Properties

Label 495.3.j.c.397.14
Level $495$
Weight $3$
Character 495.397
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(298,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.298"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 397.14
Character \(\chi\) \(=\) 495.397
Dual form 495.3.j.c.298.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.768581 + 0.768581i) q^{2} -2.81857i q^{4} +(2.92182 + 4.05746i) q^{5} +(8.07326 + 8.07326i) q^{7} +(5.24062 - 5.24062i) q^{8} +(-0.872829 + 5.36414i) q^{10} -3.31662 q^{11} +(-16.0817 + 16.0817i) q^{13} +12.4099i q^{14} -3.21859 q^{16} +(10.6403 + 10.6403i) q^{17} -5.48150i q^{19} +(11.4362 - 8.23535i) q^{20} +(-2.54909 - 2.54909i) q^{22} +(27.0228 - 27.0228i) q^{23} +(-7.92592 + 23.7103i) q^{25} -24.7201 q^{26} +(22.7550 - 22.7550i) q^{28} -3.30973i q^{29} +10.0291 q^{31} +(-23.4362 - 23.4362i) q^{32} +16.3559i q^{34} +(-9.16829 + 56.3455i) q^{35} +(41.8222 + 41.8222i) q^{37} +(4.21298 - 4.21298i) q^{38} +(36.5757 + 5.95144i) q^{40} -53.7373 q^{41} +(-24.0393 + 24.0393i) q^{43} +9.34813i q^{44} +41.5384 q^{46} +(40.6616 + 40.6616i) q^{47} +81.3550i q^{49} +(-24.3150 + 12.1316i) q^{50} +(45.3273 + 45.3273i) q^{52} +(19.1222 - 19.1222i) q^{53} +(-9.69058 - 13.4571i) q^{55} +84.6178 q^{56} +(2.54380 - 2.54380i) q^{58} -75.3124i q^{59} -1.20242 q^{61} +(7.70818 + 7.70818i) q^{62} -23.1509i q^{64} +(-112.238 - 18.2629i) q^{65} +(-0.221223 - 0.221223i) q^{67} +(29.9904 - 29.9904i) q^{68} +(-50.3527 + 36.2595i) q^{70} +78.2535 q^{71} +(40.4681 - 40.4681i) q^{73} +64.2875i q^{74} -15.4500 q^{76} +(-26.7760 - 26.7760i) q^{77} -42.1339i q^{79} +(-9.40413 - 13.0593i) q^{80} +(-41.3015 - 41.3015i) q^{82} +(-9.45520 + 9.45520i) q^{83} +(-12.0835 + 74.2617i) q^{85} -36.9523 q^{86} +(-17.3812 + 17.3812i) q^{88} -1.24117i q^{89} -259.663 q^{91} +(-76.1655 - 76.1655i) q^{92} +62.5034i q^{94} +(22.2410 - 16.0160i) q^{95} +(16.2790 + 16.2790i) q^{97} +(-62.5279 + 62.5279i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{10} - 88 q^{13} - 296 q^{16} + 168 q^{25} + 248 q^{28} - 32 q^{31} - 24 q^{37} + 296 q^{40} - 48 q^{43} + 48 q^{46} + 64 q^{52} + 104 q^{58} + 576 q^{61} - 544 q^{67} - 1048 q^{70} - 408 q^{73}+ \cdots + 712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.768581 + 0.768581i 0.384290 + 0.384290i 0.872645 0.488355i \(-0.162403\pi\)
−0.488355 + 0.872645i \(0.662403\pi\)
\(3\) 0 0
\(4\) 2.81857i 0.704642i
\(5\) 2.92182 + 4.05746i 0.584364 + 0.811492i
\(6\) 0 0
\(7\) 8.07326 + 8.07326i 1.15332 + 1.15332i 0.985882 + 0.167440i \(0.0535501\pi\)
0.167440 + 0.985882i \(0.446450\pi\)
\(8\) 5.24062 5.24062i 0.655078 0.655078i
\(9\) 0 0
\(10\) −0.872829 + 5.36414i −0.0872829 + 0.536414i
\(11\) −3.31662 −0.301511
\(12\) 0 0
\(13\) −16.0817 + 16.0817i −1.23705 + 1.23705i −0.275852 + 0.961200i \(0.588960\pi\)
−0.961200 + 0.275852i \(0.911040\pi\)
\(14\) 12.4099i 0.886422i
\(15\) 0 0
\(16\) −3.21859 −0.201162
\(17\) 10.6403 + 10.6403i 0.625901 + 0.625901i 0.947034 0.321133i \(-0.104064\pi\)
−0.321133 + 0.947034i \(0.604064\pi\)
\(18\) 0 0
\(19\) 5.48150i 0.288500i −0.989541 0.144250i \(-0.953923\pi\)
0.989541 0.144250i \(-0.0460769\pi\)
\(20\) 11.4362 8.23535i 0.571811 0.411767i
\(21\) 0 0
\(22\) −2.54909 2.54909i −0.115868 0.115868i
\(23\) 27.0228 27.0228i 1.17490 1.17490i 0.193878 0.981026i \(-0.437893\pi\)
0.981026 0.193878i \(-0.0621067\pi\)
\(24\) 0 0
\(25\) −7.92592 + 23.7103i −0.317037 + 0.948413i
\(26\) −24.7201 −0.950774
\(27\) 0 0
\(28\) 22.7550 22.7550i 0.812679 0.812679i
\(29\) 3.30973i 0.114129i −0.998371 0.0570643i \(-0.981826\pi\)
0.998371 0.0570643i \(-0.0181740\pi\)
\(30\) 0 0
\(31\) 10.0291 0.323520 0.161760 0.986830i \(-0.448283\pi\)
0.161760 + 0.986830i \(0.448283\pi\)
\(32\) −23.4362 23.4362i −0.732382 0.732382i
\(33\) 0 0
\(34\) 16.3559i 0.481056i
\(35\) −9.16829 + 56.3455i −0.261951 + 1.60987i
\(36\) 0 0
\(37\) 41.8222 + 41.8222i 1.13033 + 1.13033i 0.990122 + 0.140208i \(0.0447771\pi\)
0.140208 + 0.990122i \(0.455223\pi\)
\(38\) 4.21298 4.21298i 0.110868 0.110868i
\(39\) 0 0
\(40\) 36.5757 + 5.95144i 0.914394 + 0.148786i
\(41\) −53.7373 −1.31067 −0.655333 0.755340i \(-0.727472\pi\)
−0.655333 + 0.755340i \(0.727472\pi\)
\(42\) 0 0
\(43\) −24.0393 + 24.0393i −0.559053 + 0.559053i −0.929038 0.369985i \(-0.879363\pi\)
0.369985 + 0.929038i \(0.379363\pi\)
\(44\) 9.34813i 0.212457i
\(45\) 0 0
\(46\) 41.5384 0.903009
\(47\) 40.6616 + 40.6616i 0.865140 + 0.865140i 0.991930 0.126790i \(-0.0404673\pi\)
−0.126790 + 0.991930i \(0.540467\pi\)
\(48\) 0 0
\(49\) 81.3550i 1.66031i
\(50\) −24.3150 + 12.1316i −0.486300 + 0.242632i
\(51\) 0 0
\(52\) 45.3273 + 45.3273i 0.871678 + 0.871678i
\(53\) 19.1222 19.1222i 0.360795 0.360795i −0.503310 0.864106i \(-0.667885\pi\)
0.864106 + 0.503310i \(0.167885\pi\)
\(54\) 0 0
\(55\) −9.69058 13.4571i −0.176192 0.244674i
\(56\) 84.6178 1.51103
\(57\) 0 0
\(58\) 2.54380 2.54380i 0.0438585 0.0438585i
\(59\) 75.3124i 1.27648i −0.769837 0.638241i \(-0.779662\pi\)
0.769837 0.638241i \(-0.220338\pi\)
\(60\) 0 0
\(61\) −1.20242 −0.0197118 −0.00985592 0.999951i \(-0.503137\pi\)
−0.00985592 + 0.999951i \(0.503137\pi\)
\(62\) 7.70818 + 7.70818i 0.124325 + 0.124325i
\(63\) 0 0
\(64\) 23.1509i 0.361733i
\(65\) −112.238 18.2629i −1.72675 0.280968i
\(66\) 0 0
\(67\) −0.221223 0.221223i −0.00330183 0.00330183i 0.705454 0.708756i \(-0.250743\pi\)
−0.708756 + 0.705454i \(0.750743\pi\)
\(68\) 29.9904 29.9904i 0.441036 0.441036i
\(69\) 0 0
\(70\) −50.3527 + 36.2595i −0.719324 + 0.517993i
\(71\) 78.2535 1.10216 0.551081 0.834452i \(-0.314216\pi\)
0.551081 + 0.834452i \(0.314216\pi\)
\(72\) 0 0
