Defining parameters
| Level: | \( N \) | \(=\) | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4950.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 62 \) | ||
| Sturm bound: | \(2160\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(7\), \(13\), \(17\), \(19\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4950))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1128 | 81 | 1047 |
| Cusp forms | 1033 | 81 | 952 |
| Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(63\) | \(2\) | \(61\) | \(58\) | \(2\) | \(56\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(75\) | \(5\) | \(70\) | \(69\) | \(5\) | \(64\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(75\) | \(6\) | \(69\) | \(69\) | \(6\) | \(63\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(69\) | \(4\) | \(65\) | \(63\) | \(4\) | \(59\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(72\) | \(6\) | \(66\) | \(66\) | \(6\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(69\) | \(5\) | \(64\) | \(63\) | \(5\) | \(58\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(69\) | \(6\) | \(63\) | \(63\) | \(6\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(72\) | \(6\) | \(66\) | \(66\) | \(6\) | \(60\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(69\) | \(5\) | \(64\) | \(63\) | \(5\) | \(58\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(75\) | \(2\) | \(73\) | \(69\) | \(2\) | \(67\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(69\) | \(4\) | \(65\) | \(63\) | \(4\) | \(59\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(69\) | \(6\) | \(63\) | \(63\) | \(6\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(69\) | \(5\) | \(64\) | \(63\) | \(5\) | \(58\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(72\) | \(7\) | \(65\) | \(66\) | \(7\) | \(59\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(72\) | \(7\) | \(65\) | \(66\) | \(7\) | \(59\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(69\) | \(5\) | \(64\) | \(63\) | \(5\) | \(58\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(552\) | \(33\) | \(519\) | \(505\) | \(33\) | \(472\) | \(47\) | \(0\) | \(47\) | ||||||
| Minus space | \(-\) | \(576\) | \(48\) | \(528\) | \(528\) | \(48\) | \(480\) | \(48\) | \(0\) | \(48\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4950))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4950))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4950)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(495))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(825))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(990))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1650))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2475))\)\(^{\oplus 2}\)