Properties

Label 495.3.j.c.298.6
Level $495$
Weight $3$
Character 495.298
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(298,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.298"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 298.6
Character \(\chi\) \(=\) 495.298
Dual form 495.3.j.c.397.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40545 + 1.40545i) q^{2} +0.0494143i q^{4} +(4.99874 - 0.112178i) q^{5} +(1.33355 - 1.33355i) q^{7} +(-5.69125 - 5.69125i) q^{8} +(-6.86783 + 7.18315i) q^{10} +3.31662 q^{11} +(2.52995 + 2.52995i) q^{13} +3.74848i q^{14} +15.7999 q^{16} +(19.6260 - 19.6260i) q^{17} +24.1237i q^{19} +(0.00554322 + 0.247009i) q^{20} +(-4.66135 + 4.66135i) q^{22} +(1.52377 + 1.52377i) q^{23} +(24.9748 - 1.12150i) q^{25} -7.11144 q^{26} +(0.0658964 + 0.0658964i) q^{28} -52.1787i q^{29} -5.66217 q^{31} +(0.559027 - 0.559027i) q^{32} +55.1668i q^{34} +(6.51647 - 6.81567i) q^{35} +(26.1846 - 26.1846i) q^{37} +(-33.9047 - 33.9047i) q^{38} +(-29.0875 - 27.8107i) q^{40} -0.868046 q^{41} +(55.2976 + 55.2976i) q^{43} +0.163889i q^{44} -4.28317 q^{46} +(-7.21510 + 7.21510i) q^{47} +45.4433i q^{49} +(-33.5247 + 36.6771i) q^{50} +(-0.125016 + 0.125016i) q^{52} +(34.7108 + 34.7108i) q^{53} +(16.5789 - 0.372054i) q^{55} -15.1791 q^{56} +(73.3347 + 73.3347i) q^{58} +78.6241i q^{59} -71.8790 q^{61} +(7.95790 - 7.95790i) q^{62} +64.7710i q^{64} +(12.9304 + 12.3628i) q^{65} +(-7.85622 + 7.85622i) q^{67} +(0.969807 + 0.969807i) q^{68} +(0.420498 + 18.7377i) q^{70} +75.2724 q^{71} +(11.5472 + 11.5472i) q^{73} +73.6023i q^{74} -1.19206 q^{76} +(4.42288 - 4.42288i) q^{77} -132.372i q^{79} +(78.9796 - 1.77241i) q^{80} +(1.22000 - 1.22000i) q^{82} +(37.5500 + 37.5500i) q^{83} +(95.9038 - 100.307i) q^{85} -155.436 q^{86} +(-18.8758 - 18.8758i) q^{88} +97.5309i q^{89} +6.74762 q^{91} +(-0.0752961 + 0.0752961i) q^{92} -20.2810i q^{94} +(2.70616 + 120.588i) q^{95} +(-58.4602 + 58.4602i) q^{97} +(-63.8683 - 63.8683i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{10} - 88 q^{13} - 296 q^{16} + 168 q^{25} + 248 q^{28} - 32 q^{31} - 24 q^{37} + 296 q^{40} - 48 q^{43} + 48 q^{46} + 64 q^{52} + 104 q^{58} + 576 q^{61} - 544 q^{67} - 1048 q^{70} - 408 q^{73}+ \cdots + 712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40545 + 1.40545i −0.702726 + 0.702726i −0.964995 0.262269i \(-0.915529\pi\)
0.262269 + 0.964995i \(0.415529\pi\)
\(3\) 0 0
\(4\) 0.0494143i 0.0123536i
\(5\) 4.99874 0.112178i 0.999748 0.0224357i
\(6\) 0 0
\(7\) 1.33355 1.33355i 0.190507 0.190507i −0.605408 0.795915i \(-0.706990\pi\)
0.795915 + 0.605408i \(0.206990\pi\)
\(8\) −5.69125 5.69125i −0.711407 0.711407i
\(9\) 0 0
\(10\) −6.86783 + 7.18315i −0.686783 + 0.718315i
\(11\) 3.31662 0.301511
\(12\) 0 0
\(13\) 2.52995 + 2.52995i 0.194611 + 0.194611i 0.797685 0.603074i \(-0.206058\pi\)
−0.603074 + 0.797685i \(0.706058\pi\)
\(14\) 3.74848i 0.267748i
\(15\) 0 0
\(16\) 15.7999 0.987494
\(17\) 19.6260 19.6260i 1.15447 1.15447i 0.168826 0.985646i \(-0.446002\pi\)
0.985646 0.168826i \(-0.0539977\pi\)
\(18\) 0 0
\(19\) 24.1237i 1.26967i 0.772649 + 0.634834i \(0.218931\pi\)
−0.772649 + 0.634834i \(0.781069\pi\)
\(20\) 0.00554322 + 0.247009i 0.000277161 + 0.0123505i
\(21\) 0 0
\(22\) −4.66135 + 4.66135i −0.211880 + 0.211880i
\(23\) 1.52377 + 1.52377i 0.0662509 + 0.0662509i 0.739456 0.673205i \(-0.235083\pi\)
−0.673205 + 0.739456i \(0.735083\pi\)
\(24\) 0 0
\(25\) 24.9748 1.12150i 0.998993 0.0448601i
\(26\) −7.11144 −0.273517
\(27\) 0 0
\(28\) 0.0658964 + 0.0658964i 0.00235344 + 0.00235344i
\(29\) 52.1787i 1.79927i −0.436646 0.899633i \(-0.643834\pi\)
0.436646 0.899633i \(-0.356166\pi\)
\(30\) 0 0
\(31\) −5.66217 −0.182651 −0.0913253 0.995821i \(-0.529110\pi\)
−0.0913253 + 0.995821i \(0.529110\pi\)
\(32\) 0.559027 0.559027i 0.0174696 0.0174696i
\(33\) 0 0
\(34\) 55.1668i 1.62255i
\(35\) 6.51647 6.81567i 0.186185 0.194733i
\(36\) 0 0
\(37\) 26.1846 26.1846i 0.707691 0.707691i −0.258358 0.966049i \(-0.583181\pi\)
0.966049 + 0.258358i \(0.0831815\pi\)
\(38\) −33.9047 33.9047i −0.892228 0.892228i
\(39\) 0 0
\(40\) −29.0875 27.8107i −0.727189 0.695267i
\(41\) −0.868046 −0.0211719 −0.0105859 0.999944i \(-0.503370\pi\)
−0.0105859 + 0.999944i \(0.503370\pi\)
\(42\) 0 0
\(43\) 55.2976 + 55.2976i 1.28599 + 1.28599i 0.937201 + 0.348789i \(0.113407\pi\)
0.348789 + 0.937201i \(0.386593\pi\)
\(44\) 0.163889i 0.00372474i
\(45\) 0 0
\(46\) −4.28317 −0.0931124
\(47\) −7.21510 + 7.21510i −0.153513 + 0.153513i −0.779685 0.626172i \(-0.784621\pi\)
0.626172 + 0.779685i \(0.284621\pi\)
\(48\) 0 0
\(49\) 45.4433i 0.927414i
\(50\) −33.5247 + 36.6771i −0.670494 + 0.733542i
\(51\) 0 0
\(52\) −0.125016 + 0.125016i −0.00240415 + 0.00240415i
\(53\) 34.7108 + 34.7108i 0.654921 + 0.654921i 0.954174 0.299253i \(-0.0967375\pi\)
−0.299253 + 0.954174i \(0.596738\pi\)
\(54\) 0 0
\(55\) 16.5789 0.372054i 0.301435 0.00676461i
\(56\) −15.1791 −0.271056
\(57\) 0 0
\(58\) 73.3347 + 73.3347i 1.26439 + 1.26439i
\(59\) 78.6241i 1.33261i 0.745679 + 0.666306i \(0.232125\pi\)
−0.745679 + 0.666306i \(0.767875\pi\)
\(60\) 0 0
\(61\) −71.8790 −1.17834 −0.589172 0.808007i \(-0.700546\pi\)
−0.589172 + 0.808007i \(0.700546\pi\)
\(62\) 7.95790 7.95790i 0.128353 0.128353i
\(63\) 0 0
\(64\) 64.7710i 1.01205i
\(65\) 12.9304 + 12.3628i 0.198929 + 0.190196i
\(66\) 0 0
\(67\) −7.85622 + 7.85622i −0.117257 + 0.117257i −0.763301 0.646044i \(-0.776422\pi\)
0.646044 + 0.763301i \(0.276422\pi\)
\(68\) 0.969807 + 0.969807i 0.0142619 + 0.0142619i
\(69\) 0 0
\(70\) 0.420498 + 18.7377i 0.00600712 + 0.267681i
\(71\) 75.2724 1.06017 0.530087 0.847943i \(-0.322159\pi\)
0.530087 + 0.847943i \(0.322159\pi\)
\(72\) 0 0
