Properties

Label 495.3.j.c.397.8
Level $495$
Weight $3$
Character 495.397
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(298,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.298"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 397.8
Character \(\chi\) \(=\) 495.397
Dual form 495.3.j.c.298.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.762894 - 0.762894i) q^{2} -2.83599i q^{4} +(4.94835 - 0.716812i) q^{5} +(-5.64620 - 5.64620i) q^{7} +(-5.21513 + 5.21513i) q^{8} +(-4.32192 - 3.22822i) q^{10} -3.31662 q^{11} +(-13.3014 + 13.3014i) q^{13} +8.61491i q^{14} -3.38676 q^{16} +(-21.6782 - 21.6782i) q^{17} +34.8757i q^{19} +(-2.03287 - 14.0335i) q^{20} +(2.53023 + 2.53023i) q^{22} +(15.6380 - 15.6380i) q^{23} +(23.9724 - 7.09407i) q^{25} +20.2951 q^{26} +(-16.0126 + 16.0126i) q^{28} +11.8667i q^{29} -24.8833 q^{31} +(23.4443 + 23.4443i) q^{32} +33.0763i q^{34} +(-31.9867 - 23.8921i) q^{35} +(-9.97802 - 9.97802i) q^{37} +(26.6065 - 26.6065i) q^{38} +(-22.0680 + 29.5446i) q^{40} +13.0596 q^{41} +(-2.85546 + 2.85546i) q^{43} +9.40590i q^{44} -23.8603 q^{46} +(-21.6085 - 21.6085i) q^{47} +14.7592i q^{49} +(-23.7004 - 12.8763i) q^{50} +(37.7225 + 37.7225i) q^{52} +(7.24110 - 7.24110i) q^{53} +(-16.4118 + 2.37739i) q^{55} +58.8914 q^{56} +(9.05302 - 9.05302i) q^{58} +57.4972i q^{59} -52.6576 q^{61} +(18.9834 + 18.9834i) q^{62} -22.2239i q^{64} +(-56.2853 + 75.3545i) q^{65} +(-35.3923 - 35.3923i) q^{67} +(-61.4789 + 61.4789i) q^{68} +(6.17527 + 42.6296i) q^{70} -94.5007 q^{71} +(-72.5959 + 72.5959i) q^{73} +15.2243i q^{74} +98.9071 q^{76} +(18.7263 + 18.7263i) q^{77} +84.9764i q^{79} +(-16.7589 + 2.42767i) q^{80} +(-9.96309 - 9.96309i) q^{82} +(68.0357 - 68.0357i) q^{83} +(-122.810 - 91.7320i) q^{85} +4.35682 q^{86} +(17.2966 - 17.2966i) q^{88} -22.9837i q^{89} +150.205 q^{91} +(-44.3492 - 44.3492i) q^{92} +32.9700i q^{94} +(24.9993 + 172.577i) q^{95} +(-27.4864 - 27.4864i) q^{97} +(11.2597 - 11.2597i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{10} - 88 q^{13} - 296 q^{16} + 168 q^{25} + 248 q^{28} - 32 q^{31} - 24 q^{37} + 296 q^{40} - 48 q^{43} + 48 q^{46} + 64 q^{52} + 104 q^{58} + 576 q^{61} - 544 q^{67} - 1048 q^{70} - 408 q^{73}+ \cdots + 712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.762894 0.762894i −0.381447 0.381447i 0.490176 0.871623i \(-0.336932\pi\)
−0.871623 + 0.490176i \(0.836932\pi\)
\(3\) 0 0
\(4\) 2.83599i 0.708996i
\(5\) 4.94835 0.716812i 0.989670 0.143362i
\(6\) 0 0
\(7\) −5.64620 5.64620i −0.806600 0.806600i 0.177517 0.984118i \(-0.443193\pi\)
−0.984118 + 0.177517i \(0.943193\pi\)
\(8\) −5.21513 + 5.21513i −0.651891 + 0.651891i
\(9\) 0 0
\(10\) −4.32192 3.22822i −0.432192 0.322822i
\(11\) −3.31662 −0.301511
\(12\) 0 0
\(13\) −13.3014 + 13.3014i −1.02318 + 1.02318i −0.0234586 + 0.999725i \(0.507468\pi\)
−0.999725 + 0.0234586i \(0.992532\pi\)
\(14\) 8.61491i 0.615351i
\(15\) 0 0
\(16\) −3.38676 −0.211672
\(17\) −21.6782 21.6782i −1.27519 1.27519i −0.943330 0.331855i \(-0.892325\pi\)
−0.331855 0.943330i \(-0.607675\pi\)
\(18\) 0 0
\(19\) 34.8757i 1.83556i 0.397084 + 0.917782i \(0.370022\pi\)
−0.397084 + 0.917782i \(0.629978\pi\)
\(20\) −2.03287 14.0335i −0.101643 0.701673i
\(21\) 0 0
\(22\) 2.53023 + 2.53023i 0.115011 + 0.115011i
\(23\) 15.6380 15.6380i 0.679913 0.679913i −0.280067 0.959980i \(-0.590357\pi\)
0.959980 + 0.280067i \(0.0903567\pi\)
\(24\) 0 0
\(25\) 23.9724 7.09407i 0.958894 0.283763i
\(26\) 20.2951 0.780580
\(27\) 0 0
\(28\) −16.0126 + 16.0126i −0.571877 + 0.571877i
\(29\) 11.8667i 0.409196i 0.978846 + 0.204598i \(0.0655887\pi\)
−0.978846 + 0.204598i \(0.934411\pi\)
\(30\) 0 0
\(31\) −24.8833 −0.802689 −0.401344 0.915927i \(-0.631457\pi\)
−0.401344 + 0.915927i \(0.631457\pi\)
\(32\) 23.4443 + 23.4443i 0.732633 + 0.732633i
\(33\) 0 0
\(34\) 33.0763i 0.972831i
\(35\) −31.9867 23.8921i −0.913905 0.682632i
\(36\) 0 0
\(37\) −9.97802 9.97802i −0.269676 0.269676i 0.559293 0.828970i \(-0.311073\pi\)
−0.828970 + 0.559293i \(0.811073\pi\)
\(38\) 26.6065 26.6065i 0.700170 0.700170i
\(39\) 0 0
\(40\) −22.0680 + 29.5446i −0.551701 + 0.738614i
\(41\) 13.0596 0.318527 0.159263 0.987236i \(-0.449088\pi\)
0.159263 + 0.987236i \(0.449088\pi\)
\(42\) 0 0
\(43\) −2.85546 + 2.85546i −0.0664060 + 0.0664060i −0.739530 0.673124i \(-0.764952\pi\)
0.673124 + 0.739530i \(0.264952\pi\)
\(44\) 9.40590i 0.213770i
\(45\) 0 0
\(46\) −23.8603 −0.518702
\(47\) −21.6085 21.6085i −0.459755 0.459755i 0.438820 0.898575i \(-0.355397\pi\)
−0.898575 + 0.438820i \(0.855397\pi\)
\(48\) 0 0
\(49\) 14.7592i 0.301208i
\(50\) −23.7004 12.8763i −0.474008 0.257527i
\(51\) 0 0
\(52\) 37.7225 + 37.7225i 0.725433 + 0.725433i
\(53\) 7.24110 7.24110i 0.136624 0.136624i −0.635487 0.772112i \(-0.719201\pi\)
0.772112 + 0.635487i \(0.219201\pi\)
\(54\) 0 0
\(55\) −16.4118 + 2.37739i −0.298397 + 0.0432254i
\(56\) 58.8914 1.05163
\(57\) 0 0
\(58\) 9.05302 9.05302i 0.156087 0.156087i
\(59\) 57.4972i 0.974528i 0.873255 + 0.487264i \(0.162005\pi\)
−0.873255 + 0.487264i \(0.837995\pi\)
\(60\) 0 0
\(61\) −52.6576 −0.863239 −0.431620 0.902056i \(-0.642058\pi\)
−0.431620 + 0.902056i \(0.642058\pi\)
\(62\) 18.9834 + 18.9834i 0.306183 + 0.306183i
\(63\) 0 0
\(64\) 22.2239i 0.347249i
\(65\) −56.2853 + 75.3545i −0.865928 + 1.15930i
\(66\) 0 0
\(67\) −35.3923 35.3923i −0.528243 0.528243i 0.391805 0.920048i \(-0.371851\pi\)
−0.920048 + 0.391805i \(0.871851\pi\)
\(68\) −61.4789 + 61.4789i −0.904102 + 0.904102i
\(69\) 0 0
\(70\) 6.17527 + 42.6296i 0.0882181 + 0.608994i
\(71\) −94.5007 −1.33100 −0.665498 0.746400i \(-0.731781\pi\)
−0.665498 + 0.746400i \(0.731781\pi\)
\(72\) 0 0
