Properties

Label 4950.2.c.be.199.6
Level $4950$
Weight $2$
Character 4950.199
Analytic conductor $39.526$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4950,2,Mod(199,4950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4950.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,0,0,6,0,0,-2,0,6,0,0,-6,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(26)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.270273600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 66x^{3} - 15x^{2} - 172x + 712 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.6
Root \(1.36268 - 1.85361i\) of defining polynomial
Character \(\chi\) \(=\) 4950.199
Dual form 4950.2.c.be.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +4.70722i q^{7} -1.00000i q^{8} +1.00000 q^{11} +2.72536i q^{13} -4.70722 q^{14} +1.00000 q^{16} -2.70722i q^{17} +5.43259 q^{19} +1.00000i q^{22} -7.43259i q^{23} -2.72536 q^{26} -4.70722i q^{28} +5.70722 q^{29} +7.70722 q^{31} +1.00000i q^{32} +2.70722 q^{34} +4.70722i q^{37} +5.43259i q^{38} +12.1579 q^{41} -0.725363i q^{43} -1.00000 q^{44} +7.43259 q^{46} +8.70722i q^{47} -15.1579 q^{49} -2.72536i q^{52} +3.45073i q^{53} +4.70722 q^{56} +5.70722i q^{58} +8.70722 q^{59} +13.4144 q^{61} +7.70722i q^{62} -1.00000 q^{64} +2.00000i q^{67} +2.70722i q^{68} -12.8470 q^{71} -10.8652i q^{73} -4.70722 q^{74} -5.43259 q^{76} +4.70722i q^{77} -5.29278 q^{79} +12.1579i q^{82} +2.25650i q^{83} +0.725363 q^{86} -1.00000i q^{88} +12.6891 q^{89} -12.8289 q^{91} +7.43259i q^{92} -8.70722 q^{94} -0.414446i q^{97} -15.1579i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 6 q^{11} - 2 q^{14} + 6 q^{16} - 6 q^{19} - 4 q^{26} + 8 q^{29} + 20 q^{31} - 10 q^{34} + 22 q^{41} - 6 q^{44} + 6 q^{46} - 40 q^{49} + 2 q^{56} + 26 q^{59} + 28 q^{61} - 6 q^{64} + 14 q^{71}+ \cdots - 26 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4950\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2377\) \(4501\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 4.70722i 1.77916i 0.456776 + 0.889582i \(0.349004\pi\)
−0.456776 + 0.889582i \(0.650996\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.72536i 0.755880i 0.925830 + 0.377940i \(0.123367\pi\)
−0.925830 + 0.377940i \(0.876633\pi\)
\(14\) −4.70722 −1.25806
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 2.70722i − 0.656598i −0.944574 0.328299i \(-0.893525\pi\)
0.944574 0.328299i \(-0.106475\pi\)
\(18\) 0 0
\(19\) 5.43259 1.24632 0.623160 0.782094i \(-0.285848\pi\)
0.623160 + 0.782094i \(0.285848\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000i 0.213201i
\(23\) − 7.43259i − 1.54980i −0.632083 0.774901i \(-0.717800\pi\)
0.632083 0.774901i \(-0.282200\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.72536 −0.534488
\(27\) 0 0
\(28\) − 4.70722i − 0.889582i
\(29\) 5.70722 1.05980 0.529902 0.848059i \(-0.322229\pi\)
0.529902 + 0.848059i \(0.322229\pi\)
\(30\) 0 0
\(31\) 7.70722 1.38426 0.692129 0.721774i \(-0.256673\pi\)
0.692129 + 0.721774i \(0.256673\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.70722 0.464285
\(35\) 0 0
\(36\) 0 0
\(37\) 4.70722i 0.773863i 0.922109 + 0.386931i \(0.126465\pi\)
−0.922109 + 0.386931i \(0.873535\pi\)
\(38\) 5.43259i 0.881282i
\(39\) 0 0
\(40\) 0 0
\(41\) 12.1579 1.89875 0.949376 0.314141i \(-0.101716\pi\)
0.949376 + 0.314141i \(0.101716\pi\)
\(42\) 0 0
\(43\) − 0.725363i − 0.110617i −0.998469 0.0553084i \(-0.982386\pi\)
0.998469 0.0553084i \(-0.0176142\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 7.43259 1.09588
\(47\) 8.70722i 1.27008i 0.772480 + 0.635040i \(0.219016\pi\)
−0.772480 + 0.635040i \(0.780984\pi\)
\(48\) 0 0
\(49\) −15.1579 −2.16542
\(50\) 0 0
\(51\) 0 0
\(52\) − 2.72536i − 0.377940i
\(53\) 3.45073i 0.473994i 0.971510 + 0.236997i \(0.0761631\pi\)
−0.971510 + 0.236997i \(0.923837\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.70722 0.629029
\(57\) 0 0
\(58\) 5.70722i 0.749395i
\(59\) 8.70722 1.13358 0.566792 0.823861i \(-0.308184\pi\)
0.566792 + 0.823861i \(0.308184\pi\)
\(60\) 0 0
\(61\) 13.4144 1.71754 0.858772 0.512358i \(-0.171228\pi\)
0.858772 + 0.512358i \(0.171228\pi\)
\(62\) 7.70722i 0.978818i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000i 0.244339i 0.992509 + 0.122169i \(0.0389851\pi\)
−0.992509 + 0.122169i \(0.961015\pi\)
\(68\) 2.70722i 0.328299i
\(69\) 0 0
\(70\) 0 0
\(71\) −12.8470 −1.52466 −0.762331 0.647187i \(-0.775945\pi\)