\(73\) 11.5472 + 11.5472i 0.158181 + 0.158181i 0.781760 0.623579i \(-0.214322\pi\)
−0.623579 + 0.781760i \(0.714322\pi\)
\(74\) 73.6023i 0.994625i
\(75\) 0 0
\(76\) −1.19206 −0.0156849
\(77\) 4.42288 4.42288i 0.0574400 0.0574400i
\(78\) 0 0
\(79\) 132.372i 1.67560i −0.545979 0.837799i \(-0.683842\pi\)
0.545979 0.837799i \(-0.316158\pi\)
\(80\) 78.9796 1.77241i 0.987245 0.0221551i
\(81\) 0 0
\(82\) 1.22000 1.22000i 0.0148780 0.0148780i
\(83\) 37.5500 + 37.5500i 0.452409 + 0.452409i 0.896153 0.443744i \(-0.146350\pi\)
−0.443744 + 0.896153i \(0.646350\pi\)
\(84\) 0 0
\(85\) 95.9038 100.307i 1.12828 1.18008i
\(86\) −155.436 −1.80740
\(87\) 0 0
\(88\) −18.8758 18.8758i −0.214497 0.214497i
\(89\) 97.5309i 1.09585i 0.836527 + 0.547926i \(0.184583\pi\)
−0.836527 + 0.547926i \(0.815417\pi\)
\(90\) 0 0
\(91\) 6.74762 0.0741497
\(92\) −0.0752961 + 0.0752961i −0.000818436 + 0.000818436i
\(93\) 0 0
\(94\) 20.2810i 0.215755i
\(95\) 2.70616 + 120.588i 0.0284858 + 1.26935i
\(96\) 0 0
\(97\) −58.4602 + 58.4602i −0.602682 + 0.602682i −0.941023 0.338341i \(-0.890134\pi\)
0.338341 + 0.941023i \(0.390134\pi\)
\(98\) −63.8683 63.8683i −0.651718 0.651718i
\(99\) 0 0
\(100\) 0.0554182 + 1.23411i 0.000554182 + 0.0123411i
\(101\) −117.896 −1.16728 −0.583642 0.812011i \(-0.698373\pi\)
−0.583642 + 0.812011i \(0.698373\pi\)
\(102\) 0 0
\(103\) 20.3226 + 20.3226i 0.197307 + 0.197307i 0.798844 0.601538i \(-0.205445\pi\)
−0.601538 + 0.798844i \(0.705445\pi\)
\(104\) 28.7972i 0.276896i
\(105\) 0 0
\(106\) −97.5686 −0.920459
\(107\) 55.6174 55.6174i 0.519788 0.519788i −0.397719 0.917507i \(-0.630198\pi\)
0.917507 + 0.397719i \(0.130198\pi\)
\(108\) 0 0
\(109\) 111.807i 1.02575i 0.858462 + 0.512877i \(0.171420\pi\)
−0.858462 + 0.512877i \(0.828580\pi\)
\(110\) −22.7780 + 23.8238i −0.207073 + 0.216580i
\(111\) 0 0
\(112\) 21.0700 21.0700i 0.188125 0.188125i
\(113\) −108.987 108.987i −0.964490 0.964490i 0.0349010 0.999391i \(-0.488888\pi\)
−0.999391 + 0.0349010i \(0.988888\pi\)
\(114\) 0 0
\(115\) 7.78787 + 7.44600i 0.0677206 + 0.0647479i
\(116\) 2.57838 0.0222274
\(117\) 0 0
\(118\) −110.502 110.502i −0.936460 0.936460i
\(119\) 52.3446i 0.439870i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 101.022 101.022i 0.828053 0.828053i
\(123\) 0 0
\(124\) 0.279792i 0.00225639i
\(125\) 124.717 8.40773i 0.997735 0.0672618i
\(126\) 0 0
\(127\) 116.304 116.304i 0.915776 0.915776i −0.0809431 0.996719i \(-0.525793\pi\)
0.996719 + 0.0809431i \(0.0257932\pi\)
\(128\) −88.7963 88.7963i −0.693721 0.693721i
\(129\) 0 0
\(130\) −35.5482 + 0.797750i −0.273448 + 0.00613654i
\(131\) −31.6874 −0.241889 −0.120944 0.992659i \(-0.538592\pi\)
−0.120944 + 0.992659i \(0.538592\pi\)
\(132\) 0 0
\(133\) 32.1701 + 32.1701i 0.241881 + 0.241881i
\(134\) 22.0831i 0.164799i
\(135\) 0 0
\(136\) −223.393 −1.64260
\(137\) −31.4964 + 31.4964i −0.229901 + 0.229901i −0.812651 0.582750i \(-0.801977\pi\)
0.582750 + 0.812651i \(0.301977\pi\)
\(138\) 0 0
\(139\) 140.320i 1.00949i −0.863267 0.504747i \(-0.831586\pi\)
0.863267 0.504747i \(-0.168414\pi\)
\(140\) 0.336791 + 0.322007i 0.00240565 + 0.00230005i
\(141\) 0 0
\(142\) −105.792 + 105.792i −0.745011 + 0.745011i
\(143\) 8.39089 + 8.39089i 0.0586776 + 0.0586776i
\(144\) 0 0
\(145\) −5.85333 260.828i −0.0403678 1.79881i
\(146\) −32.4580 −0.222315
\(147\) 0 0
\(148\) 1.29389 + 1.29389i 0.00874252 + 0.00874252i
\(149\) 36.3096i 0.243689i 0.992549 + 0.121844i \(0.0388809\pi\)
−0.992549 + 0.121844i \(0.961119\pi\)
\(150\) 0 0
\(151\) −68.3892 −0.452909 −0.226454 0.974022i \(-0.572713\pi\)
−0.226454 + 0.974022i \(0.572713\pi\)
\(152\) 137.294 137.294i 0.903250 0.903250i
\(153\) 0 0
\(154\) 12.4323i 0.0807292i
\(155\) −28.3037 + 0.635173i −0.182605 + 0.00409789i
\(156\) 0 0
\(157\) 176.542 176.542i 1.12447 1.12447i 0.133411 0.991061i \(-0.457407\pi\)
0.991061 0.133411i \(-0.0425931\pi\)
\(158\) 186.043 + 186.043i 1.17749 + 1.17749i
\(159\) 0 0
\(160\) 2.73172 2.85714i 0.0170733 0.0178571i
\(161\) 4.06405 0.0252425
\(162\) 0 0
\(163\) 130.555 + 130.555i 0.800949 + 0.800949i 0.983244 0.182295i \(-0.0583527\pi\)
−0.182295 + 0.983244i \(0.558353\pi\)
\(164\) 0.0428939i 0.000261548i
\(165\) 0 0
\(166\) −105.549 −0.635839
\(167\) 206.060 206.060i 1.23389 1.23389i 0.271433 0.962457i \(-0.412503\pi\)
0.962457 0.271433i \(-0.0874975\pi\)
\(168\) 0 0
\(169\) 156.199i 0.924253i
\(170\) 6.18853 + 275.765i 0.0364031 + 1.62215i
\(171\) 0 0
\(172\) −2.73249 + 2.73249i −0.0158866 + 0.0158866i
\(173\) −89.1753 89.1753i −0.515464 0.515464i 0.400732 0.916196i \(-0.368756\pi\)
−0.916196 + 0.400732i \(0.868756\pi\)
\(174\) 0 0
\(175\) 31.8096 34.8008i 0.181769 0.198861i
\(176\) 52.4023 0.297741
\(177\) 0 0
\(178\) −137.075 137.075i −0.770084 0.770084i
\(179\) 7.03896i 0.0393238i 0.999807 + 0.0196619i \(0.00625898\pi\)
−0.999807 + 0.0196619i \(0.993741\pi\)
\(180\) 0 0
\(181\) −239.812 −1.32493 −0.662464 0.749094i \(-0.730489\pi\)
−0.662464 + 0.749094i \(0.730489\pi\)
\(182\) −9.48346 + 9.48346i −0.0521069 + 0.0521069i
\(183\) 0 0
\(184\) 17.3443i 0.0942627i
\(185\) 127.953 133.827i 0.691635 0.723390i
\(186\) 0 0
\(187\) 65.0922 65.0922i 0.348086 0.348086i
\(188\) −0.356529 0.356529i −0.00189643 0.00189643i
\(189\) 0 0
\(190\) −173.284 165.677i −0.912021 0.871985i
\(191\) −245.474 −1.28520 −0.642602 0.766200i \(-0.722145\pi\)
−0.642602 + 0.766200i \(0.722145\pi\)
\(192\) 0 0
\(193\) −87.9946 87.9946i −0.455930 0.455930i 0.441387 0.897317i \(-0.354487\pi\)
−0.897317 + 0.441387i \(0.854487\pi\)
\(194\) 164.326i 0.847040i
\(195\) 0 0
\(196\) −2.24555 −0.0114569
\(197\) 90.4647 90.4647i 0.459212 0.459212i −0.439185 0.898397i \(-0.644733\pi\)
0.898397 + 0.439185i \(0.144733\pi\)
\(198\) 0 0