\(73\) −72.5959 + 72.5959i −0.994465 + 0.994465i −0.999985 0.00552010i \(-0.998243\pi\)
0.00552010 + 0.999985i \(0.498243\pi\)
\(74\) 15.2243i 0.205734i
\(75\) 0 0
\(76\) 98.9071 1.30141
\(77\) 18.7263 + 18.7263i 0.243199 + 0.243199i
\(78\) 0 0
\(79\) 84.9764i 1.07565i 0.843056 + 0.537825i \(0.180754\pi\)
−0.843056 + 0.537825i \(0.819246\pi\)
\(80\) −16.7589 + 2.42767i −0.209486 + 0.0303458i
\(81\) 0 0
\(82\) −9.96309 9.96309i −0.121501 0.121501i
\(83\) 68.0357 68.0357i 0.819707 0.819707i −0.166358 0.986065i \(-0.553201\pi\)
0.986065 + 0.166358i \(0.0532008\pi\)
\(84\) 0 0
\(85\) −122.810 91.7320i −1.44483 1.07920i
\(86\) 4.35682 0.0506607
\(87\) 0 0
\(88\) 17.2966 17.2966i 0.196553 0.196553i
\(89\) 22.9837i 0.258244i −0.991629 0.129122i \(-0.958784\pi\)
0.991629 0.129122i \(-0.0412158\pi\)
\(90\) 0 0
\(91\) 150.205 1.65060
\(92\) −44.3492 44.3492i −0.482056 0.482056i
\(93\) 0 0
\(94\) 32.9700i 0.350744i
\(95\) 24.9993 + 172.577i 0.263151 + 1.81660i
\(96\) 0 0
\(97\) −27.4864 27.4864i −0.283365 0.283365i 0.551084 0.834449i \(-0.314214\pi\)
−0.834449 + 0.551084i \(0.814214\pi\)
\(98\) 11.2597 11.2597i 0.114895 0.114895i
\(99\) 0 0
\(100\) −20.1187 67.9853i −0.201187 0.679853i
\(101\) 134.985 1.33648 0.668240 0.743946i \(-0.267048\pi\)
0.668240 + 0.743946i \(0.267048\pi\)
\(102\) 0 0
\(103\) −141.839 + 141.839i −1.37708 + 1.37708i −0.527561 + 0.849517i \(0.676893\pi\)
−0.849517 + 0.527561i \(0.823107\pi\)
\(104\) 138.737i 1.33401i
\(105\) 0 0
\(106\) −11.0484 −0.104230
\(107\) −81.1330 81.1330i −0.758253 0.758253i 0.217752 0.976004i \(-0.430128\pi\)
−0.976004 + 0.217752i \(0.930128\pi\)
\(108\) 0 0
\(109\) 214.556i 1.96840i −0.177060 0.984200i \(-0.556659\pi\)
0.177060 0.984200i \(-0.443341\pi\)
\(110\) 14.3342 + 10.7068i 0.130311 + 0.0973344i
\(111\) 0 0
\(112\) 19.1223 + 19.1223i 0.170735 + 0.170735i
\(113\) 74.6983 74.6983i 0.661047 0.661047i −0.294580 0.955627i \(-0.595180\pi\)
0.955627 + 0.294580i \(0.0951797\pi\)
\(114\) 0 0
\(115\) 66.1729 88.5919i 0.575416 0.770364i
\(116\) 33.6538 0.290119
\(117\) 0 0
\(118\) 43.8642 43.8642i 0.371731 0.371731i
\(119\) 244.799i 2.05713i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 40.1722 + 40.1722i 0.329280 + 0.329280i
\(123\) 0 0
\(124\) 70.5688i 0.569103i
\(125\) 113.539 52.2876i 0.908308 0.418301i
\(126\) 0 0
\(127\) −19.2265 19.2265i −0.151390 0.151390i 0.627349 0.778739i \(-0.284140\pi\)
−0.778739 + 0.627349i \(0.784140\pi\)
\(128\) 76.8225 76.8225i 0.600176 0.600176i
\(129\) 0 0
\(130\) 100.427 14.5478i 0.772517 0.111906i
\(131\) −142.166 −1.08524 −0.542620 0.839979i \(-0.682567\pi\)
−0.542620 + 0.839979i \(0.682567\pi\)
\(132\) 0 0
\(133\) 196.915 196.915i 1.48057 1.48057i
\(134\) 54.0011i 0.402994i
\(135\) 0 0
\(136\) 226.109 1.66257
\(137\) −67.9414 67.9414i −0.495923 0.495923i 0.414243 0.910166i \(-0.364046\pi\)
−0.910166 + 0.414243i \(0.864046\pi\)
\(138\) 0 0
\(139\) 68.3755i 0.491910i −0.969281 0.245955i \(-0.920898\pi\)
0.969281 0.245955i \(-0.0791015\pi\)
\(140\) −67.7577 + 90.7137i −0.483984 + 0.647955i
\(141\) 0 0
\(142\) 72.0940 + 72.0940i 0.507704 + 0.507704i
\(143\) 44.1157 44.1157i 0.308501 0.308501i
\(144\) 0 0
\(145\) 8.50618 + 58.7205i 0.0586633 + 0.404969i
\(146\) 110.766 0.758671
\(147\) 0 0
\(148\) −28.2975 + 28.2975i −0.191200 + 0.191200i
\(149\) 158.915i 1.06654i −0.845945 0.533270i \(-0.820963\pi\)
0.845945 0.533270i \(-0.179037\pi\)
\(150\) 0 0
\(151\) −36.4129 −0.241145 −0.120573 0.992705i \(-0.538473\pi\)
−0.120573 + 0.992705i \(0.538473\pi\)
\(152\) −181.881 181.881i −1.19659 1.19659i
\(153\) 0 0
\(154\) 28.5724i 0.185535i
\(155\) −123.132 + 17.8367i −0.794397 + 0.115075i
\(156\) 0 0
\(157\) −81.3870 81.3870i −0.518389 0.518389i 0.398695 0.917084i \(-0.369463\pi\)
−0.917084 + 0.398695i \(0.869463\pi\)
\(158\) 64.8280 64.8280i 0.410304 0.410304i
\(159\) 0 0
\(160\) 132.816 + 99.2053i 0.830097 + 0.620033i
\(161\) −176.591 −1.09684
\(162\) 0 0
\(163\) 51.1071 51.1071i 0.313540 0.313540i −0.532739 0.846279i \(-0.678837\pi\)
0.846279 + 0.532739i \(0.178837\pi\)
\(164\) 37.0369i 0.225834i
\(165\) 0 0
\(166\) −103.808 −0.625350
\(167\) −25.6226 25.6226i −0.153429 0.153429i 0.626219 0.779647i \(-0.284602\pi\)
−0.779647 + 0.626219i \(0.784602\pi\)
\(168\) 0 0
\(169\) 184.854i 1.09381i
\(170\) 23.7094 + 163.673i 0.139467 + 0.962782i
\(171\) 0 0
\(172\) 8.09804 + 8.09804i 0.0470816 + 0.0470816i
\(173\) 19.5766 19.5766i 0.113160 0.113160i −0.648260 0.761419i \(-0.724503\pi\)
0.761419 + 0.648260i \(0.224503\pi\)
\(174\) 0 0
\(175\) −175.407 95.2983i −1.00233 0.544561i
\(176\) 11.2326 0.0638216
\(177\) 0 0
\(178\) −17.5341 + 17.5341i −0.0985063 + 0.0985063i
\(179\) 296.275i 1.65517i 0.561340 + 0.827585i \(0.310286\pi\)
−0.561340 + 0.827585i \(0.689714\pi\)
\(180\) 0 0
\(181\) 60.5675 0.334627 0.167314 0.985904i \(-0.446491\pi\)
0.167314 + 0.985904i \(0.446491\pi\)
\(182\) −114.590 114.590i −0.629616 0.629616i
\(183\) 0 0
\(184\) 163.109i 0.886460i
\(185\) −56.5271 42.2224i −0.305552 0.228229i
\(186\) 0 0
\(187\) 71.8983 + 71.8983i 0.384483 + 0.384483i
\(188\) −61.2814 + 61.2814i −0.325965 + 0.325965i
\(189\) 0 0
\(190\) 112.586 150.730i 0.592560 0.793316i
\(191\) 282.738 1.48030 0.740152 0.672439i \(-0.234753\pi\)
0.740152 + 0.672439i \(0.234753\pi\)
\(192\) 0 0
\(193\) 224.475 224.475i 1.16308 1.16308i 0.179284 0.983797i \(-0.442622\pi\)
0.983797 0.179284i \(-0.0573782\pi\)
\(194\) 41.9384i 0.216177i
\(195\) 0 0
\(196\) 41.8569 0.213556
\(197\) −86.0459 86.0459i −0.436781 0.436781i 0.454146 0.890927i \(-0.349944\pi\)
−0.890927 + 0.454146i \(0.849944\pi\)
\(198\) 0 0
