.0000i 0 26.0000i 0 23.0000 0
129.2 0 2.00000i 0 5.00000 + 10.0000i 0 26.0000i 0 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.4.c.d 2
4.b odd 2 1 320.4.c.c 2
5.b even 2 1 inner 320.4.c.d 2
5.c odd 4 1 1600.4.a.u 1
5.c odd 4 1 1600.4.a.bh 1
8.b even 2 1 10.4.b.a 2
8.d odd 2 1 80.4.c.a 2
20.d odd 2 1 320.4.c.c 2
20.e even 4 1 1600.4.a.t 1
20.e even 4 1 1600.4.a.bg 1
24.f even 2 1 720.4.f.f 2
24.h odd 2 1 90.4.c.b 2
40.e odd 2 1 80.4.c.a 2
40.f even 2 1 10.4.b.a 2
40.i odd 4 1 50.4.a.b 1
40.i odd 4 1 50.4.a.d 1
40.k even 4 1 400.4.a.h 1
40.k even 4 1 400.4.a.n 1
56.h odd 2 1 490.4.c.b 2
120.i odd 2 1 90.4.c.b 2
120.m even 2 1 720.4.f.f 2
120.w even 4 1 450.4.a.j 1
120.w even 4 1 450.4.a.k 1
280.c odd 2 1 490.4.c.b 2
280.s even 4 1 2450.4.a.o 1
280.s even 4 1 2450.4.a.bb 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.b.a 2 8.b even 2 1
10.4.b.a 2 40.f even 2 1
50.4.a.b 1 40.i odd 4 1
50.4.a.d 1 40.i odd 4 1
80.4.c.a 2 8.d odd 2 1
80.4.c.a 2 40.e odd 2 1
90.4.c.b 2 24.h odd 2 1
90.4.c.b 2 120.i odd 2 1
320.4.c.c 2 4.b odd 2 1
320.4.c.c 2 20.d odd 2 1
320.4.c.d 2 1.a even 1 1 trivial
320.4.c.d 2 5.b even 2 1 inner
400.4.a.h 1 40.k even 4 1
400.4.a.n 1 40.k even 4 1
450.4.a.j 1 120.w even 4 1
450.4.a.k 1 120.w even 4 1
490.4.c.b 2 56.h odd 2 1
490.4.c.b 2 280.c odd 2 1
720.4.f.f 2 24.f even 2 1
720.4.f.f 2 120.m even 2 1
1600.4.a.t 1 20.e even 4 1
1600.4.a.u 1 5.c odd 4 1
1600.4.a.bg 1 20.e even 4 1
1600.4.a.bh 1 5.c odd 4 1
2450.4.a.o 1 280.s even 4 1
2450.4.a.bb 1 280.s even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(320, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 10T + 125 \) Copy content Toggle raw display
$7$ \( T^{2} + 676 \) Copy content Toggle raw display
$11$ \( (T - 28)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 144 \) Copy content Toggle raw display
$17$ \( T^{2} + 4096 \) Copy content Toggle raw display
$19$ \( (T + 60)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3364 \) Copy content Toggle raw display
$29$ \( (T - 90)^{2} \) Copy content Toggle raw display
$31$ \( (T + 128)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 55696 \) Copy content Toggle raw display
$41$ \( (T - 242)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 131044 \) Copy content Toggle raw display
$47$ \( T^{2} + 51076 \) Copy content Toggle raw display
$53$ \( T^{2} + 11664 \) Copy content Toggle raw display
$59$ \( (T + 20)^{2} \) Copy content Toggle raw display
$61$ \( (T + 542)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 188356 \) Copy content Toggle raw display
$71$ \( (T + 1128)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 399424 \) Copy content Toggle raw display
$79$ \( (T - 720)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 228484 \) Copy content Toggle raw display
$89$ \( (T - 490)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 2119936 \) Copy content Toggle raw display
show more
show less