\(73\) 40.4681 40.4681i 0.554357 0.554357i −0.373338 0.927695i \(-0.621787\pi\)
0.927695 + 0.373338i \(0.121787\pi\)
\(74\) 64.2875i 0.868750i
\(75\) 0 0
\(76\) −15.4500 −0.203289
\(77\) −26.7760 26.7760i −0.347740 0.347740i
\(78\) 0 0
\(79\) 42.1339i 0.533341i −0.963788 0.266670i \(-0.914076\pi\)
0.963788 0.266670i \(-0.0859235\pi\)
\(80\) −9.40413 13.0593i −0.117552 0.163241i
\(81\) 0 0
\(82\) −41.3015 41.3015i −0.503676 0.503676i
\(83\) −9.45520 + 9.45520i −0.113918 + 0.113918i −0.761768 0.647850i \(-0.775668\pi\)
0.647850 + 0.761768i \(0.275668\pi\)
\(84\) 0 0
\(85\) −12.0835 + 74.2617i −0.142159 + 0.873667i
\(86\) −36.9523 −0.429678
\(87\) 0 0
\(88\) −17.3812 + 17.3812i −0.197513 + 0.197513i
\(89\) 1.24117i 0.0139457i −0.999976 0.00697287i \(-0.997780\pi\)
0.999976 0.00697287i \(-0.00221955\pi\)
\(90\) 0 0
\(91\) −259.663 −2.85344
\(92\) −76.1655 76.1655i −0.827886 0.827886i
\(93\) 0 0
\(94\) 62.5034i 0.664930i
\(95\) 22.2410 16.0160i 0.234115 0.168589i
\(96\) 0 0
\(97\) 16.2790 + 16.2790i 0.167824 + 0.167824i 0.786022 0.618198i \(-0.212137\pi\)
−0.618198 + 0.786022i \(0.712137\pi\)
\(98\) −62.5279 + 62.5279i −0.638040 + 0.638040i
\(99\) 0 0
\(100\) 66.8291 + 22.3397i 0.668291 + 0.223397i
\(101\) 58.0443 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(102\) 0 0
\(103\) 10.4306 10.4306i 0.101268 0.101268i −0.654658 0.755926i \(-0.727187\pi\)
0.755926 + 0.654658i \(0.227187\pi\)
\(104\) 168.556i 1.62073i
\(105\) 0 0
\(106\) 29.3938 0.277300
\(107\) −132.740 132.740i −1.24056 1.24056i −0.959767 0.280797i \(-0.909401\pi\)
−0.280797 0.959767i \(-0.590599\pi\)
\(108\) 0 0
\(109\) 136.453i 1.25187i −0.779877 0.625933i \(-0.784719\pi\)
0.779877 0.625933i \(-0.215281\pi\)
\(110\) 2.89485 17.7908i 0.0263168 0.161735i
\(111\) 0 0
\(112\) −25.9845 25.9845i −0.232004 0.232004i
\(113\) 106.950 106.950i 0.946461 0.946461i −0.0521766 0.998638i \(-0.516616\pi\)
0.998638 + 0.0521766i \(0.0166159\pi\)
\(114\) 0 0
\(115\) 188.600 + 30.6881i 1.64000 + 0.266853i
\(116\) −9.32870 −0.0804198
\(117\) 0 0
\(118\) 57.8837 57.8837i 0.490540 0.490540i
\(119\) 171.804i 1.44373i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) −0.924159 0.924159i −0.00757507 0.00757507i
\(123\) 0 0
\(124\) 28.2677i 0.227965i
\(125\) −119.362 + 37.1182i −0.954894 + 0.296946i
\(126\) 0 0
\(127\) −134.333 134.333i −1.05774 1.05774i −0.998228 0.0595125i \(-0.981045\pi\)
−0.0595125 0.998228i \(-0.518955\pi\)
\(128\) −75.9515 + 75.9515i −0.593371 + 0.593371i
\(129\) 0 0
\(130\) −72.2278 100.301i −0.555599 0.771545i
\(131\) 41.0958 0.313708 0.156854 0.987622i \(-0.449865\pi\)
0.156854 + 0.987622i \(0.449865\pi\)
\(132\) 0 0
\(133\) 44.2536 44.2536i 0.332734 0.332734i
\(134\) 0.340055i 0.00253773i
\(135\) 0 0
\(136\) 111.524 0.820027
\(137\) −137.075 137.075i −1.00055 1.00055i −1.00000 0.000549516i \(-0.999825\pi\)
−0.000549516 1.00000i \(-0.500175\pi\)
\(138\) 0 0
\(139\) 94.0771i 0.676814i 0.941000 + 0.338407i \(0.109888\pi\)
−0.941000 + 0.338407i \(0.890112\pi\)
\(140\) 158.814 + 25.8414i 1.13438 + 0.184582i
\(141\) 0 0
\(142\) 60.1441 + 60.1441i 0.423550 + 0.423550i
\(143\) 53.3369 53.3369i 0.372985 0.372985i
\(144\) 0 0
\(145\) 13.4291 9.67044i 0.0926144 0.0666927i
\(146\) 62.2060 0.426069
\(147\) 0 0
\(148\) 117.879 117.879i 0.796478 0.796478i
\(149\) 147.010i 0.986647i −0.869846 0.493323i \(-0.835782\pi\)
0.869846 0.493323i \(-0.164218\pi\)
\(150\) 0 0
\(151\) −100.312 −0.664316 −0.332158 0.943224i \(-0.607777\pi\)
−0.332158 + 0.943224i \(0.607777\pi\)
\(152\) −28.7265 28.7265i −0.188990 0.188990i
\(153\) 0 0
\(154\) 41.1590i 0.267266i
\(155\) 29.3033 + 40.6927i 0.189053 + 0.262533i
\(156\) 0 0
\(157\) −123.818 123.818i −0.788649 0.788649i 0.192624 0.981273i \(-0.438300\pi\)
−0.981273 + 0.192624i \(0.938300\pi\)
\(158\) 32.3833 32.3833i 0.204958 0.204958i
\(159\) 0 0
\(160\) 26.6150 163.568i 0.166344 1.02230i
\(161\) 436.324 2.71009
\(162\) 0 0
\(163\) −86.6303 + 86.6303i −0.531474 + 0.531474i −0.921011 0.389537i \(-0.872635\pi\)
0.389537 + 0.921011i \(0.372635\pi\)
\(164\) 151.462i 0.923550i
\(165\) 0 0
\(166\) −14.5342 −0.0875553
\(167\) 32.7308 + 32.7308i 0.195993 + 0.195993i 0.798280 0.602287i \(-0.205744\pi\)
−0.602287 + 0.798280i \(0.705744\pi\)
\(168\) 0 0
\(169\) 348.240i 2.06059i
\(170\) −66.3633 + 47.7890i −0.390372 + 0.281112i
\(171\) 0 0
\(172\) 67.7563 + 67.7563i 0.393932 + 0.393932i
\(173\) −33.9507 + 33.9507i −0.196247 + 0.196247i −0.798389 0.602142i \(-0.794314\pi\)
0.602142 + 0.798389i \(0.294314\pi\)
\(174\) 0 0
\(175\) −255.408 + 127.432i −1.45947 + 0.728180i
\(176\) 10.6748 0.0606525
\(177\) 0 0
\(178\) 0.953941 0.953941i 0.00535922 0.00535922i
\(179\) 27.5198i 0.153742i −0.997041 0.0768709i \(-0.975507\pi\)
0.997041 0.0768709i \(-0.0244929\pi\)
\(180\) 0 0
\(181\) −254.288 −1.40491 −0.702453 0.711730i \(-0.747912\pi\)
−0.702453 + 0.711730i \(0.747912\pi\)
\(182\) −199.572 199.572i −1.09655 1.09655i
\(183\) 0 0
\(184\) 283.232i 1.53931i
\(185\) −47.4948 + 291.889i −0.256729 + 1.57778i
\(186\) 0 0
\(187\) −35.2899 35.2899i −0.188716 0.188716i
\(188\) 114.607 114.607i 0.609614 0.609614i
\(189\) 0 0
\(190\) 29.4035 + 4.78441i 0.154755 + 0.0251811i
\(191\) 237.552 1.24373 0.621863 0.783126i \(-0.286376\pi\)
0.621863 + 0.783126i \(0.286376\pi\)
\(192\) 0 0
\(193\) −165.292 + 165.292i −0.856436 + 0.856436i −0.990916 0.134480i \(-0.957063\pi\)
0.134480 + 0.990916i \(0.457063\pi\)
\(194\) 25.0234i 0.128987i
\(195\) 0 0
\(196\) 229.304 1.16992
\(197\) 171.438 + 171.438i 0.870244 + 0.870244i 0.992499 0.122255i \(-0.0390125\pi\)
−0.122255 + 0.992499i \(0.539012\pi\)
\(198\) 0 0
\(199\) 77.2554i 0.388218i 0.980980 + 0.194109i \(0.0621816\pi\)