\(199\) 100.165i 0.503343i 0.967813 + 0.251672i \(0.0809803\pi\)
−0.967813 + 0.251672i \(0.919020\pi\)
\(200\) −88.0225 + 162.016i −0.440113 + 0.810078i
\(201\) 0 0
\(202\) −102.979 102.979i −0.509796 0.509796i
\(203\) 67.0017 67.0017i 0.330058 0.330058i
\(204\) 0 0
\(205\) 64.6235 9.36128i 0.315237 0.0456648i
\(206\) 216.416 1.05056
\(207\) 0 0
\(208\) 45.0486 45.0486i 0.216580 0.216580i
\(209\) 115.670i 0.553443i
\(210\) 0 0
\(211\) 20.2391 0.0959201 0.0479601 0.998849i \(-0.484728\pi\)
0.0479601 + 0.998849i \(0.484728\pi\)
\(212\) −20.5356 20.5356i −0.0968663 0.0968663i
\(213\) 0 0
\(214\) 123.792i 0.578466i
\(215\) −12.0830 + 16.1766i −0.0561999 + 0.0752402i
\(216\) 0 0
\(217\) 140.496 + 140.496i 0.647449 + 0.647449i
\(218\) −163.683 + 163.683i −0.750840 + 0.750840i
\(219\) 0 0
\(220\) 6.74226 + 46.5437i 0.0306466 + 0.211562i
\(221\) 576.699 2.60950
\(222\) 0 0
\(223\) −209.064 + 209.064i −0.937509 + 0.937509i −0.998159 0.0606503i \(-0.980683\pi\)
0.0606503 + 0.998159i \(0.480683\pi\)
\(224\) 264.742i 1.18188i
\(225\) 0 0
\(226\) −113.974 −0.504309
\(227\) −141.036 141.036i −0.621305 0.621305i 0.324560 0.945865i \(-0.394784\pi\)
−0.945865 + 0.324560i \(0.894784\pi\)
\(228\) 0 0
\(229\) 454.192i 1.98337i −0.128678 0.991686i \(-0.541073\pi\)
0.128678 0.991686i \(-0.458927\pi\)
\(230\) −118.069 + 17.1033i −0.513344 + 0.0743623i
\(231\) 0 0
\(232\) −61.8863 61.8863i −0.266751 0.266751i
\(233\) −242.026 + 242.026i −1.03874 + 1.03874i −0.0395211 + 0.999219i \(0.512583\pi\)
−0.999219 + 0.0395211i \(0.987417\pi\)
\(234\) 0 0
\(235\) −122.416 91.4372i −0.520918 0.389094i
\(236\) 163.061 0.690937
\(237\) 0 0
\(238\) 186.755 186.755i 0.784686 0.784686i
\(239\) 316.920i 1.32603i −0.748608 0.663013i \(-0.769277\pi\)
0.748608 0.663013i \(-0.230723\pi\)
\(240\) 0 0
\(241\) 79.5916 0.330256 0.165128 0.986272i \(-0.447196\pi\)
0.165128 + 0.986272i \(0.447196\pi\)
\(242\) −8.39183 8.39183i −0.0346770 0.0346770i
\(243\) 0 0
\(244\) 149.336i 0.612034i
\(245\) 10.5796 + 73.0338i 0.0431819 + 0.298097i
\(246\) 0 0
\(247\) −463.895 463.895i −1.87812 1.87812i
\(248\) 129.770 129.770i 0.523266 0.523266i
\(249\) 0 0
\(250\) −126.508 46.7280i −0.506031 0.186912i
\(251\) 125.487 0.499948 0.249974 0.968253i \(-0.419578\pi\)
0.249974 + 0.968253i \(0.419578\pi\)
\(252\) 0 0
\(253\) −51.8654 + 51.8654i −0.205002 + 0.205002i
\(254\) 29.3356i 0.115495i
\(255\) 0 0
\(256\) −206.111 −0.805120
\(257\) −267.818 267.818i −1.04210 1.04210i −0.999074 0.0430210i \(-0.986302\pi\)
−0.0430210 0.999074i \(-0.513698\pi\)
\(258\) 0 0
\(259\) 112.676i 0.435042i
\(260\) 213.704 + 159.624i 0.821940 + 0.613940i
\(261\) 0 0
\(262\) 108.458 + 108.458i 0.413961 + 0.413961i
\(263\) 87.0542 87.0542i 0.331004 0.331004i −0.521963 0.852968i \(-0.674800\pi\)
0.852968 + 0.521963i \(0.174800\pi\)
\(264\) 0 0
\(265\) 30.6410 41.0220i 0.115626 0.154800i
\(266\) −300.451 −1.12952
\(267\) 0 0
\(268\) −100.372 + 100.372i −0.374523 + 0.374523i
\(269\) 398.129i 1.48004i 0.672588 + 0.740018i \(0.265183\pi\)
−0.672588 + 0.740018i \(0.734817\pi\)
\(270\) 0 0
\(271\) −70.6482 −0.260695 −0.130347 0.991468i \(-0.541609\pi\)
−0.130347 + 0.991468i \(0.541609\pi\)
\(272\) 73.4187 + 73.4187i 0.269922 + 0.269922i
\(273\) 0 0
\(274\) 103.664i 0.378337i
\(275\) −79.5073 + 23.5284i −0.289118 + 0.0855577i
\(276\) 0 0
\(277\) 126.191 + 126.191i 0.455563 + 0.455563i 0.897196 0.441633i \(-0.145601\pi\)
−0.441633 + 0.897196i \(0.645601\pi\)
\(278\) −52.1632 + 52.1632i −0.187638 + 0.187638i
\(279\) 0 0
\(280\) 291.415 42.2140i 1.04077 0.150764i
\(281\) 369.039 1.31330 0.656652 0.754193i \(-0.271972\pi\)
0.656652 + 0.754193i \(0.271972\pi\)
\(282\) 0 0
\(283\) −90.3144 + 90.3144i −0.319132 + 0.319132i −0.848434 0.529301i \(-0.822454\pi\)
0.529301 + 0.848434i \(0.322454\pi\)
\(284\) 268.003i 0.943671i
\(285\) 0 0
\(286\) −67.3112 −0.235354
\(287\) −73.7372 73.7372i −0.256924 0.256924i
\(288\) 0 0
\(289\) 650.885i 2.25220i
\(290\) 38.3082 51.2869i 0.132097 0.176851i
\(291\) 0 0
\(292\) 205.881 + 205.881i 0.705072 + 0.705072i
\(293\) −228.045 + 228.045i −0.778311 + 0.778311i −0.979543 0.201233i \(-0.935505\pi\)
0.201233 + 0.979543i \(0.435505\pi\)
\(294\) 0 0
\(295\) 41.2146 + 284.516i 0.139711 + 0.964462i
\(296\) 104.073 0.351599
\(297\) 0 0
\(298\) −121.235 + 121.235i −0.406829 + 0.406829i
\(299\) 416.014i 1.39135i
\(300\) 0 0
\(301\) 32.2450 0.107126
\(302\) 27.7792 + 27.7792i 0.0919840 + 0.0919840i
\(303\) 0 0
\(304\) 118.116i 0.388538i
\(305\) −260.568 + 37.7456i −0.854322 + 0.123756i
\(306\) 0 0
\(307\) −166.353 166.353i −0.541866 0.541866i 0.382209 0.924076i \(-0.375163\pi\)
−0.924076 + 0.382209i \(0.875163\pi\)
\(308\) 53.1076 53.1076i 0.172427 0.172427i
\(309\) 0 0
\(310\) 107.544 + 80.3288i 0.346915 + 0.259125i
\(311\) −538.220 −1.73061 −0.865305 0.501246i \(-0.832875\pi\)
−0.865305 + 0.501246i \(0.832875\pi\)
\(312\) 0 0
\(313\) −157.952 + 157.952i −0.504639 + 0.504639i −0.912876 0.408237i \(-0.866144\pi\)
0.408237 + 0.912876i \(0.366144\pi\)
\(314\) 124.179i 0.395476i
\(315\) 0 0
\(316\) 240.992 0.762632
\(317\) 138.919 + 138.919i 0.438229 + 0.438229i 0.891416 0.453187i \(-0.149713\pi\)
−0.453187 + 0.891416i \(0.649713\pi\)
\(318\) 0 0
\(319\) 39.3574i 0.123377i
\(320\) −15.9304 109.972i −0.0497824 0.343662i
\(321\) 0 0
\(322\) 134.720 + 134.720i 0.418385 + 0.418385i
\(323\) 756.041 756.041i 2.34069 2.34069i
\(324\) 0 0
\(325\) −224.505 + 413.227i −0.690783 + 1.27147i
\(326\) −77.9785 −0.239198
\(327\) 0 0
\(328\) −68.1076 + 68.1076i −0.207645 + 0.207645i
\(329\) 244.012i 0.741677i
\(330\) 0 0
\(331\) 8.14051 0.0245937 0.0122968 0.999924i \(-0.496086\pi\)