−0.762331 + 0.647187i \(0.775945\pi\)
\(72\) 0 0
\(73\) − 10.8652i − 1.27167i −0.771824 0.635836i \(-0.780655\pi\)
0.771824 0.635836i \(-0.219345\pi\)
\(74\) −4.70722 −0.547204
\(75\) 0 0
\(76\) −5.43259 −0.623160
\(77\) 4.70722i 0.536438i
\(78\) 0 0
\(79\) −5.29278 −0.595484 −0.297742 0.954646i \(-0.596234\pi\)
−0.297742 + 0.954646i \(0.596234\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.1579i 1.34262i
\(83\) 2.25650i 0.247683i 0.992302 + 0.123841i \(0.0395214\pi\)
−0.992302 + 0.123841i \(0.960479\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.725363 0.0782179
\(87\) 0 0
\(88\) − 1.00000i − 0.106600i
\(89\) 12.6891 1.34504 0.672520 0.740079i \(-0.265212\pi\)
0.672520 + 0.740079i \(0.265212\pi\)
\(90\) 0 0
\(91\) −12.8289 −1.34483
\(92\) 7.43259i 0.774901i
\(93\) 0 0
\(94\) −8.70722 −0.898081
\(95\) 0 0
\(96\) 0 0
\(97\) − 0.414446i − 0.0420806i −0.999779 0.0210403i \(-0.993302\pi\)
0.999779 0.0210403i \(-0.00669784\pi\)
\(98\) − 15.1579i − 1.53118i
\(99\) 0 0
\(100\) 0 0
\(101\) −0.450726 −0.0448489 −0.0224245 0.999749i \(-0.507139\pi\)
−0.0224245 + 0.999749i \(0.507139\pi\)
\(102\) 0 0
\(103\) 9.70722i 0.956481i 0.878229 + 0.478241i \(0.158725\pi\)
−0.878229 + 0.478241i \(0.841275\pi\)
\(104\) 2.72536 0.267244
\(105\) 0 0
\(106\) −3.45073 −0.335164
\(107\) − 14.5724i − 1.40877i −0.709820 0.704383i \(-0.751224\pi\)
0.709820 0.704383i \(-0.248776\pi\)
\(108\) 0 0
\(109\) −14.6891 −1.40696 −0.703479 0.710716i \(-0.748371\pi\)
−0.703479 + 0.710716i \(0.748371\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.70722i 0.444791i
\(113\) − 5.41445i − 0.509348i −0.967027 0.254674i \(-0.918032\pi\)
0.967027 0.254674i \(-0.0819682\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.70722 −0.529902
\(117\) 0 0
\(118\) 8.70722i 0.801565i
\(119\) 12.7435 1.16820
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 13.4144i 1.21449i
\(123\) 0 0
\(124\) −7.70722 −0.692129
\(125\) 0 0
\(126\) 0 0
\(127\) − 12.1217i − 1.07562i −0.843065 0.537812i \(-0.819251\pi\)
0.843065 0.537812i \(-0.180749\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −8.57240 −0.748974 −0.374487 0.927232i \(-0.622181\pi\)
−0.374487 + 0.927232i \(0.622181\pi\)
\(132\) 0 0
\(133\) 25.5724i 2.21741i
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −2.70722 −0.232142
\(137\) − 0.689083i − 0.0588723i −0.999567 0.0294362i \(-0.990629\pi\)
0.999567 0.0294362i \(-0.00937118\pi\)
\(138\) 0 0
\(139\) −12.7254 −1.07935 −0.539676 0.841873i \(-0.681453\pi\)
−0.539676 + 0.841873i \(0.681453\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 12.8470i − 1.07810i
\(143\) 2.72536i 0.227906i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.8652 0.899208
\(147\) 0 0
\(148\) − 4.70722i − 0.386931i
\(149\) −22.9868 −1.88316 −0.941578 0.336796i \(-0.890657\pi\)
−0.941578 + 0.336796i \(0.890657\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) − 5.43259i − 0.440641i
\(153\) 0 0
\(154\) −4.70722 −0.379319
\(155\) 0 0
\(156\) 0 0
\(157\) 2.58555i 0.206350i 0.994663 + 0.103175i \(0.0329001\pi\)
−0.994663 + 0.103175i \(0.967100\pi\)
\(158\) − 5.29278i − 0.421071i
\(159\) 0 0
\(160\) 0 0
\(161\) 34.9868 2.75735
\(162\) 0 0
\(163\) 7.45073i 0.583586i 0.956482 + 0.291793i \(0.0942518\pi\)
−0.956482 + 0.291793i \(0.905748\pi\)
\(164\) −12.1579 −0.949376
\(165\) 0 0
\(166\) −2.25650 −0.175138
\(167\) 14.8652i 1.15030i 0.818047 + 0.575151i \(0.195057\pi\)
−0.818047 + 0.575151i \(0.804943\pi\)
\(168\) 0 0
\(169\) 5.57240 0.428646
\(170\) 0 0
\(171\) 0 0
\(172\) 0.725363i 0.0553084i
\(173\) 12.4507i 0.946611i 0.880898 + 0.473306i \(0.156939\pi\)
−0.880898 + 0.473306i \(0.843061\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 12.6891i 0.951087i
\(179\) 20.1217 1.50396 0.751982 0.659184i \(-0.229098\pi\)
0.751982 + 0.659184i \(0.229098\pi\)
\(180\) 0 0
\(181\) −12.1217 −0.900997 −0.450498 0.892777i \(-0.648754\pi\)
−0.450498 + 0.892777i \(0.648754\pi\)
\(182\) − 12.8289i − 0.950941i
\(183\) 0 0
\(184\) −7.43259 −0.547938
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.70722i − 0.197972i
\(188\) − 8.70722i − 0.635040i
\(189\) 0 0
\(190\) 0 0
\(191\) 19.4326 1.40609 0.703046 0.711144i \(-0.251823\pi\)
0.703046 + 0.711144i \(0.251823\pi\)
\(192\) 0 0
\(193\) 4.58555i 0.330075i 0.986287 + 0.165038i \(0.0527746\pi\)
−0.986287 + 0.165038i \(0.947225\pi\)
\(194\) 0.414446 0.0297555
\(195\) 0 0
\(196\) 15.1579 1.08271
\(197\) − 16.3782i − 1.16690i −0.812150 0.583448i \(-0.801703\pi\)