−0.980980 + 0.194109i \(0.937818\pi\)
\(200\) 82.7201 + 165.794i 0.413600 + 0.828968i
\(201\) 0 0
\(202\) 44.6117 + 44.6117i 0.220850 + 0.220850i
\(203\) 26.7203 26.7203i 0.131627 0.131627i
\(204\) 0 0
\(205\) −157.011 218.037i −0.765906 1.06359i
\(206\) 16.0335 0.0778326
\(207\) 0 0
\(208\) 51.7602 51.7602i 0.248847 0.248847i
\(209\) 18.1801i 0.0869860i
\(210\) 0 0
\(211\) −347.895 −1.64879 −0.824397 0.566013i \(-0.808485\pi\)
−0.824397 + 0.566013i \(0.808485\pi\)
\(212\) −53.8971 53.8971i −0.254231 0.254231i
\(213\) 0 0
\(214\) 204.043i 0.953474i
\(215\) −167.777 27.2999i −0.780358 0.126976i
\(216\) 0 0
\(217\) 80.9676 + 80.9676i 0.373122 + 0.373122i
\(218\) 104.875 104.875i 0.481080 0.481080i
\(219\) 0 0
\(220\) −37.9296 + 27.3136i −0.172407 + 0.124153i
\(221\) −342.228 −1.54854
\(222\) 0 0
\(223\) 280.490 280.490i 1.25780 1.25780i 0.305661 0.952140i \(-0.401123\pi\)
0.952140 0.305661i \(-0.0988774\pi\)
\(224\) 378.413i 1.68935i
\(225\) 0 0
\(226\) 164.400 0.727432
\(227\) −63.5588 63.5588i −0.279995 0.279995i 0.553112 0.833107i \(-0.313440\pi\)
−0.833107 + 0.553112i \(0.813440\pi\)
\(228\) 0 0
\(229\) 260.698i 1.13842i 0.822193 + 0.569210i \(0.192751\pi\)
−0.822193 + 0.569210i \(0.807249\pi\)
\(230\) 121.368 + 168.540i 0.527686 + 0.732784i
\(231\) 0 0
\(232\) −17.3450 17.3450i −0.0747631 0.0747631i
\(233\) −143.864 + 143.864i −0.617442 + 0.617442i −0.944875 0.327433i \(-0.893817\pi\)
0.327433 + 0.944875i \(0.393817\pi\)
\(234\) 0 0
\(235\) −46.1768 + 283.788i −0.196497 + 1.20761i
\(236\) −212.273 −0.899462
\(237\) 0 0
\(238\) −132.045 + 132.045i −0.554812 + 0.554812i
\(239\) 250.451i 1.04791i 0.851745 + 0.523956i \(0.175544\pi\)
−0.851745 + 0.523956i \(0.824456\pi\)
\(240\) 0 0
\(241\) 405.781 1.68374 0.841869 0.539682i \(-0.181455\pi\)
0.841869 + 0.539682i \(0.181455\pi\)
\(242\) 8.45439 + 8.45439i 0.0349355 + 0.0349355i
\(243\) 0 0
\(244\) 3.38911i 0.0138898i
\(245\) −330.094 + 237.705i −1.34732 + 0.970223i
\(246\) 0 0
\(247\) 88.1517 + 88.1517i 0.356889 + 0.356889i
\(248\) 52.5587 52.5587i 0.211930 0.211930i
\(249\) 0 0
\(250\) −120.268 63.2108i −0.481070 0.252843i
\(251\) 131.739 0.524857 0.262428 0.964951i \(-0.415477\pi\)
0.262428 + 0.964951i \(0.415477\pi\)
\(252\) 0 0
\(253\) −89.6245 + 89.6245i −0.354247 + 0.354247i
\(254\) 206.492i 0.812959i
\(255\) 0 0
\(256\) −209.354 −0.817787
\(257\) −181.261 181.261i −0.705297 0.705297i 0.260246 0.965542i \(-0.416196\pi\)
−0.965542 + 0.260246i \(0.916196\pi\)
\(258\) 0 0
\(259\) 675.283i 2.60727i
\(260\) −51.4753 + 316.352i −0.197982 + 1.21674i
\(261\) 0 0
\(262\) 31.5855 + 31.5855i 0.120555 + 0.120555i
\(263\) 287.089 287.089i 1.09159 1.09159i 0.0962330 0.995359i \(-0.469321\pi\)
0.995359 0.0962330i \(-0.0306794\pi\)
\(264\) 0 0
\(265\) 133.459 + 21.7158i 0.503618 + 0.0819465i
\(266\) 68.0249 0.255733
\(267\) 0 0
\(268\) −0.623531 + 0.623531i −0.00232661 + 0.00232661i
\(269\) 521.974i 1.94042i −0.242258 0.970212i \(-0.577888\pi\)
0.242258 0.970212i \(-0.422112\pi\)
\(270\) 0 0
\(271\) 318.233 1.17429 0.587146 0.809481i \(-0.300251\pi\)
0.587146 + 0.809481i \(0.300251\pi\)
\(272\) −34.2468 34.2468i −0.125907 0.125907i
\(273\) 0 0
\(274\) 210.707i 0.769003i
\(275\) 26.2873 78.6383i 0.0955903 0.285957i
\(276\) 0 0
\(277\) −317.276 317.276i −1.14540 1.14540i −0.987447 0.157953i \(-0.949511\pi\)
−0.157953 0.987447i \(-0.550489\pi\)
\(278\) −72.3059 + 72.3059i −0.260093 + 0.260093i
\(279\) 0 0
\(280\) 247.238 + 343.333i 0.882993 + 1.22619i
\(281\) −234.943 −0.836096 −0.418048 0.908425i \(-0.637286\pi\)
−0.418048 + 0.908425i \(0.637286\pi\)
\(282\) 0 0
\(283\) 28.4690 28.4690i 0.100597 0.100597i −0.655017 0.755614i \(-0.727339\pi\)
0.755614 + 0.655017i \(0.227339\pi\)
\(284\) 220.563i 0.776629i
\(285\) 0 0
\(286\) 81.9874 0.286669
\(287\) −433.835 433.835i −1.51162 1.51162i
\(288\) 0 0
\(289\) 62.5674i 0.216496i
\(290\) 17.7539 + 2.88883i 0.0612202 + 0.00996147i
\(291\) 0 0
\(292\) −114.062 114.062i −0.390623 0.390623i
\(293\) −10.6817 + 10.6817i −0.0364564 + 0.0364564i −0.725100 0.688644i \(-0.758206\pi\)
0.688644 + 0.725100i \(0.258206\pi\)
\(294\) 0 0
\(295\) 305.577 220.049i 1.03585 0.745930i
\(296\) 438.349 1.48091
\(297\) 0 0
\(298\) 112.989 112.989i 0.379159 0.379159i
\(299\) 869.143i 2.90683i
\(300\) 0 0
\(301\) −388.151 −1.28954
\(302\) −77.0976 77.0976i −0.255290 0.255290i
\(303\) 0 0
\(304\) 17.6427i 0.0580351i
\(305\) −3.51326 4.87878i −0.0115189 0.0159960i
\(306\) 0 0
\(307\) 341.219 + 341.219i 1.11146 + 1.11146i 0.992953 + 0.118511i \(0.0378120\pi\)
0.118511 + 0.992953i \(0.462188\pi\)
\(308\) −75.4698 + 75.4698i −0.245032 + 0.245032i
\(309\) 0 0
\(310\) −8.75369 + 53.7975i −0.0282377 + 0.173540i
\(311\) −12.2226 −0.0393010 −0.0196505 0.999807i \(-0.506255\pi\)
−0.0196505 + 0.999807i \(0.506255\pi\)
\(312\) 0 0
\(313\) −105.793 + 105.793i −0.337996 + 0.337996i −0.855612 0.517617i \(-0.826819\pi\)
0.517617 + 0.855612i \(0.326819\pi\)
\(314\) 190.328i 0.606140i
\(315\) 0 0
\(316\) −118.757 −0.375814
\(317\) 405.231 + 405.231i 1.27833 + 1.27833i 0.941601 + 0.336731i \(0.109321\pi\)
0.336731 + 0.941601i \(0.390679\pi\)
\(318\) 0 0
\(319\) 10.9771i 0.0344111i
\(320\) 93.9339 67.6429i 0.293543 0.211384i
\(321\) 0 0
\(322\) 335.350 + 335.350i 1.04146 + 1.04146i
\(323\) 58.3249 58.3249i 0.180572 0.180572i
\(324\) 0 0
\(325\) −253.840 508.764i −0.781045 1.56543i
\(326\) −133.165 −0.408481
\(327\) 0 0
\(328\) −281.617 + 281.617i −0.858588 + 0.858588i
\(329\) 656.543i 1.99557i
\(330\) 0 0
\(331\) 358.177 1.08211 0.541054 0.840988i \(-0.318026\pi\)
0.541054 + 0.840988i \(0.318026\pi\)