0.0122968 + 0.999924i \(0.496086\pi\)
\(332\) −192.948 192.948i −0.581169 0.581169i
\(333\) 0 0
\(334\) 39.0946i 0.117050i
\(335\) −200.503 149.764i −0.598517 0.447056i
\(336\) 0 0
\(337\) 224.968 + 224.968i 0.667560 + 0.667560i 0.957151 0.289591i \(-0.0935193\pi\)
−0.289591 + 0.957151i \(0.593519\pi\)
\(338\) −141.024 + 141.024i −0.417230 + 0.417230i
\(339\) 0 0
\(340\) −260.151 + 348.288i −0.765149 + 1.02438i
\(341\) 82.5287 0.242020
\(342\) 0 0
\(343\) −193.330 + 193.330i −0.563646 + 0.563646i
\(344\) 29.7832i 0.0865790i
\(345\) 0 0
\(346\) −29.8698 −0.0863288
\(347\) 91.0351 + 91.0351i 0.262349 + 0.262349i 0.826008 0.563659i \(-0.190607\pi\)
−0.563659 + 0.826008i \(0.690607\pi\)
\(348\) 0 0
\(349\) 331.235i 0.949096i −0.880230 0.474548i \(-0.842612\pi\)
0.880230 0.474548i \(-0.157388\pi\)
\(350\) 61.1148 + 206.520i 0.174614 + 0.590056i
\(351\) 0 0
\(352\) −77.7558 77.7558i −0.220897 0.220897i
\(353\) 277.162 277.162i 0.785161 0.785161i −0.195536 0.980697i \(-0.562645\pi\)
0.980697 + 0.195536i \(0.0626446\pi\)
\(354\) 0 0
\(355\) −467.623 + 67.7392i −1.31725 + 0.190815i
\(356\) −65.1814 −0.183094
\(357\) 0 0
\(358\) 226.027 226.027i 0.631360 0.631360i
\(359\) 524.643i 1.46140i 0.682699 + 0.730700i \(0.260806\pi\)
−0.682699 + 0.730700i \(0.739194\pi\)
\(360\) 0 0
\(361\) −855.316 −2.36930
\(362\) −46.2066 46.2066i −0.127642 0.127642i
\(363\) 0 0
\(364\) 425.978i 1.17027i
\(365\) −307.193 + 411.268i −0.841623 + 1.12676i
\(366\) 0 0
\(367\) 373.653 + 373.653i 1.01813 + 1.01813i 0.999833 + 0.0182967i \(0.00582436\pi\)
0.0182967 + 0.999833i \(0.494176\pi\)
\(368\) −52.9622 + 52.9622i −0.143919 + 0.143919i
\(369\) 0 0
\(370\) 10.9130 + 75.3354i 0.0294946 + 0.203609i
\(371\) −81.7694 −0.220403
\(372\) 0 0
\(373\) −178.188 + 178.188i −0.477716 + 0.477716i −0.904400 0.426685i \(-0.859681\pi\)
0.426685 + 0.904400i \(0.359681\pi\)
\(374\) 109.702i 0.293320i
\(375\) 0 0
\(376\) 225.382 0.599421
\(377\) −157.843 157.843i −0.418683 0.418683i
\(378\) 0 0
\(379\) 98.4759i 0.259831i −0.991525 0.129915i \(-0.958529\pi\)
0.991525 0.129915i \(-0.0414706\pi\)
\(380\) 489.427 70.8977i 1.28797 0.186573i
\(381\) 0 0
\(382\) −215.699 215.699i −0.564658 0.564658i
\(383\) 48.4087 48.4087i 0.126393 0.126393i −0.641080 0.767474i \(-0.721513\pi\)
0.767474 + 0.641080i \(0.221513\pi\)
\(384\) 0 0
\(385\) 106.088 + 79.2412i 0.275553 + 0.205821i
\(386\) −342.501 −0.887308
\(387\) 0 0
\(388\) −77.9510 + 77.9510i −0.200905 + 0.200905i
\(389\) 160.956i 0.413769i −0.978365 0.206884i \(-0.933668\pi\)
0.978365 0.206884i \(-0.0663324\pi\)
\(390\) 0 0
\(391\) −678.006 −1.73403
\(392\) −76.9713 76.9713i −0.196355 0.196355i
\(393\) 0 0
\(394\) 131.288i 0.333218i
\(395\) 60.9121 + 420.493i 0.154208 + 1.06454i
\(396\) 0 0
\(397\) −81.4640 81.4640i −0.205199 0.205199i 0.597024 0.802223i \(-0.296350\pi\)
−0.802223 + 0.597024i \(0.796350\pi\)
\(398\) 76.4155 76.4155i 0.191999 0.191999i
\(399\) 0 0
\(400\) −81.1886 + 24.0259i −0.202971 + 0.0600648i
\(401\) 707.539 1.76444 0.882219 0.470840i \(-0.156049\pi\)
0.882219 + 0.470840i \(0.156049\pi\)
\(402\) 0 0
\(403\) 330.983 330.983i 0.821298 0.821298i
\(404\) 382.814i 0.947560i
\(405\) 0 0
\(406\) −102.230 −0.251799
\(407\) 33.0934 + 33.0934i 0.0813105 + 0.0813105i
\(408\) 0 0
\(409\) 578.569i 1.41459i −0.706917 0.707297i \(-0.749914\pi\)
0.706917 0.707297i \(-0.250086\pi\)
\(410\) −56.4425 42.1592i −0.137665 0.102827i
\(411\) 0 0
\(412\) 402.254 + 402.254i 0.976344 + 0.976344i
\(413\) 324.641 324.641i 0.786055 0.786055i
\(414\) 0 0
\(415\) 287.896 385.433i 0.693725 0.928755i
\(416\) −623.682 −1.49924
\(417\) 0 0
\(418\) −88.2437 + 88.2437i −0.211109 + 0.211109i
\(419\) 641.532i 1.53110i −0.643374 0.765552i \(-0.722466\pi\)
0.643374 0.765552i \(-0.277534\pi\)
\(420\) 0 0
\(421\) 175.632 0.417177 0.208589 0.978003i \(-0.433113\pi\)
0.208589 + 0.978003i \(0.433113\pi\)
\(422\) −15.4403 15.4403i −0.0365884 0.0365884i
\(423\) 0 0
\(424\) 75.5266i 0.178129i
\(425\) −673.463 365.890i −1.58462 0.860918i
\(426\) 0 0
\(427\) 297.316 + 297.316i 0.696289 + 0.696289i
\(428\) −230.092 + 230.092i −0.537598 + 0.537598i
\(429\) 0 0
\(430\) 21.5591 3.12302i 0.0501374 0.00726284i
\(431\) −160.285 −0.371890 −0.185945 0.982560i \(-0.559535\pi\)
−0.185945 + 0.982560i \(0.559535\pi\)
\(432\) 0 0
\(433\) 318.636 318.636i 0.735880 0.735880i −0.235898 0.971778i \(-0.575803\pi\)
0.971778 + 0.235898i \(0.0758031\pi\)
\(434\) 214.368i 0.493935i
\(435\) 0 0
\(436\) −608.477 −1.39559
\(437\) 545.387 + 545.387i 1.24802 + 1.24802i
\(438\) 0 0
\(439\) 145.324i 0.331034i 0.986207 + 0.165517i \(0.0529293\pi\)
−0.986207 + 0.165517i \(0.947071\pi\)
\(440\) 73.1914 97.9883i 0.166344 0.222701i
\(441\) 0 0
\(442\) −439.960 439.960i −0.995385 0.995385i
\(443\) 180.836 180.836i 0.408208 0.408208i −0.472905 0.881113i \(-0.656795\pi\)
0.881113 + 0.472905i \(0.156795\pi\)
\(444\) 0 0
\(445\) −16.4750 113.731i −0.0370224 0.255576i
\(446\) 318.988 0.715220
\(447\) 0 0
\(448\) −125.481 + 125.481i −0.280091 + 0.280091i
\(449\) 343.266i 0.764512i −0.924057 0.382256i \(-0.875147\pi\)
0.924057 0.382256i \(-0.124853\pi\)
\(450\) 0 0
\(451\) −43.3138 −0.0960395
\(452\) −211.843 211.843i −0.468680 0.468680i
\(453\) 0 0
\(454\) 215.192i 0.473990i
\(455\) 743.265 107.668i 1.63355 0.236634i
\(456\) 0 0
\(457\) −122.346 122.346i −0.267716 0.267716i 0.560463 0.828179i \(-0.310623\pi\)
−0.828179 + 0.560463i \(0.810623\pi\)
\(458\) −346.501 + 346.501i −0.756552 + 0.756552i
\(459\) 0 0
\(460\) −251.245 187.665i −0.546185 0.407968i
\(461\) −677.352 −1.46931 −0.734655 0.678441i \(-0.762656\pi\)
−0.734655 + 0.678441i \(0.762656\pi\)
\(462\) 0 0
