Properties

Label 4950.2.a.ch.1.3
Level $4950$
Weight $2$
Character 4950.1
Self dual yes
Analytic conductor $39.526$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4950,2,Mod(1,4950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4950.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,0,0,1,-3,0,0,-3,0,-2,-1,0,3,-5,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.8220.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 20x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.70722\) of defining polynomial
Character \(\chi\) \(=\) 4950.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +4.70722 q^{7} -1.00000 q^{8} -1.00000 q^{11} -2.72536 q^{13} -4.70722 q^{14} +1.00000 q^{16} +2.70722 q^{17} -5.43259 q^{19} +1.00000 q^{22} -7.43259 q^{23} +2.72536 q^{26} +4.70722 q^{28} +5.70722 q^{29} +7.70722 q^{31} -1.00000 q^{32} -2.70722 q^{34} +4.70722 q^{37} +5.43259 q^{38} -12.1579 q^{41} +0.725363 q^{43} -1.00000 q^{44} +7.43259 q^{46} -8.70722 q^{47} +15.1579 q^{49} -2.72536 q^{52} +3.45073 q^{53} -4.70722 q^{56} -5.70722 q^{58} +8.70722 q^{59} +13.4144 q^{61} -7.70722 q^{62} +1.00000 q^{64} +2.00000 q^{67} +2.70722 q^{68} +12.8470 q^{71} +10.8652 q^{73} -4.70722 q^{74} -5.43259 q^{76} -4.70722 q^{77} +5.29278 q^{79} +12.1579 q^{82} +2.25650 q^{83} -0.725363 q^{86} +1.00000 q^{88} +12.6891 q^{89} -12.8289 q^{91} -7.43259 q^{92} +8.70722 q^{94} -0.414446 q^{97} -15.1579 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + q^{7} - 3 q^{8} - 3 q^{11} - 2 q^{13} - q^{14} + 3 q^{16} - 5 q^{17} + 3 q^{19} + 3 q^{22} - 3 q^{23} + 2 q^{26} + q^{28} + 4 q^{29} + 10 q^{31} - 3 q^{32} + 5 q^{34} + q^{37}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 4.70722 1.77916 0.889582 0.456776i \(-0.150996\pi\)
0.889582 + 0.456776i \(0.150996\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.72536 −0.755880 −0.377940 0.925830i \(-0.623367\pi\)
−0.377940 + 0.925830i \(0.623367\pi\)
\(14\) −4.70722 −1.25806
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.70722 0.656598 0.328299 0.944574i \(-0.393525\pi\)
0.328299 + 0.944574i \(0.393525\pi\)
\(18\) 0 0
\(19\) −5.43259 −1.24632 −0.623160 0.782094i \(-0.714152\pi\)
−0.623160 + 0.782094i \(0.714152\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −7.43259 −1.54980 −0.774901 0.632083i \(-0.782200\pi\)
−0.774901 + 0.632083i \(0.782200\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.72536 0.534488
\(27\) 0 0
\(28\) 4.70722 0.889582
\(29\) 5.70722 1.05980 0.529902 0.848059i \(-0.322229\pi\)
0.529902 + 0.848059i \(0.322229\pi\)
\(30\) 0 0
\(31\) 7.70722 1.38426 0.692129 0.721774i \(-0.256673\pi\)
0.692129 + 0.721774i \(0.256673\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.70722 −0.464285
\(35\) 0 0
\(36\) 0 0
\(37\) 4.70722 0.773863 0.386931 0.922109i \(-0.373535\pi\)
0.386931 + 0.922109i \(0.373535\pi\)
\(38\) 5.43259 0.881282
\(39\) 0 0
\(40\) 0 0
\(41\) −12.1579 −1.89875 −0.949376 0.314141i \(-0.898284\pi\)
−0.949376 + 0.314141i \(0.898284\pi\)
\(42\) 0 0
\(43\) 0.725363 0.110617 0.0553084 0.998469i \(-0.482386\pi\)
0.0553084 + 0.998469i \(0.482386\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 7.43259 1.09588
\(47\) −8.70722 −1.27008 −0.635040 0.772480i \(-0.719016\pi\)
−0.635040 + 0.772480i \(0.719016\pi\)
\(48\) 0 0
\(49\) 15.1579 2.16542
\(50\) 0 0
\(51\) 0 0
\(52\) −2.72536 −0.377940
\(53\) 3.45073 0.473994 0.236997 0.971510i \(-0.423837\pi\)
0.236997 + 0.971510i \(0.423837\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.70722 −0.629029
\(57\) 0 0
\(58\) −5.70722 −0.749395
\(59\) 8.70722 1.13358 0.566792 0.823861i \(-0.308184\pi\)
0.566792 + 0.823861i \(0.308184\pi\)
\(60\) 0 0
\(61\) 13.4144 1.71754 0.858772 0.512358i \(-0.171228\pi\)
0.858772 + 0.512358i \(0.171228\pi\)
\(62\) −7.70722 −0.978818
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 2.70722 0.328299
\(69\) 0 0
\(70\) 0 0
\(71\) 12.8470 1.52466 0.762331 0.647187i \(-0.224055\pi\)
0.762331 + 0.647187i \(0.224055\pi\)
\(72\) 0 0
\(73\) 10.8652 1.27167 0.635836 0.771824i \(-0.280655\pi\)
0.635836 + 0.771824i \(0.280655\pi\)
\(74\) −4.70722 −0.547204
\(75\) 0 0
\(76\) −5.43259 −0.623160
\(77\) −4.70722 −0.536438
\(78\) 0 0
\(79\) 5.29278 0.595484 0.297742 0.954646i \(-0.403766\pi\)