\(332\) 26.6501 + 26.6501i 0.0802715 + 0.0802715i
\(333\) 0 0
\(334\) 50.3126i 0.150637i
\(335\) 0.251229 1.54398i 0.000749937 0.00460888i
\(336\) 0 0
\(337\) −189.096 189.096i −0.561117 0.561117i 0.368508 0.929625i \(-0.379869\pi\)
−0.929625 + 0.368508i \(0.879869\pi\)
\(338\) 267.651 267.651i 0.791867 0.791867i
\(339\) 0 0
\(340\) 209.312 + 34.0582i 0.615622 + 0.100171i
\(341\) −33.2628 −0.0975448
\(342\) 0 0
\(343\) −261.210 + 261.210i −0.761545 + 0.761545i
\(344\) 251.962i 0.732446i
\(345\) 0 0
\(346\) −52.1877 −0.150831
\(347\) −420.192 420.192i −1.21093 1.21093i −0.970722 0.240204i \(-0.922786\pi\)
−0.240204 0.970722i \(-0.577214\pi\)
\(348\) 0 0
\(349\) 350.571i 1.00450i 0.864722 + 0.502251i \(0.167495\pi\)
−0.864722 + 0.502251i \(0.832505\pi\)
\(350\) −294.243 98.3600i −0.840694 0.281028i
\(351\) 0 0
\(352\) 77.7292 + 77.7292i 0.220821 + 0.220821i
\(353\) 308.547 308.547i 0.874071 0.874071i −0.118842 0.992913i \(-0.537918\pi\)
0.992913 + 0.118842i \(0.0379183\pi\)
\(354\) 0 0
\(355\) 228.643 + 317.510i 0.644064 + 0.894395i
\(356\) −3.49832 −0.00982675
\(357\) 0 0
\(358\) 21.1512 21.1512i 0.0590815 0.0590815i
\(359\) 376.193i 1.04789i 0.851752 + 0.523945i \(0.175540\pi\)
−0.851752 + 0.523945i \(0.824460\pi\)
\(360\) 0 0
\(361\) 330.953 0.916768
\(362\) −195.441 195.441i −0.539892 0.539892i
\(363\) 0 0
\(364\) 731.877i 2.01065i
\(365\) 282.438 + 45.9571i 0.773803 + 0.125910i
\(366\) 0 0
\(367\) −24.7162 24.7162i −0.0673465 0.0673465i 0.672631 0.739978i \(-0.265164\pi\)
−0.739978 + 0.672631i \(0.765164\pi\)
\(368\) −86.9752 + 86.9752i −0.236346 + 0.236346i
\(369\) 0 0
\(370\) −260.844 + 187.837i −0.704983 + 0.507666i
\(371\) 308.756 0.832227
\(372\) 0 0
\(373\) −32.1589 + 32.1589i −0.0862170 + 0.0862170i −0.748900 0.662683i \(-0.769418\pi\)
0.662683 + 0.748900i \(0.269418\pi\)
\(374\) 54.2463i 0.145044i
\(375\) 0 0
\(376\) 426.184 1.13347
\(377\) 53.2260 + 53.2260i 0.141183 + 0.141183i
\(378\) 0 0
\(379\) 98.6282i 0.260233i −0.991499 0.130116i \(-0.958465\pi\)
0.991499 0.130116i \(-0.0415351\pi\)
\(380\) −45.1421 62.6876i −0.118795 0.164967i
\(381\) 0 0
\(382\) 182.578 + 182.578i 0.477952 + 0.477952i
\(383\) −361.224 + 361.224i −0.943144 + 0.943144i −0.998468 0.0553240i \(-0.982381\pi\)
0.0553240 + 0.998468i \(0.482381\pi\)
\(384\) 0 0
\(385\) 30.4078 186.877i 0.0789812 0.485395i
\(386\) −254.081 −0.658240
\(387\) 0 0
\(388\) 45.8833 45.8833i 0.118256 0.118256i
\(389\) 467.287i 1.20125i −0.799530 0.600626i \(-0.794918\pi\)
0.799530 0.600626i \(-0.205082\pi\)
\(390\) 0 0
\(391\) 575.062 1.47075
\(392\) 426.351 + 426.351i 1.08763 + 1.08763i
\(393\) 0 0
\(394\) 263.528i 0.668853i
\(395\) 170.957 123.108i 0.432802 0.311665i
\(396\) 0 0
\(397\) 44.0432 + 44.0432i 0.110940 + 0.110940i 0.760398 0.649458i \(-0.225004\pi\)
−0.649458 + 0.760398i \(0.725004\pi\)
\(398\) −59.3770 + 59.3770i −0.149189 + 0.149189i
\(399\) 0 0
\(400\) 25.5103 76.3137i 0.0637757 0.190784i
\(401\) −34.5620 −0.0861895 −0.0430947 0.999071i \(-0.513722\pi\)
−0.0430947 + 0.999071i \(0.513722\pi\)
\(402\) 0 0
\(403\) −161.285 + 161.285i −0.400210 + 0.400210i
\(404\) 163.602i 0.404955i
\(405\) 0 0
\(406\) 41.0734 0.101166
\(407\) −138.709 138.709i −0.340807 0.340807i
\(408\) 0 0
\(409\) 15.8648i 0.0387892i 0.999812 + 0.0193946i \(0.00617388\pi\)
−0.999812 + 0.0193946i \(0.993826\pi\)
\(410\) 46.9035 288.254i 0.114399 0.703060i
\(411\) 0 0
\(412\) −29.3993 29.3993i −0.0713576 0.0713576i
\(413\) 608.016 608.016i 1.47219 1.47219i
\(414\) 0 0
\(415\) −65.9905 10.7377i −0.159013 0.0258739i
\(416\) 753.787 1.81199
\(417\) 0 0
\(418\) −13.9729 + 13.9729i −0.0334279 + 0.0334279i
\(419\) 764.470i 1.82451i 0.409621 + 0.912256i \(0.365661\pi\)
−0.409621 + 0.912256i \(0.634339\pi\)
\(420\) 0 0
\(421\) −384.575 −0.913479 −0.456740 0.889600i \(-0.650983\pi\)
−0.456740 + 0.889600i \(0.650983\pi\)
\(422\) −267.386 267.386i −0.633616 0.633616i
\(423\) 0 0
\(424\) 200.424i 0.472698i
\(425\) −336.620 + 167.951i −0.792046 + 0.395179i
\(426\) 0 0
\(427\) −9.70747 9.70747i −0.0227341 0.0227341i
\(428\) −374.138 + 374.138i −0.874153 + 0.874153i
\(429\) 0 0
\(430\) −107.968 149.932i −0.251088 0.348680i
\(431\) 235.568 0.546562 0.273281 0.961934i \(-0.411891\pi\)
0.273281 + 0.961934i \(0.411891\pi\)
\(432\) 0 0
\(433\) 122.331 122.331i 0.282519 0.282519i −0.551594 0.834113i \(-0.685980\pi\)
0.834113 + 0.551594i \(0.185980\pi\)
\(434\) 124.460i 0.286775i
\(435\) 0 0
\(436\) −384.603 −0.882116
\(437\) −148.125 148.125i −0.338960 0.338960i
\(438\) 0 0
\(439\) 581.820i 1.32533i 0.748915 + 0.662666i \(0.230575\pi\)
−0.748915 + 0.662666i \(0.769425\pi\)
\(440\) −121.308 19.7387i −0.275700 0.0448607i
\(441\) 0 0
\(442\) −263.030 263.030i −0.595091 0.595091i
\(443\) −68.1013 + 68.1013i −0.153727 + 0.153727i −0.779780 0.626053i \(-0.784669\pi\)
0.626053 + 0.779780i \(0.284669\pi\)
\(444\) 0 0
\(445\) 5.03600 3.62648i 0.0113169 0.00814939i
\(446\) 431.158 0.966722
\(447\) 0 0
\(448\) 186.903 186.903i 0.417195 0.417195i
\(449\) 286.869i 0.638906i 0.947602 + 0.319453i \(0.103499\pi\)
−0.947602 + 0.319453i \(0.896501\pi\)
\(450\) 0 0
\(451\) 178.226 0.395181
\(452\) −301.446 301.446i −0.666916 0.666916i
\(453\) 0 0
\(454\) 97.7002i 0.215199i
\(455\) −758.689 1053.57i −1.66745 2.31554i
\(456\) 0 0
\(457\) −82.9531 82.9531i −0.181517 0.181517i 0.610500 0.792016i \(-0.290969\pi\)
−0.792016 + 0.610500i \(0.790969\pi\)
\(458\) −200.367 + 200.367i −0.437484 + 0.437484i
\(459\) 0 0
\(460\) 86.4964 531.580i 0.188036 1.15561i
\(461\) −181.392 −0.393476 −0.196738 0.980456i \(-0.563035\pi\)
−0.196738 + 0.980456i \(0.563035\pi\)
\(462\) 0 0