0.812150 0.583448i \(-0.198297\pi\)
\(198\) 0 0
\(199\) −25.1217 −1.78083 −0.890414 0.455152i \(-0.849585\pi\)
−0.890414 + 0.455152i \(0.849585\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 0.450726i − 0.0317130i
\(203\) 26.8652i 1.88557i
\(204\) 0 0
\(205\) 0 0
\(206\) −9.70722 −0.676334
\(207\) 0 0
\(208\) 2.72536i 0.188970i
\(209\) 5.43259 0.375780
\(210\) 0 0
\(211\) −13.4507 −0.925986 −0.462993 0.886362i \(-0.653225\pi\)
−0.462993 + 0.886362i \(0.653225\pi\)
\(212\) − 3.45073i − 0.236997i
\(213\) 0 0
\(214\) 14.5724 0.996148
\(215\) 0 0
\(216\) 0 0
\(217\) 36.2796i 2.46282i
\(218\) − 14.6891i − 0.994870i
\(219\) 0 0
\(220\) 0 0
\(221\) 7.37817 0.496309
\(222\) 0 0
\(223\) 21.4144i 1.43402i 0.697064 + 0.717009i \(0.254489\pi\)
−0.697064 + 0.717009i \(0.745511\pi\)
\(224\) −4.70722 −0.314515
\(225\) 0 0
\(226\) 5.41445 0.360164
\(227\) 25.0854i 1.66498i 0.554043 + 0.832488i \(0.313084\pi\)
−0.554043 + 0.832488i \(0.686916\pi\)
\(228\) 0 0
\(229\) −12.6709 −0.837319 −0.418660 0.908143i \(-0.637500\pi\)
−0.418660 + 0.908143i \(0.637500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 5.70722i − 0.374698i
\(233\) − 0.743503i − 0.0487085i −0.999703 0.0243543i \(-0.992247\pi\)
0.999703 0.0243543i \(-0.00775297\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −8.70722 −0.566792
\(237\) 0 0
\(238\) 12.7435i 0.826039i
\(239\) −1.96372 −0.127022 −0.0635112 0.997981i \(-0.520230\pi\)
−0.0635112 + 0.997981i \(0.520230\pi\)
\(240\) 0 0
\(241\) 5.45073 0.351112 0.175556 0.984469i \(-0.443828\pi\)
0.175556 + 0.984469i \(0.443828\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 0 0
\(244\) −13.4144 −0.858772
\(245\) 0 0
\(246\) 0 0
\(247\) 14.8058i 0.942069i
\(248\) − 7.70722i − 0.489409i
\(249\) 0 0
\(250\) 0 0
\(251\) −1.96372 −0.123949 −0.0619745 0.998078i \(-0.519740\pi\)
−0.0619745 + 0.998078i \(0.519740\pi\)
\(252\) 0 0
\(253\) − 7.43259i − 0.467283i
\(254\) 12.1217 0.760581
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 16.7254i − 1.04330i −0.853160 0.521650i \(-0.825317\pi\)
0.853160 0.521650i \(-0.174683\pi\)
\(258\) 0 0
\(259\) −22.1579 −1.37683
\(260\) 0 0
\(261\) 0 0
\(262\) − 8.57240i − 0.529604i
\(263\) 19.3782i 1.19491i 0.801903 + 0.597454i \(0.203821\pi\)
−0.801903 + 0.597454i \(0.796179\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −25.5724 −1.56794
\(267\) 0 0
\(268\) − 2.00000i − 0.122169i
\(269\) −13.9637 −0.851383 −0.425692 0.904868i \(-0.639969\pi\)
−0.425692 + 0.904868i \(0.639969\pi\)
\(270\) 0 0
\(271\) 23.0231 1.39856 0.699278 0.714850i \(-0.253505\pi\)
0.699278 + 0.714850i \(0.253505\pi\)
\(272\) − 2.70722i − 0.164150i
\(273\) 0 0
\(274\) 0.689083 0.0416290
\(275\) 0 0
\(276\) 0 0
\(277\) − 9.41445i − 0.565659i −0.959170 0.282830i \(-0.908727\pi\)
0.959170 0.282830i \(-0.0912731\pi\)
\(278\) − 12.7254i − 0.763217i
\(279\) 0 0
\(280\) 0 0
\(281\) −20.1217 −1.20036 −0.600179 0.799866i \(-0.704904\pi\)
−0.600179 + 0.799866i \(0.704904\pi\)
\(282\) 0 0
\(283\) 7.29278i 0.433511i 0.976226 + 0.216755i \(0.0695474\pi\)
−0.976226 + 0.216755i \(0.930453\pi\)
\(284\) 12.8470 0.762331
\(285\) 0 0
\(286\) −2.72536 −0.161154
\(287\) 57.2302i 3.37819i
\(288\) 0 0
\(289\) 9.67094 0.568879
\(290\) 0 0
\(291\) 0 0
\(292\) 10.8652i 0.635836i
\(293\) − 10.9868i − 0.641858i −0.947103 0.320929i \(-0.896005\pi\)
0.947103 0.320929i \(-0.103995\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.70722 0.273602
\(297\) 0 0
\(298\) − 22.9868i − 1.33159i
\(299\) 20.2565 1.17146
\(300\) 0 0
\(301\) 3.41445 0.196805
\(302\) 8.00000i 0.460348i
\(303\) 0 0
\(304\) 5.43259 0.311580
\(305\) 0 0
\(306\) 0 0
\(307\) 16.2796i 0.929127i 0.885540 + 0.464563i \(0.153789\pi\)
−0.885540 + 0.464563i \(0.846211\pi\)
\(308\) − 4.70722i − 0.268219i
\(309\) 0 0
\(310\) 0 0
\(311\) 6.68908 0.379303 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(312\) 0 0
\(313\) 2.67094i 0.150971i 0.997147 + 0.0754853i \(0.0240506\pi\)
−0.997147 + 0.0754853i \(0.975949\pi\)
\(314\) −2.58555 −0.145911
\(315\) 0 0
\(316\) 5.29278 0.297742
\(317\) − 27.4507i − 1.54179i −0.636964 0.770893i \(-0.719810\pi\)
0.636964 0.770893i \(-0.280190\pi\)
\(318\) 0 0
\(319\) 5.70722 0.319543
\(320\) 0 0
\(321\) 0 0
\(322\) 34.9868i 1.94974i
\(323\) − 14.7072i − 0.818332i
\(324\) 0 0
\(325\) 0 0
\(326\) −7.45073 −0.412658
\(327\) 0 0
\(328\) − 12.1579i − 0.671310i
\(329\) −40.9868 −2.25968
\(330\) 0 0