\(199\) 282.576i 1.41998i 0.704213 + 0.709989i \(0.251300\pi\)
−0.704213 + 0.709989i \(0.748700\pi\)
\(200\) −148.521 135.755i −0.742604 0.678777i
\(201\) 0 0
\(202\) 165.697 165.697i 0.820280 0.820280i
\(203\) −69.5829 69.5829i −0.342773 0.342773i
\(204\) 0 0
\(205\) −4.33914 + 0.0973760i −0.0211665 + 0.000475005i
\(206\) −57.1248 −0.277305
\(207\) 0 0
\(208\) 39.9729 + 39.9729i 0.192178 + 0.192178i
\(209\) 80.0092i 0.382819i
\(210\) 0 0
\(211\) 238.989 1.13265 0.566324 0.824183i \(-0.308365\pi\)
0.566324 + 0.824183i \(0.308365\pi\)
\(212\) −1.71521 + 1.71521i −0.00809061 + 0.00809061i
\(213\) 0 0
\(214\) 156.335i 0.730537i
\(215\) 282.622 + 270.215i 1.31452 + 1.25681i
\(216\) 0 0
\(217\) −7.55078 + 7.55078i −0.0347962 + 0.0347962i
\(218\) −157.139 157.139i −0.720823 0.720823i
\(219\) 0 0
\(220\) 0.0183848 + 0.819237i 8.35671e−5 + 0.00372381i
\(221\) 99.3057 0.449347
\(222\) 0 0
\(223\) −238.846 238.846i −1.07106 1.07106i −0.997274 0.0737832i \(-0.976493\pi\)
−0.0737832 0.997274i \(-0.523507\pi\)
\(224\) 1.49098i 0.00665616i
\(225\) 0 0
\(226\) 306.353 1.35554
\(227\) −24.7070 + 24.7070i −0.108842 + 0.108842i −0.759430 0.650589i \(-0.774522\pi\)
0.650589 + 0.759430i \(0.274522\pi\)
\(228\) 0 0
\(229\) 54.8992i 0.239734i −0.992790 0.119867i \(-0.961753\pi\)
0.992790 0.119867i \(-0.0382469\pi\)
\(230\) −21.4105 + 0.480479i −0.0930890 + 0.00208904i
\(231\) 0 0
\(232\) −296.962 + 296.962i −1.28001 + 1.28001i
\(233\) −290.968 290.968i −1.24879 1.24879i −0.956255 0.292535i \(-0.905501\pi\)
−0.292535 0.956255i \(-0.594499\pi\)
\(234\) 0 0
\(235\) −35.2571 + 36.8758i −0.150030 + 0.156918i
\(236\) −3.88515 −0.0164625
\(237\) 0 0
\(238\) 73.5677 + 73.5677i 0.309108 + 0.309108i
\(239\) 260.284i 1.08906i 0.838743 + 0.544528i \(0.183291\pi\)
−0.838743 + 0.544528i \(0.816709\pi\)
\(240\) 0 0
\(241\) −48.0807 −0.199505 −0.0997525 0.995012i \(-0.531805\pi\)
−0.0997525 + 0.995012i \(0.531805\pi\)
\(242\) −15.4600 + 15.4600i −0.0638841 + 0.0638841i
\(243\) 0 0
\(244\) 3.55185i 0.0145568i
\(245\) 5.09775 + 227.159i 0.0208072 + 0.927181i
\(246\) 0 0
\(247\) −61.0317 + 61.0317i −0.247092 + 0.247092i
\(248\) 32.2248 + 32.2248i 0.129939 + 0.129939i
\(249\) 0 0
\(250\) −163.467 + 187.100i −0.653868 + 0.748401i
\(251\) −178.672 −0.711841 −0.355920 0.934516i \(-0.615833\pi\)
−0.355920 + 0.934516i \(0.615833\pi\)
\(252\) 0 0
\(253\) 5.05378 + 5.05378i 0.0199754 + 0.0199754i
\(254\) 326.918i 1.28708i
\(255\) 0 0
\(256\) −9.48609 −0.0370551
\(257\) 46.6324 46.6324i 0.181449 0.181449i −0.610538 0.791987i \(-0.709047\pi\)
0.791987 + 0.610538i \(0.209047\pi\)
\(258\) 0 0
\(259\) 69.8368i 0.269640i
\(260\) −0.610897 + 0.638945i −0.00234960 + 0.00245748i
\(261\) 0 0
\(262\) 44.5351 44.5351i 0.169981 0.169981i
\(263\) −138.165 138.165i −0.525344 0.525344i 0.393837 0.919180i \(-0.371148\pi\)
−0.919180 + 0.393837i \(0.871148\pi\)
\(264\) 0 0
\(265\) 177.404 + 169.616i 0.669449 + 0.640062i
\(266\) −90.4271 −0.339951
\(267\) 0 0
\(268\) −0.388209 0.388209i −0.00144854 0.00144854i
\(269\) 3.15623i 0.0117332i 0.999983 + 0.00586659i \(0.00186740\pi\)
−0.999983 + 0.00586659i \(0.998133\pi\)
\(270\) 0 0
\(271\) 348.973 1.28772 0.643861 0.765143i \(-0.277332\pi\)
0.643861 + 0.765143i \(0.277332\pi\)
\(272\) 310.089 310.089i 1.14003 1.14003i
\(273\) 0 0
\(274\) 88.5334i 0.323115i
\(275\) 82.8321 3.71960i 0.301208 0.0135258i
\(276\) 0 0
\(277\) 194.912 194.912i 0.703655 0.703655i −0.261538 0.965193i \(-0.584230\pi\)
0.965193 + 0.261538i \(0.0842297\pi\)
\(278\) 197.212 + 197.212i 0.709397 + 0.709397i
\(279\) 0 0
\(280\) −75.8766 + 1.70277i −0.270988 + 0.00608133i
\(281\) 171.567 0.610560 0.305280 0.952263i \(-0.401250\pi\)
0.305280 + 0.952263i \(0.401250\pi\)
\(282\) 0 0
\(283\) 174.449 + 174.449i 0.616428 + 0.616428i 0.944613 0.328185i \(-0.106437\pi\)
−0.328185 + 0.944613i \(0.606437\pi\)
\(284\) 3.71953i 0.0130969i
\(285\) 0 0
\(286\) −23.5860 −0.0824684
\(287\) −1.15758 + 1.15758i −0.00403339 + 0.00403339i
\(288\) 0 0
\(289\) 481.362i 1.66561i
\(290\) 374.808 + 358.354i 1.29244 + 1.23570i
\(291\) 0 0
\(292\) −0.570596 + 0.570596i −0.00195410 + 0.00195410i
\(293\) −207.978 207.978i −0.709823 0.709823i 0.256675 0.966498i \(-0.417373\pi\)
−0.966498 + 0.256675i \(0.917373\pi\)
\(294\) 0 0
\(295\) 8.81992 + 393.021i 0.0298980 + 1.33228i
\(296\) −298.046 −1.00691
\(297\) 0 0
\(298\) −51.0314 51.0314i −0.171246 0.171246i
\(299\) 7.71013i 0.0257864i
\(300\) 0 0
\(301\) 147.484 0.489981
\(302\) 96.1177 96.1177i 0.318270 0.318270i
\(303\) 0 0
\(304\) 381.152i 1.25379i
\(305\) −359.305 + 8.06327i −1.17805 + 0.0264370i
\(306\) 0 0
\(307\) −338.440 + 338.440i −1.10241 + 1.10241i −0.108292 + 0.994119i \(0.534538\pi\)
−0.994119 + 0.108292i \(0.965462\pi\)
\(308\) 0.218554 + 0.218554i 0.000709590 + 0.000709590i
\(309\) 0 0
\(310\) 38.8868 40.6722i 0.125441 0.131201i
\(311\) −179.699 −0.577810 −0.288905 0.957358i \(-0.593291\pi\)
−0.288905 + 0.957358i \(0.593291\pi\)
\(312\) 0 0
\(313\) 227.442 + 227.442i 0.726653 + 0.726653i 0.969952 0.243298i \(-0.0782294\pi\)
−0.243298 + 0.969952i \(0.578229\pi\)
\(314\) 496.243i 1.58039i
\(315\) 0 0
\(316\) 6.54108 0.0206996
\(317\) −199.205 + 199.205i −0.628406 + 0.628406i −0.947667 0.319261i \(-0.896565\pi\)
0.319261 + 0.947667i \(0.396565\pi\)
\(318\) 0 0
\(319\) 173.057i 0.542499i
\(320\) 7.26590 + 323.773i 0.0227059 + 1.01179i
\(321\) 0 0
\(322\) −5.71182 + 5.71182i −0.0177386 + 0.0177386i
\(323\) 473.452 + 473.452i 1.46580 + 1.46580i
\(324\) 0 0
\(325\) 66.0224 + 60.3477i 0.203146 + 0.185685i
\(326\) −366.976 −1.12569
\(327\) 0 0
\(328\) 4.94027 + 4.94027i 0.0150618 + 0.0150618i
\(329\) 19.2434i 0.0584906i
\(330\) 0 0
\(331\) 230.130 0.695256 0.347628 0.937632i \(-0.386987\pi\)