\(463\) 145.688 145.688i 0.314660 0.314660i −0.532052 0.846712i \(-0.678579\pi\)
0.846712 + 0.532052i \(0.178579\pi\)
\(464\) 10.6526i 0.0229583i
\(465\) 0 0
\(466\) −221.142 −0.474554
\(467\) 639.354 + 639.354i 1.36907 + 1.36907i 0.861773 + 0.507294i \(0.169354\pi\)
0.507294 + 0.861773i \(0.330646\pi\)
\(468\) 0 0
\(469\) 3.57198i 0.00761616i
\(470\) −253.605 + 182.624i −0.539585 + 0.388561i
\(471\) 0 0
\(472\) −394.684 394.684i −0.836194 0.836194i
\(473\) 79.7293 79.7293i 0.168561 0.168561i
\(474\) 0 0
\(475\) 129.968 + 43.4460i 0.273617 + 0.0914652i
\(476\) 484.241 1.01731
\(477\) 0 0
\(478\) −192.492 + 192.492i −0.402703 + 0.402703i
\(479\) 422.415i 0.881868i −0.897540 0.440934i \(-0.854647\pi\)
0.897540 0.440934i \(-0.145353\pi\)
\(480\) 0 0
\(481\) −1345.14 −2.79655
\(482\) 311.875 + 311.875i 0.647044 + 0.647044i
\(483\) 0 0
\(484\) 31.0042i 0.0640583i
\(485\) −18.4870 + 113.615i −0.0381175 + 0.234259i
\(486\) 0 0
\(487\) 161.254 + 161.254i 0.331117 + 0.331117i 0.853011 0.521894i \(-0.174774\pi\)
−0.521894 + 0.853011i \(0.674774\pi\)
\(488\) −6.30144 + 6.30144i −0.0129128 + 0.0129128i
\(489\) 0 0
\(490\) −436.400 71.0090i −0.890611 0.144916i
\(491\) −428.048 −0.871789 −0.435894 0.899998i \(-0.643568\pi\)
−0.435894 + 0.899998i \(0.643568\pi\)
\(492\) 0 0
\(493\) 35.2166 35.2166i 0.0714332 0.0714332i
\(494\) 135.503i 0.274298i
\(495\) 0 0
\(496\) −32.2795 −0.0650797
\(497\) 631.761 + 631.761i 1.27115 + 1.27115i
\(498\) 0 0
\(499\) 7.42214i 0.0148740i 0.999972 + 0.00743702i \(0.00236730\pi\)
−0.999972 + 0.00743702i \(0.997633\pi\)
\(500\) 104.620 + 336.429i 0.209240 + 0.672858i
\(501\) 0 0
\(502\) 101.252 + 101.252i 0.201697 + 0.201697i
\(503\) −133.185 + 133.185i −0.264782 + 0.264782i −0.826993 0.562212i \(-0.809951\pi\)
0.562212 + 0.826993i \(0.309951\pi\)
\(504\) 0 0
\(505\) 169.595 + 235.512i 0.335832 + 0.466361i
\(506\) −137.767 −0.272267
\(507\) 0 0
\(508\) −378.626 + 378.626i −0.745328 + 0.745328i
\(509\) 686.673i 1.34906i −0.738246 0.674532i \(-0.764346\pi\)
0.738246 0.674532i \(-0.235654\pi\)
\(510\) 0 0
\(511\) 653.419 1.27871
\(512\) 142.901 + 142.901i 0.279104 + 0.279104i
\(513\) 0 0
\(514\) 278.628i 0.542078i
\(515\) 72.7980 + 11.8454i 0.141355 + 0.0230007i
\(516\) 0 0
\(517\) −134.859 134.859i −0.260850 0.260850i
\(518\) −519.010 + 519.010i −1.00195 + 1.00195i
\(519\) 0 0
\(520\) −683.908 + 492.490i −1.31521 + 0.947096i
\(521\) −552.214 −1.05991 −0.529956 0.848025i \(-0.677792\pi\)
−0.529956 + 0.848025i \(0.677792\pi\)
\(522\) 0 0
\(523\) −16.9634 + 16.9634i −0.0324348 + 0.0324348i −0.723138 0.690703i \(-0.757301\pi\)
0.690703 + 0.723138i \(0.257301\pi\)
\(524\) 115.831i 0.221052i
\(525\) 0 0
\(526\) 441.302 0.838977
\(527\) 106.713 + 106.713i 0.202491 + 0.202491i
\(528\) 0 0
\(529\) 931.462i 1.76080i
\(530\) 85.8835 + 119.264i 0.162044 + 0.225027i
\(531\) 0 0
\(532\) −124.732 124.732i −0.234458 0.234458i
\(533\) 864.186 864.186i 1.62136 1.62136i
\(534\) 0 0
\(535\) 150.745 926.432i 0.281766 1.73165i
\(536\) −2.31869 −0.00432591
\(537\) 0 0
\(538\) 401.179 401.179i 0.745686 0.745686i
\(539\) 269.824i 0.500601i
\(540\) 0 0
\(541\) 541.947 1.00175 0.500875 0.865520i \(-0.333012\pi\)
0.500875 + 0.865520i \(0.333012\pi\)
\(542\) 244.588 + 244.588i 0.451269 + 0.451269i
\(543\) 0 0
\(544\) 498.738i 0.916797i
\(545\) 553.653 398.692i 1.01588 0.731545i
\(546\) 0 0
\(547\) 463.546 + 463.546i 0.847434 + 0.847434i 0.989812 0.142378i \(-0.0454749\pi\)
−0.142378 + 0.989812i \(0.545475\pi\)
\(548\) −386.356 + 386.356i −0.705029 + 0.705029i
\(549\) 0 0
\(550\) 80.6438 40.2359i 0.146625 0.0731563i
\(551\) −18.1423 −0.0329261
\(552\) 0 0
\(553\) 340.158 340.158i 0.615114 0.615114i
\(554\) 487.704i 0.880332i
\(555\) 0 0
\(556\) 265.163 0.476911
\(557\) 317.853 + 317.853i 0.570652 + 0.570652i 0.932311 0.361659i \(-0.117789\pi\)
−0.361659 + 0.932311i \(0.617789\pi\)
\(558\) 0 0
\(559\) 773.184i 1.38316i
\(560\) 29.5089 181.353i 0.0526945 0.323844i
\(561\) 0 0
\(562\) −180.573 180.573i −0.321304 0.321304i
\(563\) 543.392 543.392i 0.965172 0.965172i −0.0342420 0.999414i \(-0.510902\pi\)
0.999414 + 0.0342420i \(0.0109017\pi\)
\(564\) 0 0
\(565\) 746.435 + 121.456i 1.32112 + 0.214967i
\(566\) 43.7615 0.0773172
\(567\) 0 0
\(568\) 410.097 410.097i 0.722002 0.722002i
\(569\) 336.113i 0.590708i 0.955388 + 0.295354i \(0.0954376\pi\)
−0.955388 + 0.295354i \(0.904562\pi\)
\(570\) 0 0
\(571\) −58.4226 −0.102316 −0.0511581 0.998691i \(-0.516291\pi\)
−0.0511581 + 0.998691i \(0.516291\pi\)
\(572\) −150.334 150.334i −0.262821 0.262821i
\(573\) 0 0
\(574\) 666.875i 1.16180i
\(575\) 426.539 + 854.900i 0.741806 + 1.48678i
\(576\) 0 0
\(577\) 32.8358 + 32.8358i 0.0569078 + 0.0569078i 0.734988 0.678080i \(-0.237188\pi\)
−0.678080 + 0.734988i \(0.737188\pi\)
\(578\) 48.0881 48.0881i 0.0831974 0.0831974i
\(579\) 0 0
\(580\) −27.2568 37.8508i −0.0469944 0.0652600i
\(581\) −152.669 −0.262769
\(582\) 0 0
\(583\) −63.4210 + 63.4210i −0.108784 + 0.108784i
\(584\) 424.156i 0.726294i
\(585\) 0 0
\(586\) −16.4195 −0.0280197
\(587\) −715.832 715.832i −1.21948 1.21948i −0.967816 0.251660i \(-0.919023\pi\)
−0.251660 0.967816i \(-0.580977\pi\)
\(588\) 0 0
\(589\) 54.9746i 0.0933354i
\(590\) 403.986 + 65.7348i 0.684723 + 0.111415i
\(591\) 0 0
\(592\) −134.608 134.608i −0.227379 0.227379i
\(593\) −564.755 + 564.755i −0.952369 + 0.952369i −0.998916 0.0465475i \(-0.985178\pi\)
0.0465475 + 0.998916i \(0.485178\pi\)
\(594\) 0 0
\(595\) −697.088 + 501.981i −1.17158 + 0.843665i
\(596\) −414.358 −0.695232
\(597\) 0 0
\(598\) −668.007 + 668.007i −1.11707 + 1.11707i
\(599\) 96.7556i 0.161529i −0.996733 0.0807643i \(-0.974264\pi\)
0.996733 0.0807643i \(-0.0257361\pi\)