\(331\) 0.512994 0.0281967 0.0140983 0.999901i \(-0.495512\pi\)
0.0140983 + 0.999901i \(0.495512\pi\)
\(332\) − 2.25650i − 0.123841i
\(333\) 0 0
\(334\) −14.8652 −0.813386
\(335\) 0 0
\(336\) 0 0
\(337\) 4.54927i 0.247815i 0.992294 + 0.123907i \(0.0395426\pi\)
−0.992294 + 0.123907i \(0.960457\pi\)
\(338\) 5.57240i 0.303098i
\(339\) 0 0
\(340\) 0 0
\(341\) 7.70722 0.417370
\(342\) 0 0
\(343\) − 38.4013i − 2.07347i
\(344\) −0.725363 −0.0391090
\(345\) 0 0
\(346\) −12.4507 −0.669355
\(347\) − 28.2433i − 1.51618i −0.652149 0.758091i \(-0.726132\pi\)
0.652149 0.758091i \(-0.273868\pi\)
\(348\) 0 0
\(349\) 1.23836 0.0662877 0.0331439 0.999451i \(-0.489448\pi\)
0.0331439 + 0.999451i \(0.489448\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000i 0.0533002i
\(353\) 1.86019i 0.0990080i 0.998774 + 0.0495040i \(0.0157640\pi\)
−0.998774 + 0.0495040i \(0.984236\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.6891 −0.672520
\(357\) 0 0
\(358\) 20.1217i 1.06346i
\(359\) −21.4507 −1.13213 −0.566063 0.824362i \(-0.691534\pi\)
−0.566063 + 0.824362i \(0.691534\pi\)
\(360\) 0 0
\(361\) 10.5130 0.553315
\(362\) − 12.1217i − 0.637101i
\(363\) 0 0
\(364\) 12.8289 0.672417
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0231i 1.35840i 0.733955 + 0.679198i \(0.237672\pi\)
−0.733955 + 0.679198i \(0.762328\pi\)
\(368\) − 7.43259i − 0.387450i
\(369\) 0 0
\(370\) 0 0
\(371\) −16.2433 −0.843312
\(372\) 0 0
\(373\) 33.4144i 1.73013i 0.501656 + 0.865067i \(0.332724\pi\)
−0.501656 + 0.865067i \(0.667276\pi\)
\(374\) 2.70722 0.139987
\(375\) 0 0
\(376\) 8.70722 0.449041
\(377\) 15.5543i 0.801085i
\(378\) 0 0
\(379\) 10.9015 0.559970 0.279985 0.960004i \(-0.409671\pi\)
0.279985 + 0.960004i \(0.409671\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.4326i 0.994258i
\(383\) 26.9687i 1.37804i 0.724744 + 0.689018i \(0.241958\pi\)
−0.724744 + 0.689018i \(0.758042\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.58555 −0.233399
\(387\) 0 0
\(388\) 0.414446i 0.0210403i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −20.1217 −1.01760
\(392\) 15.1579i 0.765592i
\(393\) 0 0
\(394\) 16.3782 0.825120
\(395\) 0 0
\(396\) 0 0
\(397\) 1.41445i 0.0709890i 0.999370 + 0.0354945i \(0.0113006\pi\)
−0.999370 + 0.0354945i \(0.988699\pi\)
\(398\) − 25.1217i − 1.25924i
\(399\) 0 0
\(400\) 0 0
\(401\) 7.59054 0.379053 0.189527 0.981876i \(-0.439305\pi\)
0.189527 + 0.981876i \(0.439305\pi\)
\(402\) 0 0
\(403\) 21.0050i 1.04633i
\(404\) 0.450726 0.0224245
\(405\) 0 0
\(406\) −26.8652 −1.33330
\(407\) 4.70722i 0.233328i
\(408\) 0 0
\(409\) 17.6941 0.874915 0.437458 0.899239i \(-0.355879\pi\)
0.437458 + 0.899239i \(0.355879\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 9.70722i − 0.478241i
\(413\) 40.9868i 2.01683i
\(414\) 0 0
\(415\) 0 0
\(416\) −2.72536 −0.133622
\(417\) 0 0
\(418\) 5.43259i 0.265716i
\(419\) 26.1217 1.27613 0.638064 0.769984i \(-0.279736\pi\)
0.638064 + 0.769984i \(0.279736\pi\)
\(420\) 0 0
\(421\) 28.1217 1.37057 0.685283 0.728277i \(-0.259678\pi\)
0.685283 + 0.728277i \(0.259678\pi\)
\(422\) − 13.4507i − 0.654771i
\(423\) 0 0
\(424\) 3.45073 0.167582
\(425\) 0 0
\(426\) 0 0
\(427\) 63.1448i 3.05579i
\(428\) 14.5724i 0.704383i
\(429\) 0 0
\(430\) 0 0
\(431\) 6.31590 0.304226 0.152113 0.988363i \(-0.451392\pi\)
0.152113 + 0.988363i \(0.451392\pi\)
\(432\) 0 0
\(433\) − 4.25650i − 0.204554i −0.994756 0.102277i \(-0.967387\pi\)
0.994756 0.102277i \(-0.0326128\pi\)
\(434\) −36.2796 −1.74148
\(435\) 0 0
\(436\) 14.6891 0.703479
\(437\) − 40.3782i − 1.93155i
\(438\) 0 0
\(439\) −14.7435 −0.703669 −0.351835 0.936062i \(-0.614442\pi\)
−0.351835 + 0.936062i \(0.614442\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 7.37817i 0.350944i
\(443\) 30.1579i 1.43285i 0.697665 + 0.716424i \(0.254222\pi\)
−0.697665 + 0.716424i \(0.745778\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −21.4144 −1.01400
\(447\) 0 0
\(448\) − 4.70722i − 0.222395i
\(449\) −3.55426 −0.167736 −0.0838678 0.996477i \(-0.526727\pi\)
−0.0838678 + 0.996477i \(0.526727\pi\)
\(450\) 0 0
\(451\) 12.1579 0.572495
\(452\) 5.41445i 0.254674i
\(453\) 0 0
\(454\) −25.0854 −1.17732
\(455\) 0 0
\(456\) 0 0
\(457\) − 22.9015i − 1.07128i −0.844445 0.535642i \(-0.820070\pi\)
0.844445 0.535642i \(-0.179930\pi\)
\(458\) − 12.6709i − 0.592074i
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) − 14.0231i − 0.651710i −0.945420 0.325855i \(-0.894348\pi\)