0.347628 + 0.937632i \(0.386987\pi\)
\(332\) −1.85551 + 1.85551i −0.00558887 + 0.00558887i
\(333\) 0 0
\(334\) 579.214i 1.73417i
\(335\) −38.3899 + 40.1525i −0.114597 + 0.119858i
\(336\) 0 0
\(337\) −208.820 + 208.820i −0.619644 + 0.619644i −0.945440 0.325796i \(-0.894368\pi\)
0.325796 + 0.945440i \(0.394368\pi\)
\(338\) 219.530 + 219.530i 0.649496 + 0.649496i
\(339\) 0 0
\(340\) 4.95660 + 4.73902i 0.0145782 + 0.0139383i
\(341\) −18.7793 −0.0550712
\(342\) 0 0
\(343\) 125.945 + 125.945i 0.367186 + 0.367186i
\(344\) 629.425i 1.82972i
\(345\) 0 0
\(346\) 250.663 0.724459
\(347\) −293.703 + 293.703i −0.846407 + 0.846407i −0.989683 0.143276i \(-0.954236\pi\)
0.143276 + 0.989683i \(0.454236\pi\)
\(348\) 0 0
\(349\) 49.0031i 0.140410i −0.997533 0.0702051i \(-0.977635\pi\)
0.997533 0.0702051i \(-0.0223654\pi\)
\(350\) 4.20392 + 93.6176i 0.0120112 + 0.267479i
\(351\) 0 0
\(352\) 1.85408 1.85408i 0.00526728 0.00526728i
\(353\) −49.8908 49.8908i −0.141334 0.141334i 0.632900 0.774234i \(-0.281864\pi\)
−0.774234 + 0.632900i \(0.781864\pi\)
\(354\) 0 0
\(355\) 376.267 8.44393i 1.05991 0.0237857i
\(356\) −4.81942 −0.0135377
\(357\) 0 0
\(358\) −9.89291 9.89291i −0.0276338 0.0276338i
\(359\) 331.174i 0.922491i −0.887273 0.461245i \(-0.847403\pi\)
0.887273 0.461245i \(-0.152597\pi\)
\(360\) 0 0
\(361\) −220.952 −0.612056
\(362\) 337.044 337.044i 0.931060 0.931060i
\(363\) 0 0
\(364\) 0.333429i 0.000916014i
\(365\) 59.0168 + 56.4261i 0.161690 + 0.154592i
\(366\) 0 0
\(367\) −453.490 + 453.490i −1.23567 + 1.23567i −0.273913 + 0.961754i \(0.588318\pi\)
−0.961754 + 0.273913i \(0.911682\pi\)
\(368\) 24.0754 + 24.0754i 0.0654224 + 0.0654224i
\(369\) 0 0
\(370\) 8.25658 + 367.919i 0.0223151 + 0.994375i
\(371\) 92.5771 0.249534
\(372\) 0 0
\(373\) −66.5519 66.5519i −0.178423 0.178423i 0.612245 0.790668i \(-0.290267\pi\)
−0.790668 + 0.612245i \(0.790267\pi\)
\(374\) 182.968i 0.489219i
\(375\) 0 0
\(376\) 82.1260 0.218420
\(377\) 132.010 132.010i 0.350158 0.350158i
\(378\) 0 0
\(379\) 141.758i 0.374031i 0.982357 + 0.187016i \(0.0598815\pi\)
−0.982357 + 0.187016i \(0.940118\pi\)
\(380\) −5.95878 + 0.133723i −0.0156810 + 0.000351902i
\(381\) 0 0
\(382\) 345.002 345.002i 0.903146 0.903146i
\(383\) −376.365 376.365i −0.982675 0.982675i 0.0171774 0.999852i \(-0.494532\pi\)
−0.999852 + 0.0171774i \(0.994532\pi\)
\(384\) 0 0
\(385\) 21.6127 22.6050i 0.0561369 0.0587143i
\(386\) 247.344 0.640788
\(387\) 0 0
\(388\) −2.88877 2.88877i −0.00744528 0.00744528i
\(389\) 628.200i 1.61491i 0.589930 + 0.807455i \(0.299155\pi\)
−0.589930 + 0.807455i \(0.700845\pi\)
\(390\) 0 0
\(391\) 59.8111 0.152970
\(392\) 258.629 258.629i 0.659769 0.659769i
\(393\) 0 0
\(394\) 254.287i 0.645400i
\(395\) −14.8493 661.695i −0.0375932 1.67518i
\(396\) 0 0
\(397\) 178.574 178.574i 0.449809 0.449809i −0.445482 0.895291i \(-0.646968\pi\)
0.895291 + 0.445482i \(0.146968\pi\)
\(398\) −397.146 397.146i −0.997855 0.997855i
\(399\) 0 0
\(400\) 394.600 17.7196i 0.986500 0.0442990i
\(401\) 298.987 0.745603 0.372801 0.927911i \(-0.378397\pi\)
0.372801 + 0.927911i \(0.378397\pi\)
\(402\) 0 0
\(403\) −14.3250 14.3250i −0.0355459 0.0355459i
\(404\) 5.82573i 0.0144201i
\(405\) 0 0
\(406\) 195.591 0.481751
\(407\) 86.8444 86.8444i 0.213377 0.213377i
\(408\) 0 0
\(409\) 644.153i 1.57495i −0.616349 0.787473i \(-0.711389\pi\)
0.616349 0.787473i \(-0.288611\pi\)
\(410\) 5.96159 6.23531i 0.0145405 0.0152081i
\(411\) 0 0
\(412\) −1.00423 + 1.00423i −0.00243744 + 0.00243744i
\(413\) 104.849 + 104.849i 0.253872 + 0.253872i
\(414\) 0 0
\(415\) 191.915 + 183.490i 0.462445 + 0.442145i
\(416\) 2.82862 0.00679957
\(417\) 0 0
\(418\) −112.449 112.449i −0.269017 0.269017i
\(419\) 104.231i 0.248760i 0.992235 + 0.124380i \(0.0396942\pi\)
−0.992235 + 0.124380i \(0.960306\pi\)
\(420\) 0 0
\(421\) −167.469 −0.397788 −0.198894 0.980021i \(-0.563735\pi\)
−0.198894 + 0.980021i \(0.563735\pi\)
\(422\) −335.887 + 335.887i −0.795940 + 0.795940i
\(423\) 0 0
\(424\) 395.096i 0.931830i
\(425\) 468.146 512.167i 1.10152 1.20510i
\(426\) 0 0
\(427\) −95.8542 + 95.8542i −0.224483 + 0.224483i
\(428\) 2.74829 + 2.74829i 0.00642125 + 0.00642125i
\(429\) 0 0
\(430\) −776.985 + 17.4366i −1.80694 + 0.0405502i
\(431\) −122.966 −0.285304 −0.142652 0.989773i \(-0.545563\pi\)
−0.142652 + 0.989773i \(0.545563\pi\)
\(432\) 0 0
\(433\) −29.8699 29.8699i −0.0689837 0.0689837i 0.671773 0.740757i \(-0.265533\pi\)
−0.740757 + 0.671773i \(0.765533\pi\)
\(434\) 21.2245i 0.0489044i
\(435\) 0 0
\(436\) −5.52487 −0.0126717
\(437\) −36.7590 + 36.7590i −0.0841166 + 0.0841166i
\(438\) 0 0
\(439\) 56.2322i 0.128092i −0.997947 0.0640458i \(-0.979600\pi\)
0.997947 0.0640458i \(-0.0204004\pi\)
\(440\) −96.4725 92.2376i −0.219256 0.209631i
\(441\) 0 0
\(442\) −139.569 + 139.569i −0.315768 + 0.315768i
\(443\) −365.717 365.717i −0.825546 0.825546i 0.161351 0.986897i \(-0.448415\pi\)
−0.986897 + 0.161351i \(0.948415\pi\)
\(444\) 0 0
\(445\) 10.9409 + 487.532i 0.0245862 + 1.09558i
\(446\) 671.372 1.50532
\(447\) 0 0
\(448\) 86.3753 + 86.3753i 0.192802 + 0.192802i
\(449\) 696.270i 1.55071i −0.631524 0.775356i \(-0.717570\pi\)
0.631524 0.775356i \(-0.282430\pi\)
\(450\) 0 0
\(451\) −2.87898 −0.00638356
\(452\) 5.38553 5.38553i 0.0119149 0.0119149i
\(453\) 0 0
\(454\) 69.4491i 0.152972i
\(455\) 33.7296 0.756937i 0.0741311 0.00166360i
\(456\) 0 0
\(457\) −542.497 + 542.497i −1.18708 + 1.18708i −0.209214 + 0.977870i \(0.567091\pi\)
−0.977870 + 0.209214i \(0.932909\pi\)
\(458\) 77.1581 + 77.1581i 0.168468 + 0.168468i
\(459\) 0 0
\(460\) −0.367939 + 0.384832i −0.000799868 + 0.000836592i
\(461\) −750.064 −1.62704 −0.813518 0.581540i \(-0.802450\pi\)