0.297742 + 0.954646i \(0.403766\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.1579 1.34262
\(83\) 2.25650 0.247683 0.123841 0.992302i \(-0.460479\pi\)
0.123841 + 0.992302i \(0.460479\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.725363 −0.0782179
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 12.6891 1.34504 0.672520 0.740079i \(-0.265212\pi\)
0.672520 + 0.740079i \(0.265212\pi\)
\(90\) 0 0
\(91\) −12.8289 −1.34483
\(92\) −7.43259 −0.774901
\(93\) 0 0
\(94\) 8.70722 0.898081
\(95\) 0 0
\(96\) 0 0
\(97\) −0.414446 −0.0420806 −0.0210403 0.999779i \(-0.506698\pi\)
−0.0210403 + 0.999779i \(0.506698\pi\)
\(98\) −15.1579 −1.53118
\(99\) 0 0
\(100\) 0 0
\(101\) 0.450726 0.0448489 0.0224245 0.999749i \(-0.492861\pi\)
0.0224245 + 0.999749i \(0.492861\pi\)
\(102\) 0 0
\(103\) −9.70722 −0.956481 −0.478241 0.878229i \(-0.658725\pi\)
−0.478241 + 0.878229i \(0.658725\pi\)
\(104\) 2.72536 0.267244
\(105\) 0 0
\(106\) −3.45073 −0.335164
\(107\) 14.5724 1.40877 0.704383 0.709820i \(-0.251224\pi\)
0.704383 + 0.709820i \(0.251224\pi\)
\(108\) 0 0
\(109\) 14.6891 1.40696 0.703479 0.710716i \(-0.251629\pi\)
0.703479 + 0.710716i \(0.251629\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.70722 0.444791
\(113\) −5.41445 −0.509348 −0.254674 0.967027i \(-0.581968\pi\)
−0.254674 + 0.967027i \(0.581968\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.70722 0.529902
\(117\) 0 0
\(118\) −8.70722 −0.801565
\(119\) 12.7435 1.16820
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −13.4144 −1.21449
\(123\) 0 0
\(124\) 7.70722 0.692129
\(125\) 0 0
\(126\) 0 0
\(127\) −12.1217 −1.07562 −0.537812 0.843065i \(-0.680749\pi\)
−0.537812 + 0.843065i \(0.680749\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 8.57240 0.748974 0.374487 0.927232i \(-0.377819\pi\)
0.374487 + 0.927232i \(0.377819\pi\)
\(132\) 0 0
\(133\) −25.5724 −2.21741
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −2.70722 −0.232142
\(137\) 0.689083 0.0588723 0.0294362 0.999567i \(-0.490629\pi\)
0.0294362 + 0.999567i \(0.490629\pi\)
\(138\) 0 0
\(139\) 12.7254 1.07935 0.539676 0.841873i \(-0.318547\pi\)
0.539676 + 0.841873i \(0.318547\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.8470 −1.07810
\(143\) 2.72536 0.227906
\(144\) 0 0
\(145\) 0 0
\(146\) −10.8652 −0.899208
\(147\) 0 0
\(148\) 4.70722 0.386931
\(149\) −22.9868 −1.88316 −0.941578 0.336796i \(-0.890657\pi\)
−0.941578 + 0.336796i \(0.890657\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 5.43259 0.440641
\(153\) 0 0
\(154\) 4.70722 0.379319
\(155\) 0 0
\(156\) 0 0
\(157\) 2.58555 0.206350 0.103175 0.994663i \(-0.467100\pi\)
0.103175 + 0.994663i \(0.467100\pi\)
\(158\) −5.29278 −0.421071
\(159\) 0 0
\(160\) 0 0
\(161\) −34.9868 −2.75735
\(162\) 0 0
\(163\) −7.45073 −0.583586 −0.291793 0.956482i \(-0.594252\pi\)
−0.291793 + 0.956482i \(0.594252\pi\)
\(164\) −12.1579 −0.949376
\(165\) 0 0
\(166\) −2.25650 −0.175138
\(167\) −14.8652 −1.15030 −0.575151 0.818047i \(-0.695057\pi\)
−0.575151 + 0.818047i \(0.695057\pi\)
\(168\) 0 0
\(169\) −5.57240 −0.428646
\(170\) 0 0
\(171\) 0 0
\(172\) 0.725363 0.0553084
\(173\) 12.4507 0.946611 0.473306 0.880898i \(-0.343061\pi\)
0.473306 + 0.880898i \(0.343061\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −12.6891 −0.951087
\(179\) 20.1217 1.50396 0.751982 0.659184i \(-0.229098\pi\)
0.751982 + 0.659184i \(0.229098\pi\)
\(180\) 0 0
\(181\) −12.1217 −0.900997 −0.450498 0.892777i \(-0.648754\pi\)
−0.450498 + 0.892777i \(0.648754\pi\)
\(182\) 12.8289 0.950941
\(183\) 0 0
\(184\) 7.43259 0.547938
\(185\) 0 0
\(186\) 0 0
\(187\) −2.70722 −0.197972
\(188\) −8.70722 −0.635040
\(189\) 0 0
\(190\) 0 0
\(191\) −19.4326 −1.40609 −0.703046 0.711144i \(-0.748177\pi\)
−0.703046 + 0.711144i \(0.748177\pi\)
\(192\) 0 0
\(193\) −4.58555 −0.330075 −0.165038 0.986287i \(-0.552775\pi\)
−0.165038 + 0.986287i \(0.552775\pi\)
\(194\) 0.414446 0.0297555
\(195\) 0 0
\(196\) 15.1579 1.08271
\(197\) 16.3782 1.16690 0.583448 0.812150i \(-0.301703\pi\)
0.583448 + 0.812150i \(0.301703\pi\)
\(198\) 0 0
\(199\) 25.1217 1.78083 0.890414 0.455152i \(-0.150415\pi\)
0.890414 + 0.455152i \(0.150415\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.450726 −0.0317130
\(203\) 26.8652 1.88557
\(204\) 0 0
\(205\) 0 0