0.945420 0.325855i \(-0.105652\pi\)
\(464\) 5.70722 0.264951
\(465\) 0 0
\(466\) 0.743503 0.0344421
\(467\) − 28.5592i − 1.32156i −0.750578 0.660782i \(-0.770225\pi\)
0.750578 0.660782i \(-0.229775\pi\)
\(468\) 0 0
\(469\) −9.41445 −0.434719
\(470\) 0 0
\(471\) 0 0
\(472\) − 8.70722i − 0.400782i
\(473\) − 0.725363i − 0.0333522i
\(474\) 0 0
\(475\) 0 0
\(476\) −12.7435 −0.584098
\(477\) 0 0
\(478\) − 1.96372i − 0.0898185i
\(479\) 13.4870 0.616237 0.308119 0.951348i \(-0.400301\pi\)
0.308119 + 0.951348i \(0.400301\pi\)
\(480\) 0 0
\(481\) −12.8289 −0.584947
\(482\) 5.45073i 0.248274i
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) − 40.0231i − 1.81362i −0.421539 0.906810i \(-0.638510\pi\)
0.421539 0.906810i \(-0.361490\pi\)
\(488\) − 13.4144i − 0.607243i
\(489\) 0 0
\(490\) 0 0
\(491\) 14.2565 0.643387 0.321693 0.946844i \(-0.395748\pi\)
0.321693 + 0.946844i \(0.395748\pi\)
\(492\) 0 0
\(493\) − 15.4507i − 0.695866i
\(494\) −14.8058 −0.666143
\(495\) 0 0
\(496\) 7.70722 0.346065
\(497\) − 60.4738i − 2.71262i
\(498\) 0 0
\(499\) −16.8652 −0.754989 −0.377494 0.926012i \(-0.623214\pi\)
−0.377494 + 0.926012i \(0.623214\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 1.96372i − 0.0876451i
\(503\) − 20.8652i − 0.930332i −0.885223 0.465166i \(-0.845995\pi\)
0.885223 0.465166i \(-0.154005\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 7.43259 0.330419
\(507\) 0 0
\(508\) 12.1217i 0.537812i
\(509\) 25.6941 1.13887 0.569435 0.822037i \(-0.307162\pi\)
0.569435 + 0.822037i \(0.307162\pi\)
\(510\) 0 0
\(511\) 51.1448 2.26251
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 16.7254 0.737724
\(515\) 0 0
\(516\) 0 0
\(517\) 8.70722i 0.382943i
\(518\) − 22.1579i − 0.973564i
\(519\) 0 0
\(520\) 0 0
\(521\) −19.5905 −0.858277 −0.429138 0.903239i \(-0.641183\pi\)
−0.429138 + 0.903239i \(0.641183\pi\)
\(522\) 0 0
\(523\) 5.43259i 0.237550i 0.992921 + 0.118775i \(0.0378968\pi\)
−0.992921 + 0.118775i \(0.962103\pi\)
\(524\) 8.57240 0.374487
\(525\) 0 0
\(526\) −19.3782 −0.844928
\(527\) − 20.8652i − 0.908901i
\(528\) 0 0
\(529\) −32.2433 −1.40188
\(530\) 0 0
\(531\) 0 0
\(532\) − 25.5724i − 1.10870i
\(533\) 33.1348i 1.43523i
\(534\) 0 0
\(535\) 0 0
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) − 13.9637i − 0.602019i
\(539\) −15.1579 −0.652899
\(540\) 0 0
\(541\) −33.5180 −1.44105 −0.720525 0.693429i \(-0.756099\pi\)
−0.720525 + 0.693429i \(0.756099\pi\)
\(542\) 23.0231i 0.988928i
\(543\) 0 0
\(544\) 2.70722 0.116071
\(545\) 0 0
\(546\) 0 0
\(547\) − 36.5411i − 1.56238i −0.624291 0.781192i \(-0.714612\pi\)
0.624291 0.781192i \(-0.285388\pi\)
\(548\) 0.689083i 0.0294362i
\(549\) 0 0
\(550\) 0 0
\(551\) 31.0050 1.32086
\(552\) 0 0
\(553\) − 24.9143i − 1.05946i
\(554\) 9.41445 0.399981
\(555\) 0 0
\(556\) 12.7254 0.539676
\(557\) 46.8520i 1.98518i 0.121497 + 0.992592i \(0.461230\pi\)
−0.121497 + 0.992592i \(0.538770\pi\)
\(558\) 0 0
\(559\) 1.97688 0.0836130
\(560\) 0 0
\(561\) 0 0
\(562\) − 20.1217i − 0.848781i
\(563\) − 28.2433i − 1.19031i −0.803609 0.595157i \(-0.797090\pi\)
0.803609 0.595157i \(-0.202910\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7.29278 −0.306538
\(567\) 0 0
\(568\) 12.8470i 0.539050i
\(569\) −15.6087 −0.654350 −0.327175 0.944964i \(-0.606097\pi\)
−0.327175 + 0.944964i \(0.606097\pi\)
\(570\) 0 0
\(571\) 9.00498 0.376847 0.188423 0.982088i \(-0.439662\pi\)
0.188423 + 0.982088i \(0.439662\pi\)
\(572\) − 2.72536i − 0.113953i
\(573\) 0 0
\(574\) −57.2302 −2.38874
\(575\) 0 0
\(576\) 0 0
\(577\) 2.74350i 0.114214i 0.998368 + 0.0571068i \(0.0181875\pi\)
−0.998368 + 0.0571068i \(0.981812\pi\)
\(578\) 9.67094i 0.402258i
\(579\) 0 0
\(580\) 0 0
\(581\) −10.6218 −0.440668
\(582\) 0 0
\(583\) 3.45073i 0.142914i
\(584\) −10.8652 −0.449604
\(585\) 0 0
\(586\) 10.9868 0.453862
\(587\) − 2.39132i − 0.0987005i −0.998782 0.0493503i \(-0.984285\pi\)
0.998782 0.0493503i \(-0.0157151\pi\)
\(588\) 0 0
\(589\) 41.8702 1.72523
\(590\) 0 0
\(591\) 0 0
\(592\) 4.70722i 0.193466i
\(593\) − 5.41445i − 0.222345i −0.993801 0.111172i \(-0.964539\pi\)
0.993801 0.111172i \(-0.0354606\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 22.9868 0.941578
\(597\) 0 0
\(598\) 20.2565i 0.828350i
\(599\) −27.6087 −1.12806 −0.564030 0.825754i \(-0.690750\pi\)
−0.564030 + 0.825754i \(0.690750\pi\)
\(600\) 0 0
\(601\) 2.58555 0.105467 0.0527335 0.998609i \(-0.483207\pi\)
0.0527335 + 0.998609i \(0.483207\pi\)