−0.813518 + 0.581540i \(0.802450\pi\)
\(462\) 0 0
\(463\) 466.490 + 466.490i 1.00754 + 1.00754i 0.999971 + 0.00756558i \(0.00240822\pi\)
0.00756558 + 0.999971i \(0.497592\pi\)
\(464\) 824.419i 1.77676i
\(465\) 0 0
\(466\) 817.883 1.75511
\(467\) 155.227 155.227i 0.332393 0.332393i −0.521102 0.853495i \(-0.674479\pi\)
0.853495 + 0.521102i \(0.174479\pi\)
\(468\) 0 0
\(469\) 20.9533i 0.0446766i
\(470\) −2.27508 101.379i −0.00484060 0.215701i
\(471\) 0 0
\(472\) 447.470 447.470i 0.948029 0.948029i
\(473\) 183.401 + 183.401i 0.387741 + 0.387741i
\(474\) 0 0
\(475\) 27.0547 + 602.485i 0.0569574 + 1.26839i
\(476\) 2.58657 0.00543397
\(477\) 0 0
\(478\) −365.817 365.817i −0.765307 0.765307i
\(479\) 100.913i 0.210674i 0.994437 + 0.105337i \(0.0335921\pi\)
−0.994437 + 0.105337i \(0.966408\pi\)
\(480\) 0 0
\(481\) 132.491 0.275450
\(482\) 67.5751 67.5751i 0.140197 0.140197i
\(483\) 0 0
\(484\) 0.543557i 0.00112305i
\(485\) −285.669 + 298.785i −0.589009 + 0.616052i
\(486\) 0 0
\(487\) 113.769 113.769i 0.233611 0.233611i −0.580587 0.814198i \(-0.697177\pi\)
0.814198 + 0.580587i \(0.197177\pi\)
\(488\) 409.082 + 409.082i 0.838282 + 0.838282i
\(489\) 0 0
\(490\) −326.426 312.097i −0.666175 0.636932i
\(491\) −732.425 −1.49170 −0.745851 0.666113i \(-0.767957\pi\)
−0.745851 + 0.666113i \(0.767957\pi\)
\(492\) 0 0
\(493\) −1024.06 1024.06i −2.07720 2.07720i
\(494\) 171.554i 0.347275i
\(495\) 0 0
\(496\) −89.4617 −0.180366
\(497\) 100.379 100.379i 0.201971 0.201971i
\(498\) 0 0
\(499\) 526.800i 1.05571i −0.849334 0.527855i \(-0.822996\pi\)
0.849334 0.527855i \(-0.177004\pi\)
\(500\) 0.415462 + 6.16280i 0.000830924 + 0.0123256i
\(501\) 0 0
\(502\) 251.115 251.115i 0.500229 0.500229i
\(503\) −304.311 304.311i −0.604993 0.604993i 0.336641 0.941633i \(-0.390709\pi\)
−0.941633 + 0.336641i \(0.890709\pi\)
\(504\) 0 0
\(505\) −589.330 + 13.2253i −1.16699 + 0.0261888i
\(506\) −14.2057 −0.0280745
\(507\) 0 0
\(508\) 5.74706 + 5.74706i 0.0113131 + 0.0113131i
\(509\) 358.316i 0.703961i 0.936007 + 0.351980i \(0.114492\pi\)
−0.936007 + 0.351980i \(0.885508\pi\)
\(510\) 0 0
\(511\) 30.7975 0.0602691
\(512\) 368.518 368.518i 0.719761 0.719761i
\(513\) 0 0
\(514\) 131.079i 0.255018i
\(515\) 103.867 + 99.3076i 0.201684 + 0.192830i
\(516\) 0 0
\(517\) −23.9298 + 23.9298i −0.0462859 + 0.0462859i
\(518\) 98.1523 + 98.1523i 0.189483 + 0.189483i
\(519\) 0 0
\(520\) −3.23042 143.950i −0.00621234 0.276826i
\(521\) 676.839 1.29912 0.649558 0.760312i \(-0.274954\pi\)
0.649558 + 0.760312i \(0.274954\pi\)
\(522\) 0 0
\(523\) −194.779 194.779i −0.372426 0.372426i 0.495934 0.868360i \(-0.334826\pi\)
−0.868360 + 0.495934i \(0.834826\pi\)
\(524\) 1.56581i 0.00298819i
\(525\) 0 0
\(526\) 388.370 0.738345
\(527\) −111.126 + 111.126i −0.210865 + 0.210865i
\(528\) 0 0
\(529\) 524.356i 0.991222i
\(530\) −487.720 + 10.9451i −0.920227 + 0.0206511i
\(531\) 0 0
\(532\) −1.58966 + 1.58966i −0.00298809 + 0.00298809i
\(533\) −2.19611 2.19611i −0.00412029 0.00412029i
\(534\) 0 0
\(535\) 271.778 284.256i 0.507996 0.531319i
\(536\) 89.4234 0.166835
\(537\) 0 0
\(538\) −4.43592 4.43592i −0.00824521 0.00824521i
\(539\) 150.718i 0.279626i
\(540\) 0 0
\(541\) −324.984 −0.600710 −0.300355 0.953827i \(-0.597105\pi\)
−0.300355 + 0.953827i \(0.597105\pi\)
\(542\) −490.464 + 490.464i −0.904915 + 0.904915i
\(543\) 0 0
\(544\) 21.9430i 0.0403363i
\(545\) 12.5423 + 558.895i 0.0230135 + 1.02550i
\(546\) 0 0
\(547\) −155.506 + 155.506i −0.284290 + 0.284290i −0.834817 0.550527i \(-0.814427\pi\)
0.550527 + 0.834817i \(0.314427\pi\)
\(548\) −1.55637 1.55637i −0.00284010 0.00284010i
\(549\) 0 0
\(550\) −111.189 + 121.644i −0.202161 + 0.221171i
\(551\) 1258.74 2.28447
\(552\) 0 0
\(553\) −176.525 176.525i −0.319213 0.319213i
\(554\) 547.880i 0.988953i
\(555\) 0 0
\(556\) 6.93380 0.0124709
\(557\) −290.973 + 290.973i −0.522393 + 0.522393i −0.918294 0.395900i \(-0.870433\pi\)
0.395900 + 0.918294i \(0.370433\pi\)
\(558\) 0 0
\(559\) 279.800i 0.500537i
\(560\) 102.960 107.687i 0.183857 0.192298i
\(561\) 0 0
\(562\) −241.129 + 241.129i −0.429056 + 0.429056i
\(563\) −401.485 401.485i −0.713116 0.713116i 0.254069 0.967186i \(-0.418231\pi\)
−0.967186 + 0.254069i \(0.918231\pi\)
\(564\) 0 0
\(565\) −557.026 532.574i −0.985886 0.942608i
\(566\) −490.359 −0.866359
\(567\) 0 0
\(568\) −428.394 428.394i −0.754215 0.754215i
\(569\) 988.685i 1.73758i 0.495178 + 0.868792i \(0.335103\pi\)
−0.495178 + 0.868792i \(0.664897\pi\)
\(570\) 0 0
\(571\) 101.891 0.178442 0.0892211 0.996012i \(-0.471562\pi\)
0.0892211 + 0.996012i \(0.471562\pi\)
\(572\) −0.414630 + 0.414630i −0.000724878 + 0.000724878i
\(573\) 0 0
\(574\) 3.25385i 0.00566873i
\(575\) 39.7648 + 36.3470i 0.0691562 + 0.0632122i
\(576\) 0 0
\(577\) 205.643 205.643i 0.356401 0.356401i −0.506084 0.862484i \(-0.668907\pi\)
0.862484 + 0.506084i \(0.168907\pi\)
\(578\) 676.531 + 676.531i 1.17047 + 1.17047i
\(579\) 0 0
\(580\) 12.8886 0.289238i 0.0222218 0.000498686i
\(581\) 100.149 0.172374
\(582\) 0 0
\(583\) 115.123 + 115.123i 0.197466 + 0.197466i
\(584\) 131.436i 0.225062i
\(585\) 0 0
\(586\) 584.606 0.997622
\(587\) 66.4402 66.4402i 0.113186 0.113186i −0.648245 0.761431i \(-0.724497\pi\)
0.761431 + 0.648245i \(0.224497\pi\)
\(588\) 0 0
\(589\) 136.592i 0.231906i
\(590\) −564.768 539.976i −0.957234 0.915214i
\(591\) 0 0
\(592\) 413.714 413.714i 0.698841 0.698841i
\(593\) 623.997 + 623.997i 1.05227 + 1.05227i 0.998556 + 0.0537156i \(0.0171064\pi\)
0.0537156 + 0.998556i \(0.482894\pi\)
\(594\) 0 0
\(595\) −5.87193 261.657i −0.00986879 0.439760i
\(596\) −1.79421 −0.00301043
\(597\) 0 0
\(598\) −10.8362 10.8362i −0.0181207 0.0181207i
\(599\) 26.0024i 0.0434096i 0.999764 + 0.0217048i \(0.00690940\pi\)