\(600\) 0 0
\(601\) 426.359 0.709416 0.354708 0.934977i \(-0.384580\pi\)
0.354708 + 0.934977i \(0.384580\pi\)
\(602\) −298.325 298.325i −0.495557 0.495557i
\(603\) 0 0
\(604\) 282.735i 0.468104i
\(605\) 32.1400 + 44.6320i 0.0531240 + 0.0737720i
\(606\) 0 0
\(607\) −45.0874 45.0874i −0.0742790 0.0742790i 0.668991 0.743270i \(-0.266726\pi\)
−0.743270 + 0.668991i \(0.766726\pi\)
\(608\) −128.466 + 128.466i −0.211292 + 0.211292i
\(609\) 0 0
\(610\) 1.04951 6.44996i 0.00172051 0.0105737i
\(611\) −1307.81 −2.14045
\(612\) 0 0
\(613\) 515.429 515.429i 0.840830 0.840830i −0.148137 0.988967i \(-0.547328\pi\)
0.988967 + 0.148137i \(0.0473276\pi\)
\(614\) 524.509i 0.854250i
\(615\) 0 0
\(616\) −280.645 −0.455593
\(617\) 386.821 + 386.821i 0.626938 + 0.626938i 0.947296 0.320359i \(-0.103803\pi\)
−0.320359 + 0.947296i \(0.603803\pi\)
\(618\) 0 0
\(619\) 390.086i 0.630188i −0.949060 0.315094i \(-0.897964\pi\)
0.949060 0.315094i \(-0.102036\pi\)
\(620\) 114.695 82.5932i 0.184992 0.133215i
\(621\) 0 0
\(622\) −9.39406 9.39406i −0.0151030 0.0151030i
\(623\) 10.0203 10.0203i 0.0160839 0.0160839i
\(624\) 0 0
\(625\) −499.359 375.853i −0.798975 0.601364i
\(626\) −162.620 −0.259777
\(627\) 0 0
\(628\) −348.989 + 348.989i −0.555715 + 0.555715i
\(629\) 890.003i 1.41495i
\(630\) 0 0
\(631\) 425.765 0.674747 0.337374 0.941371i \(-0.390461\pi\)
0.337374 + 0.941371i \(0.390461\pi\)
\(632\) −220.808 220.808i −0.349380 0.349380i
\(633\) 0 0
\(634\) 622.906i 0.982502i
\(635\) 152.553 937.547i 0.240242 1.47645i
\(636\) 0 0
\(637\) −1308.32 1308.32i −2.05388 2.05388i
\(638\) −8.43682 + 8.43682i −0.0132238 + 0.0132238i
\(639\) 0 0
\(640\) −530.087 86.2534i −0.828261 0.134771i
\(641\) −1118.86 −1.74549 −0.872743 0.488180i \(-0.837661\pi\)
−0.872743 + 0.488180i \(0.837661\pi\)
\(642\) 0 0
\(643\) −780.511 + 780.511i −1.21386 + 1.21386i −0.244110 + 0.969747i \(0.578496\pi\)
−0.969747 + 0.244110i \(0.921504\pi\)
\(644\) 1229.81i 1.90964i
\(645\) 0 0
\(646\) 89.6548 0.138785
\(647\) −333.052 333.052i −0.514763 0.514763i 0.401219 0.915982i \(-0.368587\pi\)
−0.915982 + 0.401219i \(0.868587\pi\)
\(648\) 0 0
\(649\) 249.783i 0.384874i
\(650\) 195.930 586.123i 0.301431 0.901727i
\(651\) 0 0
\(652\) 244.173 + 244.173i 0.374499 + 0.374499i
\(653\) −128.255 + 128.255i −0.196409 + 0.196409i −0.798459 0.602050i \(-0.794351\pi\)
0.602050 + 0.798459i \(0.294351\pi\)
\(654\) 0 0
\(655\) 120.075 + 166.744i 0.183320 + 0.254572i
\(656\) 172.958 0.263656
\(657\) 0 0
\(658\) −504.606 + 504.606i −0.766879 + 0.766879i
\(659\) 466.438i 0.707797i −0.935284 0.353899i \(-0.884856\pi\)
0.935284 0.353899i \(-0.115144\pi\)
\(660\) 0 0
\(661\) −275.104 −0.416194 −0.208097 0.978108i \(-0.566727\pi\)
−0.208097 + 0.978108i \(0.566727\pi\)
\(662\) 275.288 + 275.288i 0.415843 + 0.415843i
\(663\) 0 0
\(664\) 99.1023i 0.149250i
\(665\) 308.858 + 50.2560i 0.464448 + 0.0755729i
\(666\) 0 0
\(667\) −89.4381 89.4381i −0.134090 0.134090i
\(668\) 92.2541 92.2541i 0.138105 0.138105i
\(669\) 0 0
\(670\) 1.37976 0.993581i 0.00205934 0.00148296i
\(671\) 3.98798 0.00594334
\(672\) 0 0
\(673\) 840.275 840.275i 1.24855 1.24855i 0.292192 0.956360i \(-0.405615\pi\)
0.956360 0.292192i \(-0.0943846\pi\)
\(674\) 290.672i 0.431264i
\(675\) 0 0
\(676\) −981.539 −1.45198
\(677\) 201.452 + 201.452i 0.297566 + 0.297566i 0.840060 0.542494i \(-0.182520\pi\)
−0.542494 + 0.840060i \(0.682520\pi\)
\(678\) 0 0
\(679\) 262.848i 0.387111i
\(680\) 325.852 + 452.503i 0.479195 + 0.665445i
\(681\) 0 0
\(682\) −25.5651 25.5651i −0.0374855 0.0374855i
\(683\) 287.808 287.808i 0.421388 0.421388i −0.464293 0.885681i \(-0.653692\pi\)
0.885681 + 0.464293i \(0.153692\pi\)
\(684\) 0 0
\(685\) 155.668 956.686i 0.227252 1.39662i
\(686\) −401.522 −0.585309
\(687\) 0 0
\(688\) 77.3725 77.3725i 0.112460 0.112460i
\(689\) 615.032i 0.892645i
\(690\) 0 0
\(691\) −1166.93 −1.68875 −0.844374 0.535754i \(-0.820028\pi\)
−0.844374 + 0.535754i \(0.820028\pi\)
\(692\) 95.6922 + 95.6922i 0.138284 + 0.138284i
\(693\) 0 0
\(694\) 645.902i 0.930695i
\(695\) −381.714 + 274.876i −0.549229 + 0.395506i
\(696\) 0 0
\(697\) −571.782 571.782i −0.820347 0.820347i
\(698\) −269.442 + 269.442i −0.386020 + 0.386020i
\(699\) 0 0
\(700\) 359.174 + 719.883i 0.513106 + 1.02840i
\(701\) −900.819 −1.28505 −0.642524 0.766265i \(-0.722113\pi\)
−0.642524 + 0.766265i \(0.722113\pi\)
\(702\) 0 0
\(703\) 229.248 229.248i 0.326100 0.326100i
\(704\) 76.7829i 0.109067i
\(705\) 0 0
\(706\) 474.287 0.671794
\(707\) 468.606 + 468.606i 0.662810 + 0.662810i
\(708\) 0 0
\(709\) 1291.13i 1.82106i −0.413440 0.910531i \(-0.635673\pi\)
0.413440 0.910531i \(-0.364327\pi\)
\(710\) −68.3019 + 419.763i −0.0961999 + 0.591215i
\(711\) 0 0
\(712\) −6.50451 6.50451i −0.00913554 0.00913554i
\(713\) 271.014 271.014i 0.380104 0.380104i
\(714\) 0 0
\(715\) 372.253 + 60.5713i 0.520633 + 0.0847151i
\(716\) −77.5664 −0.108333
\(717\) 0 0
\(718\) −289.135 + 289.135i −0.402694 + 0.402694i
\(719\) 85.6949i 0.119186i −0.998223 0.0595931i \(-0.981020\pi\)
0.998223 0.0595931i \(-0.0189803\pi\)
\(720\) 0 0
\(721\) 168.418 0.233589
\(722\) 254.364 + 254.364i 0.352305 + 0.352305i
\(723\) 0 0
\(724\) 716.728i 0.989955i
\(725\) 78.4748 + 26.2327i 0.108241 + 0.0361830i
\(726\) 0 0
\(727\) 361.019 + 361.019i 0.496588 + 0.496588i 0.910374 0.413786i \(-0.135794\pi\)
−0.413786 + 0.910374i \(0.635794\pi\)
\(728\) −1360.80 + 1360.80i −1.86922 + 1.86922i
\(729\) 0 0
\(730\) 181.755 + 252.398i 0.248979 + 0.345751i
\(731\) −511.571 −0.699824
\(732\) 0 0
\(733\) 443.921 443.921i 0.605622 0.605622i −0.336177 0.941799i \(-0.609134\pi\)
0.941799 + 0.336177i \(0.109134\pi\)