\(602\) 3.41445i 0.139162i
\(603\) 0 0
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) − 19.3419i − 0.785063i −0.919739 0.392531i \(-0.871599\pi\)
0.919739 0.392531i \(-0.128401\pi\)
\(608\) 5.43259i 0.220320i
\(609\) 0 0
\(610\) 0 0
\(611\) −23.7303 −0.960027
\(612\) 0 0
\(613\) − 9.17111i − 0.370418i −0.982699 0.185209i \(-0.940704\pi\)
0.982699 0.185209i \(-0.0592961\pi\)
\(614\) −16.2796 −0.656992
\(615\) 0 0
\(616\) 4.70722 0.189659
\(617\) − 35.6268i − 1.43428i −0.696928 0.717141i \(-0.745450\pi\)
0.696928 0.717141i \(-0.254550\pi\)
\(618\) 0 0
\(619\) 48.5955 1.95322 0.976609 0.215021i \(-0.0689821\pi\)
0.976609 + 0.215021i \(0.0689821\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.68908i 0.268208i
\(623\) 59.7303i 2.39305i
\(624\) 0 0
\(625\) 0 0
\(626\) −2.67094 −0.106752
\(627\) 0 0
\(628\) − 2.58555i − 0.103175i
\(629\) 12.7435 0.508117
\(630\) 0 0
\(631\) −39.1448 −1.55833 −0.779165 0.626819i \(-0.784356\pi\)
−0.779165 + 0.626819i \(0.784356\pi\)
\(632\) 5.29278i 0.210535i
\(633\) 0 0
\(634\) 27.4507 1.09021
\(635\) 0 0
\(636\) 0 0
\(637\) − 41.3109i − 1.63680i
\(638\) 5.70722i 0.225951i
\(639\) 0 0
\(640\) 0 0
\(641\) −27.5543 −1.08833 −0.544164 0.838979i \(-0.683153\pi\)
−0.544164 + 0.838979i \(0.683153\pi\)
\(642\) 0 0
\(643\) 17.6941i 0.697786i 0.937163 + 0.348893i \(0.113442\pi\)
−0.937163 + 0.348893i \(0.886558\pi\)
\(644\) −34.9868 −1.37867
\(645\) 0 0
\(646\) 14.7072 0.578648
\(647\) 3.60868i 0.141872i 0.997481 + 0.0709358i \(0.0225986\pi\)
−0.997481 + 0.0709358i \(0.977401\pi\)
\(648\) 0 0
\(649\) 8.70722 0.341788
\(650\) 0 0
\(651\) 0 0
\(652\) − 7.45073i − 0.291793i
\(653\) − 20.2796i − 0.793603i −0.917904 0.396801i \(-0.870120\pi\)
0.917904 0.396801i \(-0.129880\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 12.1579 0.474688
\(657\) 0 0
\(658\) − 40.9868i − 1.59783i
\(659\) 13.9868 0.544850 0.272425 0.962177i \(-0.412174\pi\)
0.272425 + 0.962177i \(0.412174\pi\)
\(660\) 0 0
\(661\) −15.2565 −0.593409 −0.296704 0.954969i \(-0.595888\pi\)
−0.296704 + 0.954969i \(0.595888\pi\)
\(662\) 0.512994i 0.0199381i
\(663\) 0 0
\(664\) 2.25650 0.0875691
\(665\) 0 0
\(666\) 0 0
\(667\) − 42.4194i − 1.64249i
\(668\) − 14.8652i − 0.575151i
\(669\) 0 0
\(670\) 0 0
\(671\) 13.4144 0.517859
\(672\) 0 0
\(673\) 21.7303i 0.837643i 0.908069 + 0.418822i \(0.137557\pi\)
−0.908069 + 0.418822i \(0.862443\pi\)
\(674\) −4.54927 −0.175231
\(675\) 0 0
\(676\) −5.57240 −0.214323
\(677\) − 10.8058i − 0.415299i −0.978203 0.207650i \(-0.933419\pi\)
0.978203 0.207650i \(-0.0665814\pi\)
\(678\) 0 0
\(679\) 1.95089 0.0748683
\(680\) 0 0
\(681\) 0 0
\(682\) 7.70722i 0.295125i
\(683\) 7.05940i 0.270121i 0.990837 + 0.135060i \(0.0431228\pi\)
−0.990837 + 0.135060i \(0.956877\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 38.4013 1.46617
\(687\) 0 0
\(688\) − 0.725363i − 0.0276542i
\(689\) −9.40448 −0.358282
\(690\) 0 0
\(691\) 0.305935 0.0116383 0.00581916 0.999983i \(-0.498148\pi\)
0.00581916 + 0.999983i \(0.498148\pi\)
\(692\) − 12.4507i − 0.473306i
\(693\) 0 0
\(694\) 28.2433 1.07210
\(695\) 0 0
\(696\) 0 0
\(697\) − 32.9143i − 1.24672i
\(698\) 1.23836i 0.0468725i
\(699\) 0 0
\(700\) 0 0
\(701\) −24.7666 −0.935423 −0.467711 0.883881i \(-0.654921\pi\)
−0.467711 + 0.883881i \(0.654921\pi\)
\(702\) 0 0
\(703\) 25.5724i 0.964481i
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −1.86019 −0.0700092
\(707\) − 2.12167i − 0.0797936i
\(708\) 0 0
\(709\) −48.7172 −1.82961 −0.914806 0.403893i \(-0.867657\pi\)
−0.914806 + 0.403893i \(0.867657\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 12.6891i − 0.475543i
\(713\) − 57.2846i − 2.14533i
\(714\) 0 0
\(715\) 0 0
\(716\) −20.1217 −0.751982
\(717\) 0 0
\(718\) − 21.4507i − 0.800534i
\(719\) 14.5493 0.542596 0.271298 0.962495i \(-0.412547\pi\)
0.271298 + 0.962495i \(0.412547\pi\)
\(720\) 0 0
\(721\) −45.6941 −1.70174
\(722\) 10.5130i 0.391253i
\(723\) 0 0
\(724\) 12.1217 0.450498
\(725\) 0 0
\(726\) 0 0
\(727\) − 16.8783i − 0.625983i −0.949756 0.312991i \(-0.898669\pi\)
0.949756 0.312991i \(-0.101331\pi\)
\(728\) 12.8289i 0.475470i
\(729\) 0 0
\(730\) 0 0
\(731\) −1.96372 −0.0726308
\(732\) 0 0
\(733\) − 25.6268i − 0.946548i −0.880915 0.473274i \(-0.843072\pi\)
0.880915 0.473274i \(-0.156928\pi\)
\(734\) −26.0231 −0.960531
\(735\) 0 0
\(736\) 7.43259 0.273969
\(737\) 2.00000i 0.0736709i
\(738\) 0 0
\(739\) 11.2202 0.412742 0.206371 0.978474i \(-0.433835\pi\)