\(206\) 9.70722 0.676334
\(207\) 0 0
\(208\) −2.72536 −0.188970
\(209\) 5.43259 0.375780
\(210\) 0 0
\(211\) −13.4507 −0.925986 −0.462993 0.886362i \(-0.653225\pi\)
−0.462993 + 0.886362i \(0.653225\pi\)
\(212\) 3.45073 0.236997
\(213\) 0 0
\(214\) −14.5724 −0.996148
\(215\) 0 0
\(216\) 0 0
\(217\) 36.2796 2.46282
\(218\) −14.6891 −0.994870
\(219\) 0 0
\(220\) 0 0
\(221\) −7.37817 −0.496309
\(222\) 0 0
\(223\) −21.4144 −1.43402 −0.717009 0.697064i \(-0.754489\pi\)
−0.717009 + 0.697064i \(0.754489\pi\)
\(224\) −4.70722 −0.314515
\(225\) 0 0
\(226\) 5.41445 0.360164
\(227\) −25.0854 −1.66498 −0.832488 0.554043i \(-0.813084\pi\)
−0.832488 + 0.554043i \(0.813084\pi\)
\(228\) 0 0
\(229\) 12.6709 0.837319 0.418660 0.908143i \(-0.362500\pi\)
0.418660 + 0.908143i \(0.362500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.70722 −0.374698
\(233\) −0.743503 −0.0487085 −0.0243543 0.999703i \(-0.507753\pi\)
−0.0243543 + 0.999703i \(0.507753\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.70722 0.566792
\(237\) 0 0
\(238\) −12.7435 −0.826039
\(239\) −1.96372 −0.127022 −0.0635112 0.997981i \(-0.520230\pi\)
−0.0635112 + 0.997981i \(0.520230\pi\)
\(240\) 0 0
\(241\) 5.45073 0.351112 0.175556 0.984469i \(-0.443828\pi\)
0.175556 + 0.984469i \(0.443828\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 13.4144 0.858772
\(245\) 0 0
\(246\) 0 0
\(247\) 14.8058 0.942069
\(248\) −7.70722 −0.489409
\(249\) 0 0
\(250\) 0 0
\(251\) 1.96372 0.123949 0.0619745 0.998078i \(-0.480260\pi\)
0.0619745 + 0.998078i \(0.480260\pi\)
\(252\) 0 0
\(253\) 7.43259 0.467283
\(254\) 12.1217 0.760581
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.7254 1.04330 0.521650 0.853160i \(-0.325317\pi\)
0.521650 + 0.853160i \(0.325317\pi\)
\(258\) 0 0
\(259\) 22.1579 1.37683
\(260\) 0 0
\(261\) 0 0
\(262\) −8.57240 −0.529604
\(263\) 19.3782 1.19491 0.597454 0.801903i \(-0.296179\pi\)
0.597454 + 0.801903i \(0.296179\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 25.5724 1.56794
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) −13.9637 −0.851383 −0.425692 0.904868i \(-0.639969\pi\)
−0.425692 + 0.904868i \(0.639969\pi\)
\(270\) 0 0
\(271\) 23.0231 1.39856 0.699278 0.714850i \(-0.253505\pi\)
0.699278 + 0.714850i \(0.253505\pi\)
\(272\) 2.70722 0.164150
\(273\) 0 0
\(274\) −0.689083 −0.0416290
\(275\) 0 0
\(276\) 0 0
\(277\) −9.41445 −0.565659 −0.282830 0.959170i \(-0.591273\pi\)
−0.282830 + 0.959170i \(0.591273\pi\)
\(278\) −12.7254 −0.763217
\(279\) 0 0
\(280\) 0 0
\(281\) 20.1217 1.20036 0.600179 0.799866i \(-0.295096\pi\)
0.600179 + 0.799866i \(0.295096\pi\)
\(282\) 0 0
\(283\) −7.29278 −0.433511 −0.216755 0.976226i \(-0.569547\pi\)
−0.216755 + 0.976226i \(0.569547\pi\)
\(284\) 12.8470 0.762331
\(285\) 0 0
\(286\) −2.72536 −0.161154
\(287\) −57.2302 −3.37819
\(288\) 0 0
\(289\) −9.67094 −0.568879
\(290\) 0 0
\(291\) 0 0
\(292\) 10.8652 0.635836
\(293\) −10.9868 −0.641858 −0.320929 0.947103i \(-0.603995\pi\)
−0.320929 + 0.947103i \(0.603995\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.70722 −0.273602
\(297\) 0 0
\(298\) 22.9868 1.33159
\(299\) 20.2565 1.17146
\(300\) 0 0
\(301\) 3.41445 0.196805
\(302\) −8.00000 −0.460348
\(303\) 0 0
\(304\) −5.43259 −0.311580
\(305\) 0 0
\(306\) 0 0
\(307\) 16.2796 0.929127 0.464563 0.885540i \(-0.346211\pi\)
0.464563 + 0.885540i \(0.346211\pi\)
\(308\) −4.70722 −0.268219
\(309\) 0 0
\(310\) 0 0
\(311\) −6.68908 −0.379303 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(312\) 0 0
\(313\) −2.67094 −0.150971 −0.0754853 0.997147i \(-0.524051\pi\)
−0.0754853 + 0.997147i \(0.524051\pi\)
\(314\) −2.58555 −0.145911
\(315\) 0 0
\(316\) 5.29278 0.297742
\(317\) 27.4507 1.54179 0.770893 0.636964i \(-0.219810\pi\)
0.770893 + 0.636964i \(0.219810\pi\)
\(318\) 0 0
\(319\) −5.70722 −0.319543
\(320\) 0 0
\(321\) 0 0
\(322\) 34.9868 1.94974
\(323\) −14.7072 −0.818332
\(324\) 0 0
\(325\) 0 0
\(326\) 7.45073 0.412658
\(327\) 0 0
\(328\) 12.1579 0.671310
\(329\) −40.9868 −2.25968
\(330\) 0 0
\(331\) 0.512994 0.0281967 0.0140983 0.999901i \(-0.495512\pi\)
0.0140983 + 0.999901i \(0.495512\pi\)
\(332\) 2.25650 0.123841
\(333\) 0 0
\(334\) 14.8652 0.813386
\(335\) 0 0
\(336\) 0 0
\(337\) 4.54927 0.247815 0.123907 0.992294i \(-0.460457\pi\)