\(463\) −13.6180 + 13.6180i −0.0294126 + 0.0294126i −0.721660 0.692248i \(-0.756621\pi\)
0.692248 + 0.721660i \(0.256621\pi\)
\(464\) 40.1896i 0.0866155i
\(465\) 0 0
\(466\) 369.281 0.792448
\(467\) −102.513 102.513i −0.219513 0.219513i 0.588780 0.808293i \(-0.299608\pi\)
−0.808293 + 0.588780i \(0.799608\pi\)
\(468\) 0 0
\(469\) 399.664i 0.852162i
\(470\) 23.6333 + 163.147i 0.0502835 + 0.347121i
\(471\) 0 0
\(472\) −299.855 299.855i −0.635287 0.635287i
\(473\) 9.47048 9.47048i 0.0200222 0.0200222i
\(474\) 0 0
\(475\) 247.411 + 836.053i 0.520865 + 1.76011i
\(476\) 694.245 1.45850
\(477\) 0 0
\(478\) −241.776 + 241.776i −0.505809 + 0.505809i
\(479\) 558.469i 1.16591i −0.812506 0.582953i \(-0.801897\pi\)
0.812506 0.582953i \(-0.198103\pi\)
\(480\) 0 0
\(481\) 265.443 0.551857
\(482\) −60.7199 60.7199i −0.125975 0.125975i
\(483\) 0 0
\(484\) 31.1958i 0.0644542i
\(485\) −155.715 116.310i −0.321062 0.239814i
\(486\) 0 0
\(487\) 289.688 + 289.688i 0.594841 + 0.594841i 0.938935 0.344094i \(-0.111814\pi\)
−0.344094 + 0.938935i \(0.611814\pi\)
\(488\) 274.616 274.616i 0.562738 0.562738i
\(489\) 0 0
\(490\) 47.6459 63.7881i 0.0972366 0.130180i
\(491\) −111.574 −0.227238 −0.113619 0.993524i \(-0.536244\pi\)
−0.113619 + 0.993524i \(0.536244\pi\)
\(492\) 0 0
\(493\) 257.248 257.248i 0.521801 0.521801i
\(494\) 707.806i 1.43281i
\(495\) 0 0
\(496\) 84.2739 0.169907
\(497\) 533.570 + 533.570i 1.07358 + 1.07358i
\(498\) 0 0
\(499\) 319.712i 0.640705i 0.947298 + 0.320353i \(0.103801\pi\)
−0.947298 + 0.320353i \(0.896199\pi\)
\(500\) −148.287 321.994i −0.296574 0.643987i
\(501\) 0 0
\(502\) −95.7332 95.7332i −0.190704 0.190704i
\(503\) 240.825 240.825i 0.478777 0.478777i −0.425964 0.904740i \(-0.640065\pi\)
0.904740 + 0.425964i \(0.140065\pi\)
\(504\) 0 0
\(505\) 667.951 96.7585i 1.32268 0.191601i
\(506\) 79.1356 0.156394
\(507\) 0 0
\(508\) −54.5262 + 54.5262i −0.107335 + 0.107335i
\(509\) 110.965i 0.218005i 0.994041 + 0.109003i \(0.0347657\pi\)
−0.994041 + 0.109003i \(0.965234\pi\)
\(510\) 0 0
\(511\) 819.783 1.60427
\(512\) −150.050 150.050i −0.293066 0.293066i
\(513\) 0 0
\(514\) 408.634i 0.795008i
\(515\) −600.198 + 803.541i −1.16543 + 1.56027i
\(516\) 0 0
\(517\) 71.6673 + 71.6673i 0.138621 + 0.138621i
\(518\) 85.9597 85.9597i 0.165945 0.165945i
\(519\) 0 0
\(520\) −99.4482 686.519i −0.191247 1.32023i
\(521\) −341.847 −0.656136 −0.328068 0.944654i \(-0.606397\pi\)
−0.328068 + 0.944654i \(0.606397\pi\)
\(522\) 0 0
\(523\) 92.5568 92.5568i 0.176973 0.176973i −0.613062 0.790035i \(-0.710062\pi\)
0.790035 + 0.613062i \(0.210062\pi\)
\(524\) 403.182i 0.769431i
\(525\) 0 0
\(526\) −132.826 −0.252521
\(527\) 539.425 + 539.425i 1.02358 + 1.02358i
\(528\) 0 0
\(529\) 39.9053i 0.0754354i
\(530\) −54.6713 + 7.91961i −0.103153 + 0.0149427i
\(531\) 0 0
\(532\) −558.449 558.449i −1.04972 1.04972i
\(533\) −173.711 + 173.711i −0.325911 + 0.325911i
\(534\) 0 0
\(535\) −459.632 343.318i −0.859125 0.641715i
\(536\) 369.151 0.688714
\(537\) 0 0
\(538\) 303.731 303.731i 0.564555 0.564555i
\(539\) 48.9508i 0.0908178i
\(540\) 0 0
\(541\) 388.779 0.718631 0.359315 0.933216i \(-0.383010\pi\)
0.359315 + 0.933216i \(0.383010\pi\)
\(542\) 53.8971 + 53.8971i 0.0994411 + 0.0994411i
\(543\) 0 0
\(544\) 1016.46i 1.86849i
\(545\) −153.796 1061.70i −0.282194 1.94807i
\(546\) 0 0
\(547\) 460.867 + 460.867i 0.842536 + 0.842536i 0.989188 0.146652i \(-0.0468497\pi\)
−0.146652 + 0.989188i \(0.546850\pi\)
\(548\) −192.681 + 192.681i −0.351608 + 0.351608i
\(549\) 0 0
\(550\) 78.6053 + 42.7060i 0.142919 + 0.0776473i
\(551\) −413.859 −0.751106
\(552\) 0 0
\(553\) 479.794 479.794i 0.867620 0.867620i
\(554\) 192.540i 0.347546i
\(555\) 0 0
\(556\) −193.912 −0.348762
\(557\) −252.526 252.526i −0.453369 0.453369i 0.443102 0.896471i \(-0.353878\pi\)
−0.896471 + 0.443102i \(0.853878\pi\)
\(558\) 0 0
\(559\) 75.9631i 0.135891i
\(560\) 108.331 + 80.9169i 0.193448 + 0.144494i
\(561\) 0 0
\(562\) −281.537 281.537i −0.500956 0.500956i
\(563\) −637.910 + 637.910i −1.13306 + 1.13306i −0.143389 + 0.989666i \(0.545800\pi\)
−0.989666 + 0.143389i \(0.954200\pi\)
\(564\) 0 0
\(565\) 316.089 423.178i 0.559449 0.748988i
\(566\) 137.801 0.243464
\(567\) 0 0
\(568\) 492.834 492.834i 0.867665 0.867665i
\(569\) 748.048i 1.31467i 0.753598 + 0.657335i \(0.228317\pi\)
−0.753598 + 0.657335i \(0.771683\pi\)
\(570\) 0 0
\(571\) 98.2879 0.172133 0.0860665 0.996289i \(-0.472570\pi\)
0.0860665 + 0.996289i \(0.472570\pi\)
\(572\) −125.111 125.111i −0.218726 0.218726i
\(573\) 0 0
\(574\) 112.507i 0.196006i
\(575\) 263.943 485.817i 0.459031 0.844899i
\(576\) 0 0
\(577\) 6.74285 + 6.74285i 0.0116861 + 0.0116861i 0.712926 0.701240i \(-0.247370\pi\)
−0.701240 + 0.712926i \(0.747370\pi\)
\(578\) 496.556 496.556i 0.859093 0.859093i
\(579\) 0 0
\(580\) 166.531 24.1234i 0.287122 0.0415921i
\(581\) −768.287 −1.32235
\(582\) 0 0
\(583\) −24.0160 + 24.0160i −0.0411938 + 0.0411938i
\(584\) 757.195i 1.29657i
\(585\) 0 0
\(586\) 347.948 0.593769
\(587\) 535.346 + 535.346i 0.912003 + 0.912003i 0.996430 0.0844269i \(-0.0269059\pi\)
−0.0844269 + 0.996430i \(0.526906\pi\)
\(588\) 0 0
\(589\) 867.825i 1.47339i
\(590\) 185.613 248.498i 0.314599 0.421183i
\(591\) 0 0
\(592\) 33.7931 + 33.7931i 0.0570830 + 0.0570830i
\(593\) −652.415 + 652.415i −1.10019 + 1.10019i −0.105808 + 0.994387i \(0.533743\pi\)
−0.994387 + 0.105808i \(0.966257\pi\)
\(594\) 0 0
\(595\) 175.474 + 1211.35i 0.294915 + 2.03588i
\(596\) −450.679 −0.756174
\(597\) 0 0
\(598\) 317.375 317.375i 0.530727 0.530727i
\(599\) 340.966i 0.569225i 0.958643 + 0.284613i \(0.0918649\pi\)
−0.958643 + 0.284613i \(0.908135\pi\)