0.206371 + 0.978474i \(0.433835\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 16.2433i − 0.596312i
\(743\) 13.4870i 0.494790i 0.968915 + 0.247395i \(0.0795746\pi\)
−0.968915 + 0.247395i \(0.920425\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −33.4144 −1.22339
\(747\) 0 0
\(748\) 2.70722i 0.0989859i
\(749\) 68.5955 2.50643
\(750\) 0 0
\(751\) −22.6087 −0.825002 −0.412501 0.910957i \(-0.635345\pi\)
−0.412501 + 0.910957i \(0.635345\pi\)
\(752\) 8.70722i 0.317520i
\(753\) 0 0
\(754\) −15.5543 −0.566453
\(755\) 0 0
\(756\) 0 0
\(757\) 27.3782i 0.995076i 0.867442 + 0.497538i \(0.165763\pi\)
−0.867442 + 0.497538i \(0.834237\pi\)
\(758\) 10.9015i 0.395959i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5130 −0.381096 −0.190548 0.981678i \(-0.561026\pi\)
−0.190548 + 0.981678i \(0.561026\pi\)
\(762\) 0 0
\(763\) − 69.1448i − 2.50321i
\(764\) −19.4326 −0.703046
\(765\) 0 0
\(766\) −26.9687 −0.974419
\(767\) 23.7303i 0.856853i
\(768\) 0 0
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 4.58555i − 0.165038i
\(773\) 11.4144i 0.410549i 0.978704 + 0.205275i \(0.0658087\pi\)
−0.978704 + 0.205275i \(0.934191\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.414446 −0.0148778
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) 66.0491 2.36645
\(780\) 0 0
\(781\) −12.8470 −0.459703
\(782\) − 20.1217i − 0.719549i
\(783\) 0 0
\(784\) −15.1579 −0.541355
\(785\) 0 0
\(786\) 0 0
\(787\) 5.02312i 0.179055i 0.995984 + 0.0895275i \(0.0285357\pi\)
−0.995984 + 0.0895275i \(0.971464\pi\)
\(788\) 16.3782i 0.583448i
\(789\) 0 0
\(790\) 0 0
\(791\) 25.4870 0.906214
\(792\) 0 0
\(793\) 36.5592i 1.29826i
\(794\) −1.41445 −0.0501968
\(795\) 0 0
\(796\) 25.1217 0.890414
\(797\) 26.8652i 0.951613i 0.879550 + 0.475807i \(0.157844\pi\)
−0.879550 + 0.475807i \(0.842156\pi\)
\(798\) 0 0
\(799\) 23.5724 0.833931
\(800\) 0 0
\(801\) 0 0
\(802\) 7.59054i 0.268031i
\(803\) − 10.8652i − 0.383424i
\(804\) 0 0
\(805\) 0 0
\(806\) −21.0050 −0.739869
\(807\) 0 0
\(808\) 0.450726i 0.0158565i
\(809\) −9.87833 −0.347304 −0.173652 0.984807i \(-0.555557\pi\)
−0.173652 + 0.984807i \(0.555557\pi\)
\(810\) 0 0
\(811\) 55.7795 1.95868 0.979341 0.202217i \(-0.0648146\pi\)
0.979341 + 0.202217i \(0.0648146\pi\)
\(812\) − 26.8652i − 0.942783i
\(813\) 0 0
\(814\) −4.70722 −0.164988
\(815\) 0 0
\(816\) 0 0
\(817\) − 3.94060i − 0.137864i
\(818\) 17.6941i 0.618658i
\(819\) 0 0
\(820\) 0 0
\(821\) −22.8520 −0.797541 −0.398770 0.917051i \(-0.630563\pi\)
−0.398770 + 0.917051i \(0.630563\pi\)
\(822\) 0 0
\(823\) 32.2433i 1.12393i 0.827160 + 0.561966i \(0.189955\pi\)
−0.827160 + 0.561966i \(0.810045\pi\)
\(824\) 9.70722 0.338167
\(825\) 0 0
\(826\) −40.9868 −1.42611
\(827\) − 1.08539i − 0.0377427i −0.999822 0.0188713i \(-0.993993\pi\)
0.999822 0.0188713i \(-0.00600729\pi\)
\(828\) 0 0
\(829\) −44.5230 −1.54635 −0.773173 0.634195i \(-0.781332\pi\)
−0.773173 + 0.634195i \(0.781332\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 2.72536i − 0.0944850i
\(833\) 41.0360i 1.42181i
\(834\) 0 0
\(835\) 0 0
\(836\) −5.43259 −0.187890
\(837\) 0 0
\(838\) 26.1217i 0.902358i
\(839\) −31.1085 −1.07399 −0.536993 0.843587i \(-0.680440\pi\)
−0.536993 + 0.843587i \(0.680440\pi\)
\(840\) 0 0
\(841\) 3.57240 0.123186
\(842\) 28.1217i 0.969137i
\(843\) 0 0
\(844\) 13.4507 0.462993
\(845\) 0 0
\(846\) 0 0
\(847\) 4.70722i 0.161742i
\(848\) 3.45073i 0.118498i
\(849\) 0 0
\(850\) 0 0
\(851\) 34.9868 1.19933
\(852\) 0 0
\(853\) − 26.9015i − 0.921088i −0.887637 0.460544i \(-0.847654\pi\)
0.887637 0.460544i \(-0.152346\pi\)
\(854\) −63.1448 −2.16077
\(855\) 0 0
\(856\) −14.5724 −0.498074
\(857\) − 1.32906i − 0.0453997i −0.999742 0.0226999i \(-0.992774\pi\)
0.999742 0.0226999i \(-0.00722621\pi\)
\(858\) 0 0
\(859\) −12.8289 −0.437716 −0.218858 0.975757i \(-0.570233\pi\)
−0.218858 + 0.975757i \(0.570233\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 6.31590i 0.215120i
\(863\) − 11.0413i − 0.375849i −0.982183 0.187924i \(-0.939824\pi\)
0.982183 0.187924i \(-0.0601760\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 4.25650 0.144642
\(867\) 0 0
\(868\) − 36.2796i − 1.23141i
\(869\) −5.29278 −0.179545
\(870\) 0 0
\(871\) −5.45073 −0.184691
\(872\) 14.6891i 0.497435i
\(873\) 0 0
\(874\) 40.3782 1.36581
\(875\) 0 0
\(876\) 0 0
\(877\) 38.6891i 1.30644i 0.757169 + 0.653219i \(0.226582\pi\)
−0.757169 + 0.653219i \(0.773418\pi\)
\(878\) − 14.7435i − 0.497569i