0.123907 + 0.992294i \(0.460457\pi\)
\(338\) 5.57240 0.303098
\(339\) 0 0
\(340\) 0 0
\(341\) −7.70722 −0.417370
\(342\) 0 0
\(343\) 38.4013 2.07347
\(344\) −0.725363 −0.0391090
\(345\) 0 0
\(346\) −12.4507 −0.669355
\(347\) 28.2433 1.51618 0.758091 0.652149i \(-0.226132\pi\)
0.758091 + 0.652149i \(0.226132\pi\)
\(348\) 0 0
\(349\) −1.23836 −0.0662877 −0.0331439 0.999451i \(-0.510552\pi\)
−0.0331439 + 0.999451i \(0.510552\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 1.86019 0.0990080 0.0495040 0.998774i \(-0.484236\pi\)
0.0495040 + 0.998774i \(0.484236\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.6891 0.672520
\(357\) 0 0
\(358\) −20.1217 −1.06346
\(359\) −21.4507 −1.13213 −0.566063 0.824362i \(-0.691534\pi\)
−0.566063 + 0.824362i \(0.691534\pi\)
\(360\) 0 0
\(361\) 10.5130 0.553315
\(362\) 12.1217 0.637101
\(363\) 0 0
\(364\) −12.8289 −0.672417
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0231 1.35840 0.679198 0.733955i \(-0.262328\pi\)
0.679198 + 0.733955i \(0.262328\pi\)
\(368\) −7.43259 −0.387450
\(369\) 0 0
\(370\) 0 0
\(371\) 16.2433 0.843312
\(372\) 0 0
\(373\) −33.4144 −1.73013 −0.865067 0.501656i \(-0.832724\pi\)
−0.865067 + 0.501656i \(0.832724\pi\)
\(374\) 2.70722 0.139987
\(375\) 0 0
\(376\) 8.70722 0.449041
\(377\) −15.5543 −0.801085
\(378\) 0 0
\(379\) −10.9015 −0.559970 −0.279985 0.960004i \(-0.590329\pi\)
−0.279985 + 0.960004i \(0.590329\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.4326 0.994258
\(383\) 26.9687 1.37804 0.689018 0.724744i \(-0.258042\pi\)
0.689018 + 0.724744i \(0.258042\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.58555 0.233399
\(387\) 0 0
\(388\) −0.414446 −0.0210403
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −20.1217 −1.01760
\(392\) −15.1579 −0.765592
\(393\) 0 0
\(394\) −16.3782 −0.825120
\(395\) 0 0
\(396\) 0 0
\(397\) 1.41445 0.0709890 0.0354945 0.999370i \(-0.488699\pi\)
0.0354945 + 0.999370i \(0.488699\pi\)
\(398\) −25.1217 −1.25924
\(399\) 0 0
\(400\) 0 0
\(401\) −7.59054 −0.379053 −0.189527 0.981876i \(-0.560695\pi\)
−0.189527 + 0.981876i \(0.560695\pi\)
\(402\) 0 0
\(403\) −21.0050 −1.04633
\(404\) 0.450726 0.0224245
\(405\) 0 0
\(406\) −26.8652 −1.33330
\(407\) −4.70722 −0.233328
\(408\) 0 0
\(409\) −17.6941 −0.874915 −0.437458 0.899239i \(-0.644121\pi\)
−0.437458 + 0.899239i \(0.644121\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −9.70722 −0.478241
\(413\) 40.9868 2.01683
\(414\) 0 0
\(415\) 0 0
\(416\) 2.72536 0.133622
\(417\) 0 0
\(418\) −5.43259 −0.265716
\(419\) 26.1217 1.27613 0.638064 0.769984i \(-0.279736\pi\)
0.638064 + 0.769984i \(0.279736\pi\)
\(420\) 0 0
\(421\) 28.1217 1.37057 0.685283 0.728277i \(-0.259678\pi\)
0.685283 + 0.728277i \(0.259678\pi\)
\(422\) 13.4507 0.654771
\(423\) 0 0
\(424\) −3.45073 −0.167582
\(425\) 0 0
\(426\) 0 0
\(427\) 63.1448 3.05579
\(428\) 14.5724 0.704383
\(429\) 0 0
\(430\) 0 0
\(431\) −6.31590 −0.304226 −0.152113 0.988363i \(-0.548608\pi\)
−0.152113 + 0.988363i \(0.548608\pi\)
\(432\) 0 0
\(433\) 4.25650 0.204554 0.102277 0.994756i \(-0.467387\pi\)
0.102277 + 0.994756i \(0.467387\pi\)
\(434\) −36.2796 −1.74148
\(435\) 0 0
\(436\) 14.6891 0.703479
\(437\) 40.3782 1.93155
\(438\) 0 0
\(439\) 14.7435 0.703669 0.351835 0.936062i \(-0.385558\pi\)
0.351835 + 0.936062i \(0.385558\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7.37817 0.350944
\(443\) 30.1579 1.43285 0.716424 0.697665i \(-0.245778\pi\)
0.716424 + 0.697665i \(0.245778\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 21.4144 1.01400
\(447\) 0 0
\(448\) 4.70722 0.222395
\(449\) −3.55426 −0.167736 −0.0838678 0.996477i \(-0.526727\pi\)
−0.0838678 + 0.996477i \(0.526727\pi\)
\(450\) 0 0
\(451\) 12.1579 0.572495
\(452\) −5.41445 −0.254674
\(453\) 0 0
\(454\) 25.0854 1.17732
\(455\) 0 0
\(456\) 0 0
\(457\) −22.9015 −1.07128 −0.535642 0.844445i \(-0.679930\pi\)
−0.535642 + 0.844445i \(0.679930\pi\)
\(458\) −12.6709 −0.592074
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 14.0231 0.651710 0.325855 0.945420i \(-0.394348\pi\)
0.325855 + 0.945420i \(0.394348\pi\)
\(464\) 5.70722 0.264951
\(465\) 0 0
\(466\) 0.743503 0.0344421
\(467\) 28.5592 1.32156 0.660782 0.750578i \(-0.270225\pi\)
0.660782 + 0.750578i \(0.270225\pi\)
\(468\) 0 0