\(600\) 0 0
\(601\) 467.606 0.778047 0.389023 0.921228i \(-0.372813\pi\)
0.389023 + 0.921228i \(0.372813\pi\)
\(602\) −24.5995 24.5995i −0.0408630 0.0408630i
\(603\) 0 0
\(604\) 103.266i 0.170971i
\(605\) 54.4319 7.88493i 0.0899700 0.0130329i
\(606\) 0 0
\(607\) −182.070 182.070i −0.299951 0.299951i 0.541044 0.840994i \(-0.318029\pi\)
−0.840994 + 0.541044i \(0.818029\pi\)
\(608\) −817.636 + 817.636i −1.34480 + 1.34480i
\(609\) 0 0
\(610\) 227.582 + 169.990i 0.373085 + 0.278672i
\(611\) 574.846 0.940828
\(612\) 0 0
\(613\) 183.193 183.193i 0.298847 0.298847i −0.541715 0.840562i \(-0.682225\pi\)
0.840562 + 0.541715i \(0.182225\pi\)
\(614\) 253.819i 0.413387i
\(615\) 0 0
\(616\) −195.321 −0.317079
\(617\) 164.004 + 164.004i 0.265809 + 0.265809i 0.827409 0.561600i \(-0.189814\pi\)
−0.561600 + 0.827409i \(0.689814\pi\)
\(618\) 0 0
\(619\) 657.075i 1.06151i −0.847525 0.530755i \(-0.821908\pi\)
0.847525 0.530755i \(-0.178092\pi\)
\(620\) 50.5845 + 349.199i 0.0815880 + 0.563225i
\(621\) 0 0
\(622\) 410.605 + 410.605i 0.660136 + 0.660136i
\(623\) −129.771 + 129.771i −0.208299 + 0.208299i
\(624\) 0 0
\(625\) 524.348 340.123i 0.838957 0.544197i
\(626\) 241.001 0.384986
\(627\) 0 0
\(628\) −230.812 + 230.812i −0.367536 + 0.367536i
\(629\) 432.610i 0.687775i
\(630\) 0 0
\(631\) −919.159 −1.45667 −0.728335 0.685221i \(-0.759706\pi\)
−0.728335 + 0.685221i \(0.759706\pi\)
\(632\) −443.163 443.163i −0.701207 0.701207i
\(633\) 0 0
\(634\) 211.960i 0.334322i
\(635\) −108.921 81.3578i −0.171530 0.128123i
\(636\) 0 0
\(637\) −196.318 196.318i −0.308191 0.308191i
\(638\) −30.0255 + 30.0255i −0.0470619 + 0.0470619i
\(639\) 0 0
\(640\) 325.078 435.212i 0.507934 0.680019i
\(641\) 61.4913 0.0959303 0.0479651 0.998849i \(-0.484726\pi\)
0.0479651 + 0.998849i \(0.484726\pi\)
\(642\) 0 0
\(643\) −570.327 + 570.327i −0.886978 + 0.886978i −0.994232 0.107254i \(-0.965794\pi\)
0.107254 + 0.994232i \(0.465794\pi\)
\(644\) 500.809i 0.777653i
\(645\) 0 0
\(646\) −1153.56 −1.78569
\(647\) 611.891 + 611.891i 0.945736 + 0.945736i 0.998602 0.0528656i \(-0.0168355\pi\)
−0.0528656 + 0.998602i \(0.516835\pi\)
\(648\) 0 0
\(649\) 190.697i 0.293831i
\(650\) 486.521 143.975i 0.748494 0.221500i
\(651\) 0 0
\(652\) −144.939 144.939i −0.222299 0.222299i
\(653\) 734.878 734.878i 1.12539 1.12539i 0.134470 0.990918i \(-0.457067\pi\)
0.990918 0.134470i \(-0.0429331\pi\)
\(654\) 0 0
\(655\) −703.489 + 101.906i −1.07403 + 0.155582i
\(656\) −44.2297 −0.0674234
\(657\) 0 0
\(658\) 186.155 186.155i 0.282911 0.282911i
\(659\) 630.823i 0.957243i −0.878021 0.478621i \(-0.841137\pi\)
0.878021 0.478621i \(-0.158863\pi\)
\(660\) 0 0
\(661\) 1194.50 1.80711 0.903554 0.428474i \(-0.140949\pi\)
0.903554 + 0.428474i \(0.140949\pi\)
\(662\) −6.21035 6.21035i −0.00938119 0.00938119i
\(663\) 0 0
\(664\) 709.630i 1.06872i
\(665\) 833.255 1115.56i 1.25302 1.67753i
\(666\) 0 0
\(667\) 185.571 + 185.571i 0.278218 + 0.278218i
\(668\) −72.6652 + 72.6652i −0.108780 + 0.108780i
\(669\) 0 0
\(670\) 38.7086 + 267.217i 0.0577741 + 0.398831i
\(671\) 174.646 0.260277
\(672\) 0 0
\(673\) 78.8533 78.8533i 0.117167 0.117167i −0.646092 0.763259i \(-0.723598\pi\)
0.763259 + 0.646092i \(0.223598\pi\)
\(674\) 343.253i 0.509277i
\(675\) 0 0
\(676\) −524.242 −0.775506
\(677\) 107.293 + 107.293i 0.158483 + 0.158483i 0.781894 0.623411i \(-0.214254\pi\)
−0.623411 + 0.781894i \(0.714254\pi\)
\(678\) 0 0
\(679\) 310.388i 0.457125i
\(680\) 1118.87 162.077i 1.64539 0.238349i
\(681\) 0 0
\(682\) −62.9607 62.9607i −0.0923177 0.0923177i
\(683\) 82.9789 82.9789i 0.121492 0.121492i −0.643747 0.765239i \(-0.722621\pi\)
0.765239 + 0.643747i \(0.222621\pi\)
\(684\) 0 0
\(685\) −384.899 287.497i −0.561897 0.419703i
\(686\) 294.981 0.430002
\(687\) 0 0
\(688\) 9.67075 9.67075i 0.0140563 0.0140563i
\(689\) 192.633i 0.279584i
\(690\) 0 0
\(691\) −256.614 −0.371366 −0.185683 0.982610i \(-0.559450\pi\)
−0.185683 + 0.982610i \(0.559450\pi\)
\(692\) −55.5190 55.5190i −0.0802298 0.0802298i
\(693\) 0 0
\(694\) 138.900i 0.200144i
\(695\) −49.0123 338.346i −0.0705213 0.486829i
\(696\) 0 0
\(697\) −283.108 283.108i −0.406181 0.406181i
\(698\) −252.697 + 252.697i −0.362030 + 0.362030i
\(699\) 0 0
\(700\) −270.265 + 497.453i −0.386092 + 0.710647i
\(701\) −1015.74 −1.44898 −0.724491 0.689284i \(-0.757925\pi\)
−0.724491 + 0.689284i \(0.757925\pi\)
\(702\) 0 0
\(703\) 347.991 347.991i 0.495008 0.495008i
\(704\) 73.7085i 0.104700i
\(705\) 0 0
\(706\) −422.890 −0.598994
\(707\) −762.150 762.150i −1.07801 1.07801i
\(708\) 0 0
\(709\) 20.1332i 0.0283966i −0.999899 0.0141983i \(-0.995480\pi\)
0.999899 0.0141983i \(-0.00451961\pi\)
\(710\) 408.424 + 305.069i 0.575246 + 0.429674i
\(711\) 0 0
\(712\) 119.863 + 119.863i 0.168347 + 0.168347i
\(713\) −389.126 + 389.126i −0.545759 + 0.545759i
\(714\) 0 0
\(715\) 186.677 249.923i 0.261087 0.349542i
\(716\) 840.233 1.17351
\(717\) 0 0
\(718\) 400.247 400.247i 0.557446 0.557446i
\(719\) 1372.93i 1.90950i −0.297414 0.954748i \(-0.596124\pi\)
0.297414 0.954748i \(-0.403876\pi\)
\(720\) 0 0
\(721\) 1601.70 2.22150
\(722\) 652.515 + 652.515i 0.903761 + 0.903761i
\(723\) 0 0
\(724\) 171.769i 0.237249i
\(725\) 84.1831 + 284.473i 0.116115 + 0.392376i
\(726\) 0 0
\(727\) 86.3075 + 86.3075i 0.118717 + 0.118717i 0.763970 0.645252i \(-0.223248\pi\)
−0.645252 + 0.763970i \(0.723248\pi\)
\(728\) −783.337 + 783.337i −1.07601 + 1.07601i
\(729\) 0 0
\(730\) 548.109 79.3983i 0.750834 0.108765i
\(731\) 123.802 0.169360
\(732\) 0 0
\(733\) −949.251 + 949.251i −1.29502 + 1.29502i −0.363381 + 0.931640i \(0.618378\pi\)
−0.931640 + 0.363381i \(0.881622\pi\)
\(734\) 570.116i 0.776725i