−0.999764 + 0.0217048i \(0.993091\pi\)
\(600\) 0 0
\(601\) −816.931 −1.35929 −0.679643 0.733543i \(-0.737865\pi\)
−0.679643 + 0.733543i \(0.737865\pi\)
\(602\) −207.282 + 207.282i −0.344322 + 0.344322i
\(603\) 0 0
\(604\) 3.37940i 0.00559504i
\(605\) 54.9862 1.23396i 0.0908862 0.00203961i
\(606\) 0 0
\(607\) −154.340 + 154.340i −0.254267 + 0.254267i −0.822718 0.568450i \(-0.807543\pi\)
0.568450 + 0.822718i \(0.307543\pi\)
\(608\) 13.4858 + 13.4858i 0.0221806 + 0.0221806i
\(609\) 0 0
\(610\) 493.653 516.318i 0.809266 0.846422i
\(611\) −36.5077 −0.0597507
\(612\) 0 0
\(613\) −124.979 124.979i −0.203882 0.203882i 0.597779 0.801661i \(-0.296050\pi\)
−0.801661 + 0.597779i \(0.796050\pi\)
\(614\) 951.322i 1.54939i
\(615\) 0 0
\(616\) −50.3435 −0.0817265
\(617\) −415.755 + 415.755i −0.673832 + 0.673832i −0.958597 0.284765i \(-0.908084\pi\)
0.284765 + 0.958597i \(0.408084\pi\)
\(618\) 0 0
\(619\) 1103.71i 1.78305i 0.452967 + 0.891527i \(0.350366\pi\)
−0.452967 + 0.891527i \(0.649634\pi\)
\(620\) −0.0313866 1.39861i −5.06236e−5 0.00225582i
\(621\) 0 0
\(622\) 252.558 252.558i 0.406042 0.406042i
\(623\) 130.062 + 130.062i 0.208768 + 0.208768i
\(624\) 0 0
\(625\) 622.484 56.0186i 0.995975 0.0896298i
\(626\) −639.318 −1.02128
\(627\) 0 0
\(628\) 8.72371 + 8.72371i 0.0138913 + 0.0138913i
\(629\) 1027.80i 1.63402i
\(630\) 0 0
\(631\) −633.834 −1.00449 −0.502246 0.864725i \(-0.667493\pi\)
−0.502246 + 0.864725i \(0.667493\pi\)
\(632\) −753.364 + 753.364i −1.19203 + 1.19203i
\(633\) 0 0
\(634\) 559.945i 0.883194i
\(635\) 568.324 594.418i 0.894999 0.936091i
\(636\) 0 0
\(637\) −114.969 + 114.969i −0.180485 + 0.180485i
\(638\) 243.224 + 243.224i 0.381228 + 0.381228i
\(639\) 0 0
\(640\) −453.831 433.909i −0.709111 0.677983i
\(641\) 1051.56 1.64049 0.820247 0.572009i \(-0.193836\pi\)
0.820247 + 0.572009i \(0.193836\pi\)
\(642\) 0 0
\(643\) −341.723 341.723i −0.531451 0.531451i 0.389553 0.921004i \(-0.372629\pi\)
−0.921004 + 0.389553i \(0.872629\pi\)
\(644\) 0.200822i 0.000311836i
\(645\) 0 0
\(646\) −1330.83 −2.06010
\(647\) 49.3114 49.3114i 0.0762155 0.0762155i −0.667971 0.744187i \(-0.732837\pi\)
0.744187 + 0.667971i \(0.232837\pi\)
\(648\) 0 0
\(649\) 260.767i 0.401797i
\(650\) −177.607 + 7.97549i −0.273242 + 0.0122700i
\(651\) 0 0
\(652\) −6.45127 + 6.45127i −0.00989458 + 0.00989458i
\(653\) 186.993 + 186.993i 0.286360 + 0.286360i 0.835639 0.549279i \(-0.185098\pi\)
−0.549279 + 0.835639i \(0.685098\pi\)
\(654\) 0 0
\(655\) −158.397 + 3.55464i −0.241828 + 0.00542694i
\(656\) −13.7150 −0.0209071
\(657\) 0 0
\(658\) −27.0457 27.0457i −0.0411028 0.0411028i
\(659\) 550.468i 0.835308i 0.908606 + 0.417654i \(0.137148\pi\)
−0.908606 + 0.417654i \(0.862852\pi\)
\(660\) 0 0
\(661\) 393.621 0.595494 0.297747 0.954645i \(-0.403765\pi\)
0.297747 + 0.954645i \(0.403765\pi\)
\(662\) −323.436 + 323.436i −0.488574 + 0.488574i
\(663\) 0 0
\(664\) 427.413i 0.643694i
\(665\) 164.419 + 157.201i 0.247247 + 0.236393i
\(666\) 0 0
\(667\) 79.5084 79.5084i 0.119203 0.119203i
\(668\) 10.1823 + 10.1823i 0.0152430 + 0.0152430i
\(669\) 0 0
\(670\) −2.47724 110.387i −0.00369737 0.164757i
\(671\) −238.396 −0.355284
\(672\) 0 0
\(673\) 127.506 + 127.506i 0.189459 + 0.189459i 0.795462 0.606003i \(-0.207228\pi\)
−0.606003 + 0.795462i \(0.707228\pi\)
\(674\) 586.973i 0.870879i
\(675\) 0 0
\(676\) 7.71845 0.0114178
\(677\) −812.543 + 812.543i −1.20021 + 1.20021i −0.226109 + 0.974102i \(0.572601\pi\)
−0.974102 + 0.226109i \(0.927399\pi\)
\(678\) 0 0
\(679\) 155.919i 0.229630i
\(680\) −1116.69 + 25.0599i −1.64219 + 0.0368528i
\(681\) 0 0
\(682\) 26.3934 26.3934i 0.0387000 0.0387000i
\(683\) −286.806 286.806i −0.419920 0.419920i 0.465256 0.885176i \(-0.345962\pi\)
−0.885176 + 0.465256i \(0.845962\pi\)
\(684\) 0 0
\(685\) −153.909 + 160.976i −0.224685 + 0.235001i
\(686\) −354.019 −0.516062
\(687\) 0 0
\(688\) 873.696 + 873.696i 1.26991 + 1.26991i
\(689\) 175.633i 0.254910i
\(690\) 0 0
\(691\) −828.622 −1.19916 −0.599582 0.800313i \(-0.704666\pi\)
−0.599582 + 0.800313i \(0.704666\pi\)
\(692\) 4.40653 4.40653i 0.00636782 0.00636782i
\(693\) 0 0
\(694\) 825.571i 1.18958i
\(695\) −15.7408 701.421i −0.0226487 1.00924i
\(696\) 0 0
\(697\) −17.0363 + 17.0363i −0.0244423 + 0.0244423i
\(698\) 68.8715 + 68.8715i 0.0986698 + 0.0986698i
\(699\) 0 0
\(700\) 1.71966 + 1.57185i 0.00245665 + 0.00224550i
\(701\) −377.097 −0.537942 −0.268971 0.963148i \(-0.586684\pi\)
−0.268971 + 0.963148i \(0.586684\pi\)
\(702\) 0 0
\(703\) 631.668 + 631.668i 0.898532 + 0.898532i
\(704\) 214.821i 0.305143i
\(705\) 0 0
\(706\) 140.238 0.198638
\(707\) −157.220 + 157.220i −0.222376 + 0.222376i
\(708\) 0 0
\(709\) 701.021i 0.988746i −0.869250 0.494373i \(-0.835398\pi\)
0.869250 0.494373i \(-0.164602\pi\)
\(710\) −516.957 + 540.693i −0.728109 + 0.761539i
\(711\) 0 0
\(712\) 555.073 555.073i 0.779597 0.779597i
\(713\) −8.62785 8.62785i −0.0121008 0.0121008i
\(714\) 0 0
\(715\) 42.8852 + 41.0026i 0.0599793 + 0.0573463i
\(716\) −0.347825 −0.000485789
\(717\) 0 0
\(718\) 465.449 + 465.449i 0.648258 + 0.648258i
\(719\) 856.257i 1.19090i 0.803393 + 0.595450i \(0.203026\pi\)
−0.803393 + 0.595450i \(0.796974\pi\)
\(720\) 0 0
\(721\) 54.2024 0.0751766
\(722\) 310.537 310.537i 0.430107 0.430107i
\(723\) 0 0
\(724\) 11.8501i 0.0163676i
\(725\) −58.5185 1303.16i −0.0807152 1.79746i
\(726\) 0 0
\(727\) 76.4618 76.4618i 0.105174 0.105174i −0.652561 0.757736i \(-0.726306\pi\)
0.757736 + 0.652561i \(0.226306\pi\)
\(728\) −38.4024 38.4024i −0.0527506 0.0527506i
\(729\) 0 0
\(730\) −162.249 + 3.64109i −0.222259 + 0.00498779i
\(731\) 2170.54 2.96928
\(732\) 0 0
\(733\) −289.170 289.170i −0.394502 0.394502i 0.481786 0.876289i \(-0.339988\pi\)