\(734\) 37.9927i 0.0517612i
\(735\) 0 0
\(736\) −1266.62 −1.72096
\(737\) 0.733713 + 0.733713i 0.000995540 + 0.000995540i
\(738\) 0 0
\(739\) 1212.42i 1.64062i 0.571922 + 0.820308i \(0.306198\pi\)
−0.571922 + 0.820308i \(0.693802\pi\)
\(740\) 822.708 + 133.867i 1.11177 + 0.180902i
\(741\) 0 0
\(742\) 237.304 + 237.304i 0.319817 + 0.319817i
\(743\) −482.125 + 482.125i −0.648889 + 0.648889i −0.952725 0.303835i \(-0.901733\pi\)
0.303835 + 0.952725i \(0.401733\pi\)
\(744\) 0 0
\(745\) 596.488 429.538i 0.800655 0.576561i
\(746\) −49.4335 −0.0662647
\(747\) 0 0
\(748\) −99.4670 + 99.4670i −0.132977 + 0.132977i
\(749\) 2143.29i 2.86154i
\(750\) 0 0
\(751\) −271.762 −0.361867 −0.180934 0.983495i \(-0.557912\pi\)
−0.180934 + 0.983495i \(0.557912\pi\)
\(752\) −130.873 130.873i −0.174033 0.174033i
\(753\) 0 0
\(754\) 81.8170i 0.108511i
\(755\) −293.093 407.010i −0.388202 0.539086i
\(756\) 0 0
\(757\) 998.012 + 998.012i 1.31838 + 1.31838i 0.915060 + 0.403318i \(0.132143\pi\)
0.403318 + 0.915060i \(0.367857\pi\)
\(758\) 75.8038 75.8038i 0.100005 0.100005i
\(759\) 0 0
\(760\) 32.6228 200.490i 0.0429248 0.263803i
\(761\) 652.825 0.857851 0.428925 0.903340i \(-0.358892\pi\)
0.428925 + 0.903340i \(0.358892\pi\)
\(762\) 0 0
\(763\) 1101.62 1101.62i 1.44380 1.44380i
\(764\) 669.555i 0.876381i
\(765\) 0 0
\(766\) −555.260 −0.724883
\(767\) 1211.15 + 1211.15i 1.57907 + 1.57907i
\(768\) 0 0
\(769\) 691.281i 0.898935i 0.893297 + 0.449468i \(0.148386\pi\)
−0.893297 + 0.449468i \(0.851614\pi\)
\(770\) 167.001 120.259i 0.216884 0.156181i
\(771\) 0 0
\(772\) 465.887 + 465.887i 0.603480 + 0.603480i
\(773\) −109.539 + 109.539i −0.141706 + 0.141706i −0.774401 0.632695i \(-0.781949\pi\)
0.632695 + 0.774401i \(0.281949\pi\)
\(774\) 0 0
\(775\) −79.4899 + 237.793i −0.102568 + 0.306830i
\(776\) 170.624 0.219876
\(777\) 0 0
\(778\) 359.148 359.148i 0.461630 0.461630i
\(779\) 294.561i 0.378127i
\(780\) 0 0
\(781\) −259.537 −0.332314
\(782\) 441.982 + 441.982i 0.565194 + 0.565194i
\(783\) 0 0
\(784\) 261.848i 0.333990i
\(785\) 140.612 864.159i 0.179124 1.10084i
\(786\) 0 0
\(787\) 265.219 + 265.219i 0.337000 + 0.337000i 0.855237 0.518237i \(-0.173412\pi\)
−0.518237 + 0.855237i \(0.673412\pi\)
\(788\) 483.210 483.210i 0.613210 0.613210i
\(789\) 0 0
\(790\) 226.012 + 36.7757i 0.286092 + 0.0465515i
\(791\) 1726.87 2.18315
\(792\) 0 0
\(793\) 19.3370 19.3370i 0.0243846 0.0243846i
\(794\) 67.7016i 0.0852665i
\(795\) 0 0
\(796\) 217.750 0.273555
\(797\) −90.0704 90.0704i −0.113012 0.113012i 0.648340 0.761351i \(-0.275464\pi\)
−0.761351 + 0.648340i \(0.775464\pi\)
\(798\) 0 0
\(799\) 865.304i 1.08298i
\(800\) 741.434 369.927i 0.926793 0.462409i
\(801\) 0 0
\(802\) −26.5637 26.5637i −0.0331218 0.0331218i
\(803\) −134.217 + 134.217i −0.167145 + 0.167145i
\(804\) 0 0
\(805\) 1274.86 + 1770.37i 1.58368 + 2.19921i
\(806\) −247.921 −0.307594
\(807\) 0 0
\(808\) 304.188 304.188i 0.376470 0.376470i
\(809\) 95.4868i 0.118031i −0.998257 0.0590153i \(-0.981204\pi\)
0.998257 0.0590153i \(-0.0187961\pi\)
\(810\) 0 0
\(811\) 746.247 0.920157 0.460078 0.887878i \(-0.347821\pi\)
0.460078 + 0.887878i \(0.347821\pi\)
\(812\) −75.3130 75.3130i −0.0927500 0.0927500i
\(813\) 0 0
\(814\) 213.218i 0.261938i
\(815\) −604.617 98.3805i −0.741861 0.120712i
\(816\) 0 0
\(817\) 131.771 + 131.771i 0.161287 + 0.161287i
\(818\) −12.1934 + 12.1934i −0.0149063 + 0.0149063i
\(819\) 0 0
\(820\) −614.551 + 442.545i −0.749453 + 0.539689i
\(821\) 318.502 0.387944 0.193972 0.981007i \(-0.437863\pi\)
0.193972 + 0.981007i \(0.437863\pi\)
\(822\) 0 0
\(823\) −491.401 + 491.401i −0.597085 + 0.597085i −0.939536 0.342451i \(-0.888743\pi\)
0.342451 + 0.939536i \(0.388743\pi\)
\(824\) 109.326i 0.132677i
\(825\) 0 0
\(826\) 934.620 1.13150
\(827\) 612.865 + 612.865i 0.741071 + 0.741071i 0.972784 0.231713i \(-0.0744332\pi\)
−0.231713 + 0.972784i \(0.574433\pi\)
\(828\) 0 0
\(829\) 164.834i 0.198835i 0.995046 + 0.0994176i \(0.0316980\pi\)
−0.995046 + 0.0994176i \(0.968302\pi\)
\(830\) −42.4663 58.9718i −0.0511642 0.0710504i
\(831\) 0 0
\(832\) 372.306 + 372.306i 0.447483 + 0.447483i
\(833\) −865.643 + 865.643i −1.03919 + 1.03919i
\(834\) 0 0
\(835\) −37.1704 + 228.438i −0.0445154 + 0.273578i
\(836\) 51.2418 0.0612940
\(837\) 0 0
\(838\) −587.557 + 587.557i −0.701142 + 0.701142i
\(839\) 644.662i 0.768369i 0.923256 + 0.384184i \(0.125517\pi\)
−0.923256 + 0.384184i \(0.874483\pi\)
\(840\) 0 0
\(841\) 830.046 0.986975
\(842\) −295.577 295.577i −0.351041 0.351041i
\(843\) 0 0
\(844\) 980.566i 1.16181i
\(845\) 1412.97 1017.50i 1.67215 1.20414i
\(846\) 0 0
\(847\) 88.8058 + 88.8058i 0.104848 + 0.104848i
\(848\) −61.5463 + 61.5463i −0.0725782 + 0.0725782i
\(849\) 0 0
\(850\) −387.803 129.636i −0.456239 0.152512i
\(851\) 2260.31 2.65606
\(852\) 0 0
\(853\) 237.329 237.329i 0.278229 0.278229i −0.554173 0.832402i \(-0.686965\pi\)
0.832402 + 0.554173i \(0.186965\pi\)
\(854\) 14.9219i 0.0174730i
\(855\) 0 0
\(856\) −1391.28 −1.62533
\(857\) 644.178 + 644.178i 0.751666 + 0.751666i 0.974790 0.223124i \(-0.0716254\pi\)
−0.223124 + 0.974790i \(0.571625\pi\)
\(858\) 0 0
\(859\) 355.700i 0.414086i 0.978332 + 0.207043i \(0.0663841\pi\)
−0.978332 + 0.207043i \(0.933616\pi\)
\(860\) −76.9466 + 472.890i −0.0894728 + 0.549873i
\(861\) 0 0
\(862\) 181.053 + 181.053i 0.210038 + 0.210038i
\(863\) −266.848 + 266.848i −0.309210 + 0.309210i −0.844603 0.535393i \(-0.820164\pi\)
0.535393 + 0.844603i \(0.320164\pi\)
\(864\) 0 0
\(865\) −236.951 38.5556i −0.273932 0.0445730i
\(866\) 188.042 0.217138
\(867\) 0 0
\(868\) 228.212 228.212i 0.262918 0.262918i
\(869\) 139.742i 0.160808i
\(870\) 0 0
\(871\) 7.11527 0.00816908