\(735\) 0 0
\(736\) 733.243 0.996254
\(737\) 117.383 + 117.383i 0.159271 + 0.159271i
\(738\) 0 0
\(739\) 654.872i 0.886160i −0.896482 0.443080i \(-0.853886\pi\)
0.896482 0.443080i \(-0.146114\pi\)
\(740\) −119.742 + 160.310i −0.161814 + 0.216635i
\(741\) 0 0
\(742\) 62.3814 + 62.3814i 0.0840719 + 0.0840719i
\(743\) −516.440 + 516.440i −0.695073 + 0.695073i −0.963344 0.268270i \(-0.913548\pi\)
0.268270 + 0.963344i \(0.413548\pi\)
\(744\) 0 0
\(745\) −113.912 786.365i −0.152902 1.05552i
\(746\) 271.877 0.364446
\(747\) 0 0
\(748\) 203.903 203.903i 0.272597 0.272597i
\(749\) 916.187i 1.22321i
\(750\) 0 0
\(751\) 457.318 0.608946 0.304473 0.952521i \(-0.401520\pi\)
0.304473 + 0.952521i \(0.401520\pi\)
\(752\) 73.1827 + 73.1827i 0.0973175 + 0.0973175i
\(753\) 0 0
\(754\) 240.836i 0.319410i
\(755\) −180.184 + 26.1012i −0.238654 + 0.0345711i
\(756\) 0 0
\(757\) 648.074 + 648.074i 0.856108 + 0.856108i 0.990877 0.134769i \(-0.0430292\pi\)
−0.134769 + 0.990877i \(0.543029\pi\)
\(758\) −75.1267 + 75.1267i −0.0991117 + 0.0991117i
\(759\) 0 0
\(760\) −1030.39 769.639i −1.35577 1.01268i
\(761\) −1042.24 −1.36957 −0.684784 0.728746i \(-0.740103\pi\)
−0.684784 + 0.728746i \(0.740103\pi\)
\(762\) 0 0
\(763\) −1211.42 + 1211.42i −1.58771 + 1.58771i
\(764\) 801.841i 1.04953i
\(765\) 0 0
\(766\) −73.8613 −0.0964247
\(767\) −764.792 764.792i −0.997121 0.997121i
\(768\) 0 0
\(769\) 1312.56i 1.70684i 0.521227 + 0.853418i \(0.325474\pi\)
−0.521227 + 0.853418i \(0.674526\pi\)
\(770\) −20.4810 141.386i −0.0265988 0.183619i
\(771\) 0 0
\(772\) −636.607 636.607i −0.824621 0.824621i
\(773\) −441.630 + 441.630i −0.571319 + 0.571319i −0.932497 0.361178i \(-0.882375\pi\)
0.361178 + 0.932497i \(0.382375\pi\)
\(774\) 0 0
\(775\) −596.513 + 176.524i −0.769694 + 0.227773i
\(776\) 286.690 0.369446
\(777\) 0 0
\(778\) −122.792 + 122.792i −0.157831 + 0.157831i
\(779\) 455.463i 0.584677i
\(780\) 0 0
\(781\) 313.423 0.401310
\(782\) 517.247 + 517.247i 0.661441 + 0.661441i
\(783\) 0 0
\(784\) 49.9859i 0.0637575i
\(785\) −461.071 344.392i −0.587351 0.438716i
\(786\) 0 0
\(787\) 113.137 + 113.137i 0.143758 + 0.143758i 0.775323 0.631565i \(-0.217587\pi\)
−0.631565 + 0.775323i \(0.717587\pi\)
\(788\) −244.025 + 244.025i −0.309676 + 0.309676i
\(789\) 0 0
\(790\) 274.322 367.261i 0.347243 0.464887i
\(791\) −843.524 −1.06640
\(792\) 0 0
\(793\) 700.419 700.419i 0.883252 0.883252i
\(794\) 124.297i 0.156545i
\(795\) 0 0
\(796\) 284.068 0.356869
\(797\) 954.456 + 954.456i 1.19756 + 1.19756i 0.974895 + 0.222667i \(0.0714761\pi\)
0.222667 + 0.974895i \(0.428524\pi\)
\(798\) 0 0
\(799\) 936.865i 1.17255i
\(800\) 728.330 + 395.699i 0.910412 + 0.494624i
\(801\) 0 0
\(802\) −539.777 539.777i −0.673039 0.673039i
\(803\) 240.773 240.773i 0.299842 0.299842i
\(804\) 0 0
\(805\) −873.833 + 126.582i −1.08551 + 0.157245i
\(806\) −505.010 −0.626563
\(807\) 0 0
\(808\) −703.962 + 703.962i −0.871240 + 0.871240i
\(809\) 1343.80i 1.66107i −0.556968 0.830534i \(-0.688036\pi\)
0.556968 0.830534i \(-0.311964\pi\)
\(810\) 0 0
\(811\) −1283.38 −1.58246 −0.791231 0.611518i \(-0.790559\pi\)
−0.791231 + 0.611518i \(0.790559\pi\)
\(812\) −190.016 190.016i −0.234010 0.234010i
\(813\) 0 0
\(814\) 50.4934i 0.0620313i
\(815\) 216.262 289.530i 0.265352 0.355251i
\(816\) 0 0
\(817\) −99.5862 99.5862i −0.121893 0.121893i
\(818\) −441.387 + 441.387i −0.539593 + 0.539593i
\(819\) 0 0
\(820\) −26.5484 183.271i −0.0323761 0.223502i
\(821\) −358.759 −0.436978 −0.218489 0.975839i \(-0.570113\pi\)
−0.218489 + 0.975839i \(0.570113\pi\)
\(822\) 0 0
\(823\) −1075.11 + 1075.11i −1.30633 + 1.30633i −0.382281 + 0.924046i \(0.624861\pi\)
−0.924046 + 0.382281i \(0.875139\pi\)
\(824\) 1479.42i 1.79541i
\(825\) 0 0
\(826\) −495.333 −0.599677
\(827\) 356.469 + 356.469i 0.431039 + 0.431039i 0.888982 0.457943i \(-0.151414\pi\)
−0.457943 + 0.888982i \(0.651414\pi\)
\(828\) 0 0
\(829\) 22.4556i 0.0270876i −0.999908 0.0135438i \(-0.995689\pi\)
0.999908 0.0135438i \(-0.00431126\pi\)
\(830\) −513.679 + 74.4108i −0.618890 + 0.0896516i
\(831\) 0 0
\(832\) 295.609 + 295.609i 0.355300 + 0.355300i
\(833\) 319.953 319.953i 0.384097 0.384097i
\(834\) 0 0
\(835\) −145.156 108.423i −0.173840 0.129848i
\(836\) −328.038 −0.392389
\(837\) 0 0
\(838\) −489.421 + 489.421i −0.584035 + 0.584035i
\(839\) 402.649i 0.479915i 0.970783 + 0.239958i \(0.0771335\pi\)
−0.970783 + 0.239958i \(0.922866\pi\)
\(840\) 0 0
\(841\) 700.182 0.832559
\(842\) −133.988 133.988i −0.159131 0.159131i
\(843\) 0 0
\(844\) 57.3979i 0.0680070i
\(845\) −132.505 914.721i −0.156811 1.08251i
\(846\) 0 0
\(847\) −62.1082 62.1082i −0.0733273 0.0733273i
\(848\) −24.5238 + 24.5238i −0.0289196 + 0.0289196i
\(849\) 0 0
\(850\) 234.645 + 792.916i 0.276053 + 0.932843i
\(851\) −312.073 −0.366713
\(852\) 0 0
\(853\) 553.945 553.945i 0.649409 0.649409i −0.303442 0.952850i \(-0.598136\pi\)
0.952850 + 0.303442i \(0.0981357\pi\)
\(854\) 453.640i 0.531195i
\(855\) 0 0
\(856\) 846.239 0.988597
\(857\) 188.069 + 188.069i 0.219451 + 0.219451i 0.808267 0.588816i \(-0.200406\pi\)
−0.588816 + 0.808267i \(0.700406\pi\)
\(858\) 0 0
\(859\) 1327.36i 1.54524i 0.634870 + 0.772619i \(0.281054\pi\)
−0.634870 + 0.772619i \(0.718946\pi\)
\(860\) 45.8767 + 34.2672i 0.0533450 + 0.0398456i
\(861\) 0 0
\(862\) 122.280 + 122.280i 0.141856 + 0.141856i
\(863\) −102.826 + 102.826i −0.119150 + 0.119150i −0.764168 0.645018i \(-0.776850\pi\)
0.645018 + 0.764168i \(0.276850\pi\)
\(864\) 0 0
\(865\) 82.8393 110.905i 0.0957679 0.128214i
\(866\) −486.171 −0.561398
\(867\) 0 0
\(868\) 398.446 398.446i 0.459039 0.459039i
\(869\) 281.835i 0.324321i
\(870\) 0 0