\(469\) 9.41445 0.434719
\(470\) 0 0
\(471\) 0 0
\(472\) −8.70722 −0.400782
\(473\) −0.725363 −0.0333522
\(474\) 0 0
\(475\) 0 0
\(476\) 12.7435 0.584098
\(477\) 0 0
\(478\) 1.96372 0.0898185
\(479\) 13.4870 0.616237 0.308119 0.951348i \(-0.400301\pi\)
0.308119 + 0.951348i \(0.400301\pi\)
\(480\) 0 0
\(481\) −12.8289 −0.584947
\(482\) −5.45073 −0.248274
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) −40.0231 −1.81362 −0.906810 0.421539i \(-0.861490\pi\)
−0.906810 + 0.421539i \(0.861490\pi\)
\(488\) −13.4144 −0.607243
\(489\) 0 0
\(490\) 0 0
\(491\) −14.2565 −0.643387 −0.321693 0.946844i \(-0.604252\pi\)
−0.321693 + 0.946844i \(0.604252\pi\)
\(492\) 0 0
\(493\) 15.4507 0.695866
\(494\) −14.8058 −0.666143
\(495\) 0 0
\(496\) 7.70722 0.346065
\(497\) 60.4738 2.71262
\(498\) 0 0
\(499\) 16.8652 0.754989 0.377494 0.926012i \(-0.376786\pi\)
0.377494 + 0.926012i \(0.376786\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.96372 −0.0876451
\(503\) −20.8652 −0.930332 −0.465166 0.885223i \(-0.654005\pi\)
−0.465166 + 0.885223i \(0.654005\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −7.43259 −0.330419
\(507\) 0 0
\(508\) −12.1217 −0.537812
\(509\) 25.6941 1.13887 0.569435 0.822037i \(-0.307162\pi\)
0.569435 + 0.822037i \(0.307162\pi\)
\(510\) 0 0
\(511\) 51.1448 2.26251
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −16.7254 −0.737724
\(515\) 0 0
\(516\) 0 0
\(517\) 8.70722 0.382943
\(518\) −22.1579 −0.973564
\(519\) 0 0
\(520\) 0 0
\(521\) 19.5905 0.858277 0.429138 0.903239i \(-0.358817\pi\)
0.429138 + 0.903239i \(0.358817\pi\)
\(522\) 0 0
\(523\) −5.43259 −0.237550 −0.118775 0.992921i \(-0.537897\pi\)
−0.118775 + 0.992921i \(0.537897\pi\)
\(524\) 8.57240 0.374487
\(525\) 0 0
\(526\) −19.3782 −0.844928
\(527\) 20.8652 0.908901
\(528\) 0 0
\(529\) 32.2433 1.40188
\(530\) 0 0
\(531\) 0 0
\(532\) −25.5724 −1.10870
\(533\) 33.1348 1.43523
\(534\) 0 0
\(535\) 0 0
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 13.9637 0.602019
\(539\) −15.1579 −0.652899
\(540\) 0 0
\(541\) −33.5180 −1.44105 −0.720525 0.693429i \(-0.756099\pi\)
−0.720525 + 0.693429i \(0.756099\pi\)
\(542\) −23.0231 −0.988928
\(543\) 0 0
\(544\) −2.70722 −0.116071
\(545\) 0 0
\(546\) 0 0
\(547\) −36.5411 −1.56238 −0.781192 0.624291i \(-0.785388\pi\)
−0.781192 + 0.624291i \(0.785388\pi\)
\(548\) 0.689083 0.0294362
\(549\) 0 0
\(550\) 0 0
\(551\) −31.0050 −1.32086
\(552\) 0 0
\(553\) 24.9143 1.05946
\(554\) 9.41445 0.399981
\(555\) 0 0
\(556\) 12.7254 0.539676
\(557\) −46.8520 −1.98518 −0.992592 0.121497i \(-0.961230\pi\)
−0.992592 + 0.121497i \(0.961230\pi\)
\(558\) 0 0
\(559\) −1.97688 −0.0836130
\(560\) 0 0
\(561\) 0 0
\(562\) −20.1217 −0.848781
\(563\) −28.2433 −1.19031 −0.595157 0.803609i \(-0.702910\pi\)
−0.595157 + 0.803609i \(0.702910\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 7.29278 0.306538
\(567\) 0 0
\(568\) −12.8470 −0.539050
\(569\) −15.6087 −0.654350 −0.327175 0.944964i \(-0.606097\pi\)
−0.327175 + 0.944964i \(0.606097\pi\)
\(570\) 0 0
\(571\) 9.00498 0.376847 0.188423 0.982088i \(-0.439662\pi\)
0.188423 + 0.982088i \(0.439662\pi\)
\(572\) 2.72536 0.113953
\(573\) 0 0
\(574\) 57.2302 2.38874
\(575\) 0 0
\(576\) 0 0
\(577\) 2.74350 0.114214 0.0571068 0.998368i \(-0.481812\pi\)
0.0571068 + 0.998368i \(0.481812\pi\)
\(578\) 9.67094 0.402258
\(579\) 0 0
\(580\) 0 0
\(581\) 10.6218 0.440668
\(582\) 0 0
\(583\) −3.45073 −0.142914
\(584\) −10.8652 −0.449604
\(585\) 0 0
\(586\) 10.9868 0.453862
\(587\) 2.39132 0.0987005 0.0493503 0.998782i \(-0.484285\pi\)
0.0493503 + 0.998782i \(0.484285\pi\)
\(588\) 0 0
\(589\) −41.8702 −1.72523
\(590\) 0 0
\(591\) 0 0
\(592\) 4.70722 0.193466
\(593\) −5.41445 −0.222345 −0.111172 0.993801i \(-0.535461\pi\)
−0.111172 + 0.993801i \(0.535461\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22.9868 −0.941578
\(597\) 0 0
\(598\) −20.2565 −0.828350
\(599\) −27.6087 −1.12806 −0.564030 0.825754i \(-0.690750\pi\)
−0.564030 + 0.825754i \(0.690750\pi\)
\(600\) 0 0
\(601\) 2.58555 0.105467 0.0527335 0.998609i \(-0.483207\pi\)
0.0527335 + 0.998609i \(0.483207\pi\)
\(602\) −3.41445 −0.139162
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) −19.3419 −0.785063 −0.392531 0.919739i \(-0.628401\pi\)
−0.392531 + 0.919739i \(0.628401\pi\)