\(872\) −715.100 715.100i −0.820069 0.820069i
\(873\) 0 0
\(874\) 227.693i 0.260518i
\(875\) −1263.30 663.973i −1.44378 0.758827i
\(876\) 0 0
\(877\) 849.238 + 849.238i 0.968344 + 0.968344i 0.999514 0.0311697i \(-0.00992322\pi\)
−0.0311697 + 0.999514i \(0.509923\pi\)
\(878\) −447.176 + 447.176i −0.509312 + 0.509312i
\(879\) 0 0
\(880\) 31.1900 + 43.3127i 0.0354431 + 0.0492190i
\(881\) −371.329 −0.421485 −0.210743 0.977542i \(-0.567588\pi\)
−0.210743 + 0.977542i \(0.567588\pi\)
\(882\) 0 0
\(883\) −114.399 + 114.399i −0.129558 + 0.129558i −0.768912 0.639354i \(-0.779202\pi\)
0.639354 + 0.768912i \(0.279202\pi\)
\(884\) 964.593i 1.09117i
\(885\) 0 0
\(886\) −104.683 −0.118152
\(887\) 428.972 + 428.972i 0.483622 + 0.483622i 0.906286 0.422665i \(-0.138905\pi\)
−0.422665 + 0.906286i \(0.638905\pi\)
\(888\) 0 0
\(889\) 2169.01i 2.43983i
\(890\) 6.65782 + 1.08333i 0.00748069 + 0.00121722i
\(891\) 0 0
\(892\) −790.579 790.579i −0.886299 0.886299i
\(893\) 222.886 222.886i 0.249593 0.249593i
\(894\) 0 0
\(895\) 111.660 80.4079i 0.124760 0.0898412i
\(896\) −1226.35 −1.36870
\(897\) 0 0
\(898\) −220.482 + 220.482i −0.245526 + 0.245526i
\(899\) 33.1936i 0.0369228i
\(900\) 0 0
\(901\) 406.931 0.451644
\(902\) 136.981 + 136.981i 0.151864 + 0.151864i
\(903\) 0 0
\(904\) 1120.97i 1.24001i
\(905\) −742.984 1031.76i −0.820977 1.14007i
\(906\) 0 0
\(907\) 124.993 + 124.993i 0.137810 + 0.137810i 0.772646 0.634837i \(-0.218933\pi\)
−0.634837 + 0.772646i \(0.718933\pi\)
\(908\) −179.145 + 179.145i −0.197296 + 0.197296i
\(909\) 0 0
\(910\) 226.641 1392.87i 0.249056 1.53062i
\(911\) −950.607 −1.04348 −0.521738 0.853106i \(-0.674716\pi\)
−0.521738 + 0.853106i \(0.674716\pi\)
\(912\) 0 0
\(913\) 31.3594 31.3594i 0.0343476 0.0343476i
\(914\) 127.512i 0.139510i
\(915\) 0 0
\(916\) 734.795 0.802178
\(917\) 331.777 + 331.777i 0.361807 + 0.361807i
\(918\) 0 0
\(919\) 883.245i 0.961093i 0.876969 + 0.480547i \(0.159562\pi\)
−0.876969 + 0.480547i \(0.840438\pi\)
\(920\) 1149.20 827.554i 1.24913 0.899515i
\(921\) 0 0
\(922\) −139.415 139.415i −0.151209 0.151209i
\(923\) −1258.45 + 1258.45i −1.36343 + 1.36343i
\(924\) 0 0
\(925\) −1323.10 + 660.139i −1.43038 + 0.713663i
\(926\) 223.945 0.241842
\(927\) 0 0
\(928\) −77.5676 + 77.5676i −0.0835858 + 0.0835858i
\(929\) 48.5749i 0.0522872i −0.999658 0.0261436i \(-0.991677\pi\)
0.999658 0.0261436i \(-0.00832272\pi\)
\(930\) 0 0
\(931\) 445.947 0.478998
\(932\) 405.490 + 405.490i 0.435075 + 0.435075i
\(933\) 0 0
\(934\) 982.791i 1.05224i
\(935\) 40.0765 246.298i 0.0428626 0.263421i
\(936\) 0 0
\(937\) −151.449 151.449i −0.161632 0.161632i 0.621658 0.783289i \(-0.286460\pi\)
−0.783289 + 0.621658i \(0.786460\pi\)
\(938\) 2.74535 2.74535i 0.00292682 0.00292682i
\(939\) 0 0
\(940\) 799.877 + 130.152i 0.850933 + 0.138460i
\(941\) −1424.35 −1.51365 −0.756827 0.653615i \(-0.773252\pi\)
−0.756827 + 0.653615i \(0.773252\pi\)
\(942\) 0 0
\(943\) −1452.13 + 1452.13i −1.53991 + 1.53991i
\(944\) 242.399i 0.256779i
\(945\) 0 0
\(946\) 122.557 0.129553
\(947\) 79.1217 + 79.1217i 0.0835498 + 0.0835498i 0.747647 0.664097i \(-0.231184\pi\)
−0.664097 + 0.747647i \(0.731184\pi\)
\(948\) 0 0
\(949\) 1301.59i 1.37154i
\(950\) 66.4993 + 133.283i 0.0699993 + 0.140298i
\(951\) 0 0
\(952\) 900.360 + 900.360i 0.945756 + 0.945756i
\(953\) −792.426 + 792.426i −0.831506 + 0.831506i −0.987723 0.156217i \(-0.950070\pi\)
0.156217 + 0.987723i \(0.450070\pi\)
\(954\) 0 0
\(955\) 694.083 + 963.856i 0.726789 + 1.00927i
\(956\) 705.913 0.738402
\(957\) 0 0
\(958\) 324.660 324.660i 0.338893 0.338893i
\(959\) 2213.29i 2.30791i
\(960\) 0 0
\(961\) −860.417 −0.895335
\(962\) −1033.85 1033.85i −1.07469 1.07469i
\(963\) 0 0
\(964\) 1143.72i 1.18643i
\(965\) −1153.62 187.712i −1.19546 0.194520i
\(966\) 0 0
\(967\) −807.667 807.667i −0.835230 0.835230i 0.152997 0.988227i \(-0.451108\pi\)
−0.988227 + 0.152997i \(0.951108\pi\)
\(968\) 57.6468 57.6468i 0.0595525 0.0595525i
\(969\) 0 0
\(970\) −101.531 + 73.1139i −0.104671 + 0.0753751i
\(971\) 226.305 0.233064 0.116532 0.993187i \(-0.462822\pi\)
0.116532 + 0.993187i \(0.462822\pi\)
\(972\) 0 0
\(973\) −759.509 + 759.509i −0.780584 + 0.780584i
\(974\) 247.873i 0.254490i
\(975\) 0 0
\(976\) 3.87010 0.00396527
\(977\) 608.799 + 608.799i 0.623131 + 0.623131i 0.946331 0.323200i \(-0.104759\pi\)
−0.323200 + 0.946331i \(0.604759\pi\)
\(978\) 0 0
\(979\) 4.11650i 0.00420480i
\(980\) 669.987 + 930.393i 0.683660 + 0.949381i
\(981\) 0 0
\(982\) −328.990 328.990i −0.335020 0.335020i
\(983\) 997.652 997.652i 1.01491 1.01491i 0.0150182 0.999887i \(-0.495219\pi\)
0.999887 0.0150182i \(-0.00478063\pi\)
\(984\) 0 0
\(985\) −194.691 + 1196.51i −0.197656 + 1.21474i
\(986\) 54.1336 0.0549022
\(987\) 0 0
\(988\) 248.461 248.461i 0.251479 0.251479i
\(989\) 1299.22i 1.31367i
\(990\) 0 0
\(991\) −706.711 −0.713129 −0.356564 0.934271i \(-0.616052\pi\)
−0.356564 + 0.934271i \(0.616052\pi\)
\(992\) −235.044 235.044i −0.236940 0.236940i
\(993\) 0 0
\(994\) 971.118i 0.976980i
\(995\) −313.461 + 225.726i −0.315036 + 0.226861i
\(996\) 0 0
\(997\) 517.768 + 517.768i 0.519326 + 0.519326i 0.917367 0.398042i \(-0.130310\pi\)
−0.398042 + 0.917367i \(0.630310\pi\)
\(998\) −5.70452 + 5.70452i −0.00571595 + 0.00571595i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.j.c.397.14 yes 40
3.2 odd 2 inner 495.3.j.c.397.7 yes 40
5.3 odd 4 inner 495.3.j.c.298.14 yes 40
15.8 even 4 inner 495.3.j.c.298.7 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.j.c.298.7 40 15.8 even 4 inner
495.3.j.c.298.14 yes 40 5.3 odd 4 inner
495.3.j.c.397.7 yes 40 3.2 odd 2 inner
495.3.j.c.397.14 yes 40 1.1 even 1 trivial