\(871\) 941.533 1.08098
\(872\) 1118.94 + 1118.94i 1.28318 + 1.28318i
\(873\) 0 0
\(874\) 832.145i 0.952111i
\(875\) −936.288 345.835i −1.07004 0.395240i
\(876\) 0 0
\(877\) 563.350 + 563.350i 0.642360 + 0.642360i 0.951135 0.308775i \(-0.0999190\pi\)
−0.308775 + 0.951135i \(0.599919\pi\)
\(878\) 110.867 110.867i 0.126272 0.126272i
\(879\) 0 0
\(880\) 55.5829 8.05166i 0.0631624 0.00914962i
\(881\) 914.185 1.03767 0.518834 0.854875i \(-0.326366\pi\)
0.518834 + 0.854875i \(0.326366\pi\)
\(882\) 0 0
\(883\) −653.317 + 653.317i −0.739884 + 0.739884i −0.972555 0.232672i \(-0.925253\pi\)
0.232672 + 0.972555i \(0.425253\pi\)
\(884\) 1635.51i 1.85012i
\(885\) 0 0
\(886\) −275.917 −0.311419
\(887\) 682.260 + 682.260i 0.769177 + 0.769177i 0.977962 0.208785i \(-0.0669509\pi\)
−0.208785 + 0.977962i \(0.566951\pi\)
\(888\) 0 0
\(889\) 217.114i 0.244222i
\(890\) −74.1963 + 99.3336i −0.0833666 + 0.111611i
\(891\) 0 0
\(892\) 592.904 + 592.904i 0.664690 + 0.664690i
\(893\) 753.612 753.612i 0.843910 0.843910i
\(894\) 0 0
\(895\) 212.374 + 1466.08i 0.237289 + 1.63807i
\(896\) −867.511 −0.968205
\(897\) 0 0
\(898\) −261.875 + 261.875i −0.291621 + 0.291621i
\(899\) 295.283i 0.328457i
\(900\) 0 0
\(901\) −313.947 −0.348443
\(902\) 33.0438 + 33.0438i 0.0366340 + 0.0366340i
\(903\) 0 0
\(904\) 779.123i 0.861862i
\(905\) 299.709 43.4155i 0.331170 0.0479729i
\(906\) 0 0
\(907\) 614.819 + 614.819i 0.677860 + 0.677860i 0.959516 0.281655i \(-0.0908835\pi\)
−0.281655 + 0.959516i \(0.590883\pi\)
\(908\) −399.977 + 399.977i −0.440503 + 0.440503i
\(909\) 0 0
\(910\) −649.172 484.893i −0.713376 0.532849i
\(911\) −726.132 −0.797071 −0.398536 0.917153i \(-0.630482\pi\)
−0.398536 + 0.917153i \(0.630482\pi\)
\(912\) 0 0
\(913\) −225.649 + 225.649i −0.247151 + 0.247151i
\(914\) 186.675i 0.204239i
\(915\) 0 0
\(916\) −1288.08 −1.40620
\(917\) 802.700 + 802.700i 0.875354 + 0.875354i
\(918\) 0 0
\(919\) 1208.30i 1.31480i 0.753544 + 0.657398i \(0.228343\pi\)
−0.753544 + 0.657398i \(0.771657\pi\)
\(920\) 116.918 + 807.118i 0.127085 + 0.877303i
\(921\) 0 0
\(922\) 516.748 + 516.748i 0.560464 + 0.560464i
\(923\) 1256.99 1256.99i 1.36185 1.36185i
\(924\) 0 0
\(925\) −309.982 168.412i −0.335115 0.182067i
\(926\) 20.7783 0.0224387
\(927\) 0 0
\(928\) −278.206 + 278.206i −0.299791 + 0.299791i
\(929\) 1704.41i 1.83468i 0.398109 + 0.917338i \(0.369667\pi\)
−0.398109 + 0.917338i \(0.630333\pi\)
\(930\) 0 0
\(931\) −514.738 −0.552888
\(932\) 686.383 + 686.383i 0.736463 + 0.736463i
\(933\) 0 0
\(934\) 156.412i 0.167465i
\(935\) 407.316 + 304.241i 0.435632 + 0.325391i
\(936\) 0 0
\(937\) −526.665 526.665i −0.562076 0.562076i 0.367821 0.929897i \(-0.380104\pi\)
−0.929897 + 0.367821i \(0.880104\pi\)
\(938\) 304.901 304.901i 0.325055 0.325055i
\(939\) 0 0
\(940\) −259.315 + 347.169i −0.275867 + 0.369329i
\(941\) −326.805 −0.347296 −0.173648 0.984808i \(-0.555555\pi\)
−0.173648 + 0.984808i \(0.555555\pi\)
\(942\) 0 0
\(943\) 204.226 204.226i 0.216571 0.216571i
\(944\) 194.729i 0.206281i
\(945\) 0 0
\(946\) −14.4499 −0.0152748
\(947\) −388.018 388.018i −0.409734 0.409734i 0.471912 0.881646i \(-0.343564\pi\)
−0.881646 + 0.471912i \(0.843564\pi\)
\(948\) 0 0
\(949\) 1931.25i 2.03504i
\(950\) 449.072 826.568i 0.472707 0.870072i
\(951\) 0 0
\(952\) −1276.66 1276.66i −1.34103 1.34103i
\(953\) 427.472 427.472i 0.448554 0.448554i −0.446320 0.894874i \(-0.647266\pi\)
0.894874 + 0.446320i \(0.147266\pi\)
\(954\) 0 0
\(955\) 1399.09 202.670i 1.46501 0.212220i
\(956\) −898.781 −0.940148
\(957\) 0 0
\(958\) −426.053 + 426.053i −0.444732 + 0.444732i
\(959\) 767.222i 0.800023i
\(960\) 0 0
\(961\) −341.819 −0.355691
\(962\) −202.505 202.505i −0.210504 0.210504i
\(963\) 0 0
\(964\) 225.721i 0.234150i
\(965\) 949.874 1271.69i 0.984325 1.31781i
\(966\) 0 0
\(967\) −320.030 320.030i −0.330951 0.330951i 0.521997 0.852948i \(-0.325187\pi\)
−0.852948 + 0.521997i \(0.825187\pi\)
\(968\) −57.3665 + 57.3665i −0.0592629 + 0.0592629i
\(969\) 0 0
\(970\) 30.0619 + 207.526i 0.0309917 + 0.213944i
\(971\) 975.264 1.00439 0.502196 0.864754i \(-0.332526\pi\)
0.502196 + 0.864754i \(0.332526\pi\)
\(972\) 0 0
\(973\) −386.062 + 386.062i −0.396775 + 0.396775i
\(974\) 442.002i 0.453801i
\(975\) 0 0
\(976\) 178.339 0.182724
\(977\) −448.672 448.672i −0.459235 0.459235i 0.439169 0.898404i \(-0.355273\pi\)
−0.898404 + 0.439169i \(0.855273\pi\)
\(978\) 0 0
\(979\) 76.2283i 0.0778634i
\(980\) 207.123 30.0035i 0.211350 0.0306158i
\(981\) 0 0
\(982\) 85.1190 + 85.1190i 0.0866792 + 0.0866792i
\(983\) 220.567 220.567i 0.224382 0.224382i −0.585959 0.810341i \(-0.699282\pi\)
0.810341 + 0.585959i \(0.199282\pi\)
\(984\) 0 0
\(985\) −487.464 364.107i −0.494888 0.369652i
\(986\) −392.506 −0.398079
\(987\) 0 0
\(988\) −1315.60 + 1315.60i −1.33158 + 1.33158i
\(989\) 89.3074i 0.0903007i
\(990\) 0 0
\(991\) −716.915 −0.723425 −0.361713 0.932290i \(-0.617808\pi\)
−0.361713 + 0.932290i \(0.617808\pi\)
\(992\) −583.372 583.372i −0.588076 0.588076i
\(993\) 0 0
\(994\) 814.115i 0.819029i
\(995\) 71.7997 + 495.653i 0.0721605 + 0.498144i
\(996\) 0 0
\(997\) −1001.73 1001.73i −1.00475 1.00475i −0.999989 0.00475731i \(-0.998486\pi\)
−0.00475731 0.999989i \(-0.501514\pi\)
\(998\) 243.906 243.906i 0.244395 0.244395i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.j.c.397.8 yes 40
3.2 odd 2 inner 495.3.j.c.397.13 yes 40
5.3 odd 4 inner 495.3.j.c.298.8 40
15.8 even 4 inner 495.3.j.c.298.13 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.j.c.298.8 40 5.3 odd 4 inner
495.3.j.c.298.13 yes 40 15.8 even 4 inner
495.3.j.c.397.8 yes 40 1.1 even 1 trivial
495.3.j.c.397.13 yes 40 3.2 odd 2 inner