−0.876289 + 0.481786i \(0.839988\pi\)
\(734\) 1274.72i 1.73667i
\(735\) 0 0
\(736\) 1.70366 0.00231475
\(737\) −26.0561 + 26.0561i −0.0353543 + 0.0353543i
\(738\) 0 0
\(739\) 1351.93i 1.82940i 0.404133 + 0.914700i \(0.367573\pi\)
−0.404133 + 0.914700i \(0.632427\pi\)
\(740\) 6.61298 + 6.32269i 0.00893646 + 0.00854417i
\(741\) 0 0
\(742\) −130.113 + 130.113i −0.175354 + 0.175354i
\(743\) 141.927 + 141.927i 0.191018 + 0.191018i 0.796136 0.605118i \(-0.206874\pi\)
−0.605118 + 0.796136i \(0.706874\pi\)
\(744\) 0 0
\(745\) 4.07315 + 181.502i 0.00546732 + 0.243627i
\(746\) 187.071 0.250765
\(747\) 0 0
\(748\) 3.21648 + 3.21648i 0.00430011 + 0.00430011i
\(749\) 148.337i 0.198047i
\(750\) 0 0
\(751\) −1058.20 −1.40906 −0.704530 0.709674i \(-0.748842\pi\)
−0.704530 + 0.709674i \(0.748842\pi\)
\(752\) −113.998 + 113.998i −0.151593 + 0.151593i
\(753\) 0 0
\(754\) 371.066i 0.492130i
\(755\) −341.860 + 7.67179i −0.452795 + 0.0101613i
\(756\) 0 0
\(757\) 643.998 643.998i 0.850725 0.850725i −0.139498 0.990222i \(-0.544549\pi\)
0.990222 + 0.139498i \(0.0445488\pi\)
\(758\) −199.234 199.234i −0.262841 0.262841i
\(759\) 0 0
\(760\) 670.896 701.699i 0.882758 0.923288i
\(761\) 895.219 1.17637 0.588186 0.808726i \(-0.299842\pi\)
0.588186 + 0.808726i \(0.299842\pi\)
\(762\) 0 0
\(763\) 149.100 + 149.100i 0.195413 + 0.195413i
\(764\) 12.1299i 0.0158769i
\(765\) 0 0
\(766\) 1057.92 1.38110
\(767\) −198.915 + 198.915i −0.259341 + 0.259341i
\(768\) 0 0
\(769\) 684.424i 0.890019i −0.895526 0.445009i \(-0.853200\pi\)
0.895526 0.445009i \(-0.146800\pi\)
\(770\) 1.39463 + 62.1458i 0.00181121 + 0.0807089i
\(771\) 0 0
\(772\) 4.34819 4.34819i 0.00563237 0.00563237i
\(773\) −362.906 362.906i −0.469477 0.469477i 0.432268 0.901745i \(-0.357713\pi\)
−0.901745 + 0.432268i \(0.857713\pi\)
\(774\) 0 0
\(775\) −141.412 + 6.35013i −0.182467 + 0.00819372i
\(776\) 665.423 0.857504
\(777\) 0 0
\(778\) −882.904 882.904i −1.13484 1.13484i
\(779\) 20.9405i 0.0268812i
\(780\) 0 0
\(781\) 249.650 0.319655
\(782\) −84.0616 + 84.0616i −0.107496 + 0.107496i
\(783\) 0 0
\(784\) 717.999i 0.915816i
\(785\) 862.684 902.292i 1.09896 1.14942i
\(786\) 0 0
\(787\) −606.535 + 606.535i −0.770692 + 0.770692i −0.978227 0.207535i \(-0.933456\pi\)
0.207535 + 0.978227i \(0.433456\pi\)
\(788\) 4.47025 + 4.47025i 0.00567291 + 0.00567291i
\(789\) 0 0
\(790\) 950.849 + 909.109i 1.20361 + 1.15077i
\(791\) −290.680 −0.367484
\(792\) 0 0
\(793\) −181.850 181.850i −0.229319 0.229319i
\(794\) 501.955i 0.632185i
\(795\) 0 0
\(796\) −13.9633 −0.0175418
\(797\) −408.289 + 408.289i −0.512283 + 0.512283i −0.915225 0.402943i \(-0.867987\pi\)
0.402943 + 0.915225i \(0.367987\pi\)
\(798\) 0 0
\(799\) 283.208i 0.354453i
\(800\) 13.3347 14.5886i 0.0166683 0.0182357i
\(801\) 0 0
\(802\) −420.211 + 420.211i −0.523954 + 0.523954i
\(803\) 38.2977 + 38.2977i 0.0476933 + 0.0476933i
\(804\) 0 0
\(805\) 20.3151 0.455898i 0.0252362 0.000566333i
\(806\) 40.2662 0.0499580
\(807\) 0 0
\(808\) 670.974 + 670.974i 0.830413 + 0.830413i
\(809\) 755.271i 0.933586i −0.884367 0.466793i \(-0.845409\pi\)
0.884367 0.466793i \(-0.154591\pi\)
\(810\) 0 0
\(811\) 832.082 1.02600 0.512998 0.858390i \(-0.328535\pi\)
0.512998 + 0.858390i \(0.328535\pi\)
\(812\) 3.43839 3.43839i 0.00423447 0.00423447i
\(813\) 0 0
\(814\) 244.111i 0.299891i
\(815\) 667.254 + 637.963i 0.818717 + 0.782777i
\(816\) 0 0
\(817\) −1333.98 + 1333.98i −1.63278 + 1.63278i
\(818\) 905.325 + 905.325i 1.10675 + 1.10675i
\(819\) 0 0
\(820\) −0.00481177 0.214416i −5.86801e−6 0.000261482i
\(821\) −342.502 −0.417177 −0.208589 0.978003i \(-0.566887\pi\)
−0.208589 + 0.978003i \(0.566887\pi\)
\(822\) 0 0
\(823\) 995.836 + 995.836i 1.21001 + 1.21001i 0.971024 + 0.238983i \(0.0768142\pi\)
0.238983 + 0.971024i \(0.423186\pi\)
\(824\) 231.322i 0.280731i
\(825\) 0 0
\(826\) −294.721 −0.356805
\(827\) −105.216 + 105.216i −0.127226 + 0.127226i −0.767853 0.640627i \(-0.778675\pi\)
0.640627 + 0.767853i \(0.278675\pi\)
\(828\) 0 0
\(829\) 859.801i 1.03715i 0.855031 + 0.518577i \(0.173538\pi\)
−0.855031 + 0.518577i \(0.826462\pi\)
\(830\) −527.614 + 11.8403i −0.635679 + 0.0142655i
\(831\) 0 0
\(832\) −163.867 + 163.867i −0.196956 + 0.196956i
\(833\) 891.871 + 891.871i 1.07067 + 1.07067i
\(834\) 0 0
\(835\) 1006.92 1053.15i 1.20590 1.26126i
\(836\) −3.95360 −0.00472919
\(837\) 0 0
\(838\) −146.491 146.491i −0.174810 0.174810i
\(839\) 43.7687i 0.0521677i 0.999660 + 0.0260838i \(0.00830369\pi\)
−0.999660 + 0.0260838i \(0.991696\pi\)
\(840\) 0 0
\(841\) −1881.62 −2.23736
\(842\) 235.369 235.369i 0.279536 0.279536i
\(843\) 0 0
\(844\) 11.8095i 0.0139922i
\(845\) −17.5221 780.797i −0.0207362 0.924020i
\(846\) 0 0
\(847\) 14.6690 14.6690i 0.0173188 0.0173188i
\(848\) 548.427 + 548.427i 0.646730 + 0.646730i
\(849\) 0 0
\(850\) 61.8697 + 1377.78i 0.0727879 + 1.62092i
\(851\) 79.7986 0.0937704
\(852\) 0 0
\(853\) 493.411 + 493.411i 0.578442 + 0.578442i 0.934474 0.356032i \(-0.115870\pi\)
−0.356032 + 0.934474i \(0.615870\pi\)
\(854\) 269.437i 0.315500i
\(855\) 0 0
\(856\) −633.065 −0.739562
\(857\) 496.151 496.151i 0.578939 0.578939i −0.355672 0.934611i \(-0.615748\pi\)
0.934611 + 0.355672i \(0.115748\pi\)
\(858\) 0 0
\(859\) 420.510i 0.489535i −0.969582 0.244767i \(-0.921288\pi\)
0.969582 0.244767i \(-0.0787116\pi\)
\(860\) −13.3525 + 13.9655i −0.0155262 + 0.0162390i
\(861\) 0 0
\(862\) 172.823 172.823i 0.200490 0.200490i
\(863\) −857.573 857.573i −0.993711 0.993711i 0.00626898 0.999980i \(-0.498005\pi\)
−0.999980 + 0.00626898i \(0.998005\pi\)
\(864\) 0 0
\(865\) −455.768 435.761i −0.526899 0.503769i
\(866\) 83.9615 0.0969532
\(867\) 0 0
\(868\) −0.373117 0.373117i −0.000429858 0.000429858i
\(869\) 439.029i 0.505212i