\(879\) 0 0
\(880\) 0 0
\(881\) −43.2746 −1.45796 −0.728980 0.684535i \(-0.760005\pi\)
−0.728980 + 0.684535i \(0.760005\pi\)
\(882\) 0 0
\(883\) − 29.1811i − 0.982021i −0.871154 0.491011i \(-0.836628\pi\)
0.871154 0.491011i \(-0.163372\pi\)
\(884\) −7.37817 −0.248155
\(885\) 0 0
\(886\) −30.1579 −1.01318
\(887\) 19.1711i 0.643703i 0.946790 + 0.321851i \(0.104305\pi\)
−0.946790 + 0.321851i \(0.895695\pi\)
\(888\) 0 0
\(889\) 57.0594 1.91371
\(890\) 0 0
\(891\) 0 0
\(892\) − 21.4144i − 0.717009i
\(893\) 47.3027i 1.58293i
\(894\) 0 0
\(895\) 0 0
\(896\) 4.70722 0.157257
\(897\) 0 0
\(898\) − 3.55426i − 0.118607i
\(899\) 43.9868 1.46704
\(900\) 0 0
\(901\) 9.34189 0.311223
\(902\) 12.1579i 0.404815i
\(903\) 0 0
\(904\) −5.41445 −0.180082
\(905\) 0 0
\(906\) 0 0
\(907\) 24.8289i 0.824430i 0.911087 + 0.412215i \(0.135245\pi\)
−0.911087 + 0.412215i \(0.864755\pi\)
\(908\) − 25.0854i − 0.832488i
\(909\) 0 0
\(910\) 0 0
\(911\) −3.60868 −0.119561 −0.0597804 0.998212i \(-0.519040\pi\)
−0.0597804 + 0.998212i \(0.519040\pi\)
\(912\) 0 0
\(913\) 2.25650i 0.0746791i
\(914\) 22.9015 0.757513
\(915\) 0 0
\(916\) 12.6709 0.418660
\(917\) − 40.3522i − 1.33255i
\(918\) 0 0
\(919\) 24.5984 0.811426 0.405713 0.914001i \(-0.367023\pi\)
0.405713 + 0.914001i \(0.367023\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000i 0.592798i
\(923\) − 35.0128i − 1.15246i
\(924\) 0 0
\(925\) 0 0
\(926\) 14.0231 0.460828
\(927\) 0 0
\(928\) 5.70722i 0.187349i
\(929\) −28.7254 −0.942449 −0.471224 0.882013i \(-0.656188\pi\)
−0.471224 + 0.882013i \(0.656188\pi\)
\(930\) 0 0
\(931\) −82.3469 −2.69881
\(932\) 0.743503i 0.0243543i
\(933\) 0 0
\(934\) 28.5592 0.934487
\(935\) 0 0
\(936\) 0 0
\(937\) − 54.8652i − 1.79237i −0.443684 0.896184i \(-0.646329\pi\)
0.443684 0.896184i \(-0.353671\pi\)
\(938\) − 9.41445i − 0.307393i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.64496 0.0536240 0.0268120 0.999640i \(-0.491464\pi\)
0.0268120 + 0.999640i \(0.491464\pi\)
\(942\) 0 0
\(943\) − 90.3650i − 2.94269i
\(944\) 8.70722 0.283396
\(945\) 0 0
\(946\) 0.725363 0.0235836
\(947\) − 12.6347i − 0.410571i −0.978702 0.205286i \(-0.934188\pi\)
0.978702 0.205286i \(-0.0658124\pi\)
\(948\) 0 0
\(949\) 29.6115 0.961231
\(950\) 0 0
\(951\) 0 0
\(952\) − 12.7435i − 0.413019i
\(953\) 26.1217i 0.846164i 0.906091 + 0.423082i \(0.139052\pi\)
−0.906091 + 0.423082i \(0.860948\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.96372 0.0635112
\(957\) 0 0
\(958\) 13.4870i 0.435745i
\(959\) 3.24367 0.104743
\(960\) 0 0
\(961\) 28.4013 0.916171
\(962\) − 12.8289i − 0.413620i
\(963\) 0 0
\(964\) −5.45073 −0.175556
\(965\) 0 0
\(966\) 0 0
\(967\) − 55.7666i − 1.79333i −0.442706 0.896667i \(-0.645981\pi\)
0.442706 0.896667i \(-0.354019\pi\)
\(968\) − 1.00000i − 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) 49.8520 1.59983 0.799914 0.600115i \(-0.204879\pi\)
0.799914 + 0.600115i \(0.204879\pi\)
\(972\) 0 0
\(973\) − 59.9011i − 1.92034i
\(974\) 40.0231 1.28242
\(975\) 0 0
\(976\) 13.4144 0.429386
\(977\) − 52.2433i − 1.67141i −0.549177 0.835706i \(-0.685059\pi\)
0.549177 0.835706i \(-0.314941\pi\)
\(978\) 0 0
\(979\) 12.6891 0.405545
\(980\) 0 0
\(981\) 0 0
\(982\) 14.2565i 0.454943i
\(983\) − 3.18925i − 0.101721i −0.998706 0.0508606i \(-0.983804\pi\)
0.998706 0.0508606i \(-0.0161964\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 15.4507 0.492051
\(987\) 0 0
\(988\) − 14.8058i − 0.471034i
\(989\) −5.39132 −0.171434
\(990\) 0 0
\(991\) 7.14479 0.226962 0.113481 0.993540i \(-0.463800\pi\)
0.113481 + 0.993540i \(0.463800\pi\)
\(992\) 7.70722i 0.244705i
\(993\) 0 0
\(994\) 60.4738 1.91811
\(995\) 0 0
\(996\) 0 0
\(997\) 43.1448i 1.36641i 0.730227 + 0.683205i \(0.239414\pi\)
−0.730227 + 0.683205i \(0.760586\pi\)
\(998\) − 16.8652i − 0.533858i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4950.2.c.be.199.6 6
3.2 odd 2 4950.2.c.bd.199.3 6
5.2 odd 4 4950.2.a.cg.1.1 3
5.3 odd 4 4950.2.a.cj.1.3 yes 3
5.4 even 2 inner 4950.2.c.be.199.1 6
15.2 even 4 4950.2.a.ci.1.1 yes 3
15.8 even 4 4950.2.a.ch.1.3 yes 3
15.14 odd 2 4950.2.c.bd.199.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4950.2.a.cg.1.1 3 5.2 odd 4
4950.2.a.ch.1.3 yes 3 15.8 even 4
4950.2.a.ci.1.1 yes 3 15.2 even 4
4950.2.a.cj.1.3 yes 3 5.3 odd 4
4950.2.c.bd.199.3 6 3.2 odd 2
4950.2.c.bd.199.4 6 15.14 odd 2
4950.2.c.be.199.1 6 5.4 even 2 inner
4950.2.c.be.199.6 6 1.1 even 1 trivial