\(608\) 5.43259 0.220320
\(609\) 0 0
\(610\) 0 0
\(611\) 23.7303 0.960027
\(612\) 0 0
\(613\) 9.17111 0.370418 0.185209 0.982699i \(-0.440704\pi\)
0.185209 + 0.982699i \(0.440704\pi\)
\(614\) −16.2796 −0.656992
\(615\) 0 0
\(616\) 4.70722 0.189659
\(617\) 35.6268 1.43428 0.717141 0.696928i \(-0.245450\pi\)
0.717141 + 0.696928i \(0.245450\pi\)
\(618\) 0 0
\(619\) −48.5955 −1.95322 −0.976609 0.215021i \(-0.931018\pi\)
−0.976609 + 0.215021i \(0.931018\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.68908 0.268208
\(623\) 59.7303 2.39305
\(624\) 0 0
\(625\) 0 0
\(626\) 2.67094 0.106752
\(627\) 0 0
\(628\) 2.58555 0.103175
\(629\) 12.7435 0.508117
\(630\) 0 0
\(631\) −39.1448 −1.55833 −0.779165 0.626819i \(-0.784356\pi\)
−0.779165 + 0.626819i \(0.784356\pi\)
\(632\) −5.29278 −0.210535
\(633\) 0 0
\(634\) −27.4507 −1.09021
\(635\) 0 0
\(636\) 0 0
\(637\) −41.3109 −1.63680
\(638\) 5.70722 0.225951
\(639\) 0 0
\(640\) 0 0
\(641\) 27.5543 1.08833 0.544164 0.838979i \(-0.316847\pi\)
0.544164 + 0.838979i \(0.316847\pi\)
\(642\) 0 0
\(643\) −17.6941 −0.697786 −0.348893 0.937163i \(-0.613442\pi\)
−0.348893 + 0.937163i \(0.613442\pi\)
\(644\) −34.9868 −1.37867
\(645\) 0 0
\(646\) 14.7072 0.578648
\(647\) −3.60868 −0.141872 −0.0709358 0.997481i \(-0.522599\pi\)
−0.0709358 + 0.997481i \(0.522599\pi\)
\(648\) 0 0
\(649\) −8.70722 −0.341788
\(650\) 0 0
\(651\) 0 0
\(652\) −7.45073 −0.291793
\(653\) −20.2796 −0.793603 −0.396801 0.917904i \(-0.629880\pi\)
−0.396801 + 0.917904i \(0.629880\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −12.1579 −0.474688
\(657\) 0 0
\(658\) 40.9868 1.59783
\(659\) 13.9868 0.544850 0.272425 0.962177i \(-0.412174\pi\)
0.272425 + 0.962177i \(0.412174\pi\)
\(660\) 0 0
\(661\) −15.2565 −0.593409 −0.296704 0.954969i \(-0.595888\pi\)
−0.296704 + 0.954969i \(0.595888\pi\)
\(662\) −0.512994 −0.0199381
\(663\) 0 0
\(664\) −2.25650 −0.0875691
\(665\) 0 0
\(666\) 0 0
\(667\) −42.4194 −1.64249
\(668\) −14.8652 −0.575151
\(669\) 0 0
\(670\) 0 0
\(671\) −13.4144 −0.517859
\(672\) 0 0
\(673\) −21.7303 −0.837643 −0.418822 0.908069i \(-0.637557\pi\)
−0.418822 + 0.908069i \(0.637557\pi\)
\(674\) −4.54927 −0.175231
\(675\) 0 0
\(676\) −5.57240 −0.214323
\(677\) 10.8058 0.415299 0.207650 0.978203i \(-0.433419\pi\)
0.207650 + 0.978203i \(0.433419\pi\)
\(678\) 0 0
\(679\) −1.95089 −0.0748683
\(680\) 0 0
\(681\) 0 0
\(682\) 7.70722 0.295125
\(683\) 7.05940 0.270121 0.135060 0.990837i \(-0.456877\pi\)
0.135060 + 0.990837i \(0.456877\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −38.4013 −1.46617
\(687\) 0 0
\(688\) 0.725363 0.0276542
\(689\) −9.40448 −0.358282
\(690\) 0 0
\(691\) 0.305935 0.0116383 0.00581916 0.999983i \(-0.498148\pi\)
0.00581916 + 0.999983i \(0.498148\pi\)
\(692\) 12.4507 0.473306
\(693\) 0 0
\(694\) −28.2433 −1.07210
\(695\) 0 0
\(696\) 0 0
\(697\) −32.9143 −1.24672
\(698\) 1.23836 0.0468725
\(699\) 0 0
\(700\) 0 0
\(701\) 24.7666 0.935423 0.467711 0.883881i \(-0.345079\pi\)
0.467711 + 0.883881i \(0.345079\pi\)
\(702\) 0 0
\(703\) −25.5724 −0.964481
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −1.86019 −0.0700092
\(707\) 2.12167 0.0797936
\(708\) 0 0
\(709\) 48.7172 1.82961 0.914806 0.403893i \(-0.132343\pi\)
0.914806 + 0.403893i \(0.132343\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −12.6891 −0.475543
\(713\) −57.2846 −2.14533
\(714\) 0 0
\(715\) 0 0
\(716\) 20.1217 0.751982
\(717\) 0 0
\(718\) 21.4507 0.800534
\(719\) 14.5493 0.542596 0.271298 0.962495i \(-0.412547\pi\)
0.271298 + 0.962495i \(0.412547\pi\)
\(720\) 0 0
\(721\) −45.6941 −1.70174
\(722\) −10.5130 −0.391253
\(723\) 0 0
\(724\) −12.1217 −0.450498
\(725\) 0 0
\(726\) 0 0
\(727\) −16.8783 −0.625983 −0.312991 0.949756i \(-0.601331\pi\)
−0.312991 + 0.949756i \(0.601331\pi\)
\(728\) 12.8289 0.475470
\(729\) 0 0
\(730\) 0 0
\(731\) 1.96372 0.0726308
\(732\) 0 0
\(733\) 25.6268 0.946548 0.473274 0.880915i \(-0.343072\pi\)
0.473274 + 0.880915i \(0.343072\pi\)
\(734\) −26.0231 −0.960531
\(735\) 0 0
\(736\) 7.43259 0.273969
\(737\) −2.00000 −0.0736709
\(738\) 0 0
\(739\) −11.2202 −0.412742 −0.206371 0.978474i \(-0.566165\pi\)
−0.206371 + 0.978474i \(0.566165\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −16.2433 −0.596312