\(870\) 0 0
\(871\) −39.7516 −0.0456391
\(872\) 636.323 636.323i 0.729728 0.729728i
\(873\) 0 0
\(874\) 103.326i 0.118222i
\(875\) 155.104 177.528i 0.177262 0.202890i
\(876\) 0 0
\(877\) 530.997 530.997i 0.605470 0.605470i −0.336289 0.941759i \(-0.609172\pi\)
0.941759 + 0.336289i \(0.109172\pi\)
\(878\) 79.0316 + 79.0316i 0.0900132 + 0.0900132i
\(879\) 0 0
\(880\) 261.946 5.87841i 0.297666 0.00668001i
\(881\) −353.287 −0.401007 −0.200504 0.979693i \(-0.564258\pi\)
−0.200504 + 0.979693i \(0.564258\pi\)
\(882\) 0 0
\(883\) 815.306 + 815.306i 0.923336 + 0.923336i 0.997264 0.0739272i \(-0.0235533\pi\)
−0.0739272 + 0.997264i \(0.523553\pi\)
\(884\) 4.90712i 0.00555104i
\(885\) 0 0
\(886\) 1027.99 1.16026
\(887\) −49.0535 + 49.0535i −0.0553027 + 0.0553027i −0.734217 0.678915i \(-0.762451\pi\)
0.678915 + 0.734217i \(0.262451\pi\)
\(888\) 0 0
\(889\) 310.193i 0.348923i
\(890\) −700.579 669.825i −0.787167 0.752613i
\(891\) 0 0
\(892\) 11.8024 11.8024i 0.0132314 0.0132314i
\(893\) −174.055 174.055i −0.194910 0.194910i
\(894\) 0 0
\(895\) 0.789619 + 35.1859i 0.000882255 + 0.0393139i
\(896\) −236.829 −0.264318
\(897\) 0 0
\(898\) 978.573 + 978.573i 1.08973 + 1.08973i
\(899\) 295.445i 0.328637i
\(900\) 0 0
\(901\) 1362.47 1.51218
\(902\) 4.04627 4.04627i 0.00448589 0.00448589i
\(903\) 0 0
\(904\) 1240.55i 1.37229i
\(905\) −1198.76 + 26.9017i −1.32459 + 0.0297256i
\(906\) 0 0
\(907\) 1237.12 1237.12i 1.36396 1.36396i 0.495167 0.868798i \(-0.335107\pi\)
0.868798 0.495167i \(-0.164893\pi\)
\(908\) −1.22088 1.22088i −0.00134458 0.00134458i
\(909\) 0 0
\(910\) −46.3415 + 48.4692i −0.0509247 + 0.0532628i
\(911\) −318.606 −0.349732 −0.174866 0.984592i \(-0.555949\pi\)
−0.174866 + 0.984592i \(0.555949\pi\)
\(912\) 0 0
\(913\) 124.539 + 124.539i 0.136407 + 0.136407i
\(914\) 1524.91i 1.66839i
\(915\) 0 0
\(916\) 2.71281 0.00296158
\(917\) −42.2568 + 42.2568i −0.0460815 + 0.0460815i
\(918\) 0 0
\(919\) 902.066i 0.981573i 0.871280 + 0.490787i \(0.163291\pi\)
−0.871280 + 0.490787i \(0.836709\pi\)
\(920\) −1.94566 86.6999i −0.00211485 0.0942390i
\(921\) 0 0
\(922\) 1054.18 1054.18i 1.14336 1.14336i
\(923\) 190.435 + 190.435i 0.206322 + 0.206322i
\(924\) 0 0
\(925\) 624.589 683.321i 0.675232 0.738726i
\(926\) −1311.26 −1.41604
\(927\) 0 0
\(928\) −29.1693 29.1693i −0.0314325 0.0314325i
\(929\) 1607.96i 1.73085i −0.501039 0.865425i \(-0.667049\pi\)
0.501039 0.865425i \(-0.332951\pi\)
\(930\) 0 0
\(931\) −1096.26 −1.17751
\(932\) 14.3780 14.3780i 0.0154270 0.0154270i
\(933\) 0 0
\(934\) 436.329i 0.467162i
\(935\) 318.077 332.681i 0.340189 0.355808i
\(936\) 0 0
\(937\) −1230.00 + 1230.00i −1.31270 + 1.31270i −0.393289 + 0.919415i \(0.628663\pi\)
−0.919415 + 0.393289i \(0.871337\pi\)
\(938\) −29.4488 29.4488i −0.0313954 0.0313954i
\(939\) 0 0
\(940\) −1.82219 1.74220i −0.00193850 0.00185341i
\(941\) 1176.40 1.25016 0.625078 0.780562i \(-0.285067\pi\)
0.625078 + 0.780562i \(0.285067\pi\)
\(942\) 0 0
\(943\) −1.32270 1.32270i −0.00140266 0.00140266i
\(944\) 1242.25i 1.31595i
\(945\) 0 0
\(946\) −515.523 −0.544951
\(947\) −899.613 + 899.613i −0.949961 + 0.949961i −0.998806 0.0488452i \(-0.984446\pi\)
0.0488452 + 0.998806i \(0.484446\pi\)
\(948\) 0 0
\(949\) 58.4276i 0.0615675i
\(950\) −884.787 808.739i −0.931355 0.851304i
\(951\) 0 0
\(952\) −297.906 + 297.906i −0.312927 + 0.312927i
\(953\) −660.652 660.652i −0.693234 0.693234i 0.269708 0.962942i \(-0.413073\pi\)
−0.962942 + 0.269708i \(0.913073\pi\)
\(954\) 0 0
\(955\) −1227.06 + 27.5369i −1.28488 + 0.0288344i
\(956\) −12.8618 −0.0134537
\(957\) 0 0
\(958\) −141.828 141.828i −0.148046 0.148046i
\(959\) 84.0041i 0.0875955i
\(960\) 0 0
\(961\) −928.940 −0.966639
\(962\) −186.210 + 186.210i −0.193565 + 0.193565i
\(963\) 0 0
\(964\) 2.37587i 0.00246460i
\(965\) −449.733 429.991i −0.466045 0.445587i
\(966\) 0 0
\(967\) −702.503 + 702.503i −0.726476 + 0.726476i −0.969916 0.243440i \(-0.921724\pi\)
0.243440 + 0.969916i \(0.421724\pi\)
\(968\) −62.6038 62.6038i −0.0646733 0.0646733i
\(969\) 0 0
\(970\) −18.4338 821.422i −0.0190039 0.846827i
\(971\) 323.426 0.333086 0.166543 0.986034i \(-0.446740\pi\)
0.166543 + 0.986034i \(0.446740\pi\)
\(972\) 0 0
\(973\) −187.123 187.123i −0.192316 0.192316i
\(974\) 319.793i 0.328329i
\(975\) 0 0
\(976\) −1135.68 −1.16361
\(977\) −80.1080 + 80.1080i −0.0819939 + 0.0819939i −0.746914 0.664920i \(-0.768465\pi\)
0.664920 + 0.746914i \(0.268465\pi\)
\(978\) 0 0
\(979\) 323.473i 0.330412i
\(980\) −11.2249 + 0.251902i −0.0114540 + 0.000257043i
\(981\) 0 0
\(982\) 1029.39 1029.39i 1.04826 1.04826i
\(983\) 399.699 + 399.699i 0.406612 + 0.406612i 0.880555 0.473943i \(-0.157170\pi\)
−0.473943 + 0.880555i \(0.657170\pi\)
\(984\) 0 0
\(985\) 442.062 462.358i 0.448793 0.469399i
\(986\) 2878.54 2.91941
\(987\) 0 0
\(988\) −3.01584 3.01584i −0.00305247 0.00305247i
\(989\) 168.522i 0.170396i
\(990\) 0 0
\(991\) 1426.48 1.43943 0.719716 0.694268i \(-0.244272\pi\)
0.719716 + 0.694268i \(0.244272\pi\)
\(992\) −3.16531 + 3.16531i −0.00319083 + 0.00319083i
\(993\) 0 0
\(994\) 282.157i 0.283860i
\(995\) 31.6989 + 1412.52i 0.0318582 + 1.41962i
\(996\) 0 0
\(997\) 968.762 968.762i 0.971677 0.971677i −0.0279332 0.999610i \(-0.508893\pi\)
0.999610 + 0.0279332i \(0.00889256\pi\)
\(998\) 740.391 + 740.391i 0.741875 + 0.741875i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.j.c.298.6 40
3.2 odd 2 inner 495.3.j.c.298.15 yes 40
5.2 odd 4 inner 495.3.j.c.397.6 yes 40
15.2 even 4 inner 495.3.j.c.397.15 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.j.c.298.6 40 1.1 even 1 trivial
495.3.j.c.298.15 yes 40 3.2 odd 2 inner
495.3.j.c.397.6 yes 40 5.2 odd 4 inner
495.3.j.c.397.15 yes 40 15.2 even 4 inner