\(743\) 13.4870 0.494790 0.247395 0.968915i \(-0.420425\pi\)
0.247395 + 0.968915i \(0.420425\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 33.4144 1.22339
\(747\) 0 0
\(748\) −2.70722 −0.0989859
\(749\) 68.5955 2.50643
\(750\) 0 0
\(751\) −22.6087 −0.825002 −0.412501 0.910957i \(-0.635345\pi\)
−0.412501 + 0.910957i \(0.635345\pi\)
\(752\) −8.70722 −0.317520
\(753\) 0 0
\(754\) 15.5543 0.566453
\(755\) 0 0
\(756\) 0 0
\(757\) 27.3782 0.995076 0.497538 0.867442i \(-0.334237\pi\)
0.497538 + 0.867442i \(0.334237\pi\)
\(758\) 10.9015 0.395959
\(759\) 0 0
\(760\) 0 0
\(761\) 10.5130 0.381096 0.190548 0.981678i \(-0.438974\pi\)
0.190548 + 0.981678i \(0.438974\pi\)
\(762\) 0 0
\(763\) 69.1448 2.50321
\(764\) −19.4326 −0.703046
\(765\) 0 0
\(766\) −26.9687 −0.974419
\(767\) −23.7303 −0.856853
\(768\) 0 0
\(769\) −4.00000 −0.144244 −0.0721218 0.997396i \(-0.522977\pi\)
−0.0721218 + 0.997396i \(0.522977\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.58555 −0.165038
\(773\) 11.4144 0.410549 0.205275 0.978704i \(-0.434191\pi\)
0.205275 + 0.978704i \(0.434191\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.414446 0.0148778
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 66.0491 2.36645
\(780\) 0 0
\(781\) −12.8470 −0.459703
\(782\) 20.1217 0.719549
\(783\) 0 0
\(784\) 15.1579 0.541355
\(785\) 0 0
\(786\) 0 0
\(787\) 5.02312 0.179055 0.0895275 0.995984i \(-0.471464\pi\)
0.0895275 + 0.995984i \(0.471464\pi\)
\(788\) 16.3782 0.583448
\(789\) 0 0
\(790\) 0 0
\(791\) −25.4870 −0.906214
\(792\) 0 0
\(793\) −36.5592 −1.29826
\(794\) −1.41445 −0.0501968
\(795\) 0 0
\(796\) 25.1217 0.890414
\(797\) −26.8652 −0.951613 −0.475807 0.879550i \(-0.657844\pi\)
−0.475807 + 0.879550i \(0.657844\pi\)
\(798\) 0 0
\(799\) −23.5724 −0.833931
\(800\) 0 0
\(801\) 0 0
\(802\) 7.59054 0.268031
\(803\) −10.8652 −0.383424
\(804\) 0 0
\(805\) 0 0
\(806\) 21.0050 0.739869
\(807\) 0 0
\(808\) −0.450726 −0.0158565
\(809\) −9.87833 −0.347304 −0.173652 0.984807i \(-0.555557\pi\)
−0.173652 + 0.984807i \(0.555557\pi\)
\(810\) 0 0
\(811\) 55.7795 1.95868 0.979341 0.202217i \(-0.0648146\pi\)
0.979341 + 0.202217i \(0.0648146\pi\)
\(812\) 26.8652 0.942783
\(813\) 0 0
\(814\) 4.70722 0.164988
\(815\) 0 0
\(816\) 0 0
\(817\) −3.94060 −0.137864
\(818\) 17.6941 0.618658
\(819\) 0 0
\(820\) 0 0
\(821\) 22.8520 0.797541 0.398770 0.917051i \(-0.369437\pi\)
0.398770 + 0.917051i \(0.369437\pi\)
\(822\) 0 0
\(823\) −32.2433 −1.12393 −0.561966 0.827160i \(-0.689955\pi\)
−0.561966 + 0.827160i \(0.689955\pi\)
\(824\) 9.70722 0.338167
\(825\) 0 0
\(826\) −40.9868 −1.42611
\(827\) 1.08539 0.0377427 0.0188713 0.999822i \(-0.493993\pi\)
0.0188713 + 0.999822i \(0.493993\pi\)
\(828\) 0 0
\(829\) 44.5230 1.54635 0.773173 0.634195i \(-0.218668\pi\)
0.773173 + 0.634195i \(0.218668\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.72536 −0.0944850
\(833\) 41.0360 1.42181
\(834\) 0 0
\(835\) 0 0
\(836\) 5.43259 0.187890
\(837\) 0 0
\(838\) −26.1217 −0.902358
\(839\) −31.1085 −1.07399 −0.536993 0.843587i \(-0.680440\pi\)
−0.536993 + 0.843587i \(0.680440\pi\)
\(840\) 0 0
\(841\) 3.57240 0.123186
\(842\) −28.1217 −0.969137
\(843\) 0 0
\(844\) −13.4507 −0.462993
\(845\) 0 0
\(846\) 0 0
\(847\) 4.70722 0.161742
\(848\) 3.45073 0.118498
\(849\) 0 0
\(850\) 0 0
\(851\) −34.9868 −1.19933
\(852\) 0 0
\(853\) 26.9015 0.921088 0.460544 0.887637i \(-0.347654\pi\)
0.460544 + 0.887637i \(0.347654\pi\)
\(854\) −63.1448 −2.16077
\(855\) 0 0
\(856\) −14.5724 −0.498074
\(857\) 1.32906 0.0453997 0.0226999 0.999742i \(-0.492774\pi\)
0.0226999 + 0.999742i \(0.492774\pi\)
\(858\) 0 0
\(859\) 12.8289 0.437716 0.218858 0.975757i \(-0.429767\pi\)
0.218858 + 0.975757i \(0.429767\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 6.31590 0.215120
\(863\) −11.0413 −0.375849 −0.187924 0.982183i \(-0.560176\pi\)
−0.187924 + 0.982183i \(0.560176\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −4.25650 −0.144642
\(867\) 0 0
\(868\) 36.2796 1.23141
\(869\) −5.29278 −0.179545
\(870\) 0 0
\(871\) −5.45073 −0.184691
\(872\) −14.6891 −0.497435
\(873\) 0 0
\(874\) −40.3782 −1.36581
\(875\) 0 0
\(876\) 0 0
\(877\) 38.6891 1.30644 0.653219 0.757169i \(-0.273418\pi\)
0.653219 + 0.757169i \(0.273418\pi\)
\(878\) −14.7435 −0.497569
\(879\) 0 0
\(880\) 0 0
\(881\) 43.2746 1.45796 0.728980 0.684535i \(-0.239995\pi\)
0.728980 + 0.684535i \(0.239995\pi\)
\(882\) 0 0
\(883\) 29.1811 0.982021 0.491011 0.871154i \(-0.336628\pi\)
0.491011 + 0.871154i \(0.336628\pi\)
\(884\) −7.37817 −0.248155
\(885\) 0 0
\(886\) −30.1579 −1.01318
\(887\) −19.1711 −0.643703 −0.321851 0.946790i \(-0.604305\pi\)
−0.321851 + 0.946790i \(0.604305\pi\)
\(888\) 0 0
\(889\) −57.0594 −1.91371
\(890\) 0 0
\(891\) 0 0
\(892\) −21.4144 −0.717009
\(893\) 47.3027 1.58293
\(894\) 0 0
\(895\) 0 0
\(896\) −4.70722 −0.157257
\(897\) 0 0
\(898\) 3.55426 0.118607
\(899\) 43.9868 1.46704
\(900\) 0 0
\(901\) 9.34189 0.311223
\(902\) −12.1579 −0.404815
\(903\) 0 0
\(904\) 5.41445 0.180082
\(905\) 0 0
\(906\) 0 0
\(907\) 24.8289 0.824430 0.412215 0.911087i \(-0.364755\pi\)
0.412215 + 0.911087i \(0.364755\pi\)
\(908\) −25.0854 −0.832488
\(909\) 0 0
\(910\) 0 0
\(911\) 3.60868 0.119561 0.0597804 0.998212i \(-0.480960\pi\)
0.0597804 + 0.998212i \(0.480960\pi\)
\(912\) 0 0
\(913\) −2.25650 −0.0746791
\(914\) 22.9015 0.757513
\(915\) 0 0
\(916\) 12.6709 0.418660
\(917\) 40.3522 1.33255
\(918\) 0 0
\(919\) −24.5984 −0.811426 −0.405713 0.914001i \(-0.632977\pi\)
−0.405713 + 0.914001i \(0.632977\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000 0.592798
\(923\) −35.0128 −1.15246
\(924\) 0 0
\(925\) 0 0
\(926\) −14.0231 −0.460828
\(927\) 0 0
\(928\) −5.70722 −0.187349
\(929\) −28.7254 −0.942449 −0.471224 0.882013i \(-0.656188\pi\)
−0.471224 + 0.882013i \(0.656188\pi\)
\(930\) 0 0
\(931\) −82.3469 −2.69881
\(932\) −0.743503 −0.0243543
\(933\) 0 0
\(934\) −28.5592 −0.934487
\(935\) 0 0
\(936\) 0 0
\(937\) −54.8652 −1.79237 −0.896184 0.443684i \(-0.853671\pi\)
−0.896184 + 0.443684i \(0.853671\pi\)
\(938\) −9.41445 −0.307393
\(939\) 0 0
\(940\) 0 0
\(941\) −1.64496 −0.0536240 −0.0268120 0.999640i \(-0.508536\pi\)
−0.0268120 + 0.999640i \(0.508536\pi\)
\(942\) 0 0
\(943\) 90.3650 2.94269
\(944\) 8.70722 0.283396
\(945\) 0 0
\(946\) 0.725363 0.0235836
\(947\) 12.6347 0.410571 0.205286 0.978702i \(-0.434188\pi\)
0.205286 + 0.978702i \(0.434188\pi\)
\(948\) 0 0
\(949\) −29.6115 −0.961231
\(950\) 0 0
\(951\) 0 0
\(952\) −12.7435 −0.413019
\(953\) 26.1217 0.846164 0.423082 0.906091i \(-0.360948\pi\)
0.423082 + 0.906091i \(0.360948\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.96372 −0.0635112
\(957\) 0 0
\(958\) −13.4870 −0.435745
\(959\) 3.24367 0.104743
\(960\) 0 0
\(961\) 28.4013 0.916171
\(962\) 12.8289 0.413620
\(963\) 0 0
\(964\) 5.45073 0.175556
\(965\) 0 0
\(966\) 0 0
\(967\) −55.7666 −1.79333 −0.896667 0.442706i \(-0.854019\pi\)
−0.896667 + 0.442706i \(0.854019\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 0 0
\(971\) −49.8520 −1.59983 −0.799914 0.600115i \(-0.795121\pi\)
−0.799914 + 0.600115i \(0.795121\pi\)
\(972\) 0 0
\(973\) 59.9011 1.92034
\(974\) 40.0231 1.28242
\(975\) 0 0
\(976\) 13.4144 0.429386
\(977\) 52.2433 1.67141 0.835706 0.549177i \(-0.185059\pi\)
0.835706 + 0.549177i \(0.185059\pi\)
\(978\) 0 0
\(979\) −12.6891 −0.405545
\(980\) 0 0
\(981\) 0 0
\(982\) 14.2565 0.454943
\(983\) −3.18925 −0.101721 −0.0508606 0.998706i \(-0.516196\pi\)
−0.0508606 + 0.998706i \(0.516196\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −15.4507 −0.492051
\(987\) 0 0
\(988\) 14.8058 0.471034
\(989\) −5.39132 −0.171434
\(990\) 0 0
\(991\) 7.14479 0.226962 0.113481 0.993540i \(-0.463800\pi\)
0.113481 + 0.993540i \(0.463800\pi\)
\(992\) −7.70722 −0.244705
\(993\) 0 0
\(994\) −60.4738 −1.91811
\(995\) 0 0
\(996\) 0 0
\(997\) 43.1448 1.36641 0.683205 0.730227i \(-0.260586\pi\)
0.683205 + 0.730227i \(0.260586\pi\)
\(998\) −16.8652 −0.533858
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4950.2.a.ch.1.3 yes 3
3.2 odd 2 4950.2.a.cj.1.3 yes 3
5.2 odd 4 4950.2.c.bd.199.3 6
5.3 odd 4 4950.2.c.bd.199.4 6
5.4 even 2 4950.2.a.ci.1.1 yes 3
15.2 even 4 4950.2.c.be.199.6 6
15.8 even 4 4950.2.c.be.199.1 6
15.14 odd 2 4950.2.a.cg.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4950.2.a.cg.1.1 3 15.14 odd 2
4950.2.a.ch.1.3 yes 3 1.1 even 1 trivial
4950.2.a.ci.1.1 yes 3 5.4 even 2
4950.2.a.cj.1.3 yes 3 3.2 odd 2
4950.2.c.bd.199.3 6 5.2 odd 4
4950.2.c.bd.199.4 6 5.3 odd 4
4950.2.c.be.199.1 6 15.8 even 4
4950.2.c.be.199.6 6 15.2 even 4