Properties

Label 495.3.j.c.298.5
Level $495$
Weight $3$
Character 495.298
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(298,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.298"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 298.5
Character \(\chi\) \(=\) 495.298
Dual form 495.3.j.c.397.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.89153 + 1.89153i) q^{2} -3.15579i q^{4} +(-3.98330 - 3.02214i) q^{5} +(-9.02252 + 9.02252i) q^{7} +(-1.59685 - 1.59685i) q^{8} +(13.2510 - 1.81805i) q^{10} -3.31662 q^{11} +(-9.63142 - 9.63142i) q^{13} -34.1328i q^{14} +18.6641 q^{16} +(-2.76788 + 2.76788i) q^{17} +34.0632i q^{19} +(-9.53725 + 12.5704i) q^{20} +(6.27350 - 6.27350i) q^{22} +(-20.6705 - 20.6705i) q^{23} +(6.73329 + 24.0762i) q^{25} +36.4363 q^{26} +(28.4732 + 28.4732i) q^{28} -23.7854i q^{29} +27.0328 q^{31} +(-28.9164 + 28.9164i) q^{32} -10.4711i q^{34} +(63.2067 - 8.67201i) q^{35} +(37.1952 - 37.1952i) q^{37} +(-64.4316 - 64.4316i) q^{38} +(1.53481 + 11.1866i) q^{40} +43.6022 q^{41} +(-20.6445 - 20.6445i) q^{43} +10.4666i q^{44} +78.1978 q^{46} +(7.41800 - 7.41800i) q^{47} -113.812i q^{49} +(-58.2771 - 32.8047i) q^{50} +(-30.3947 + 30.3947i) q^{52} +(36.6271 + 36.6271i) q^{53} +(13.2111 + 10.0233i) q^{55} +28.8152 q^{56} +(44.9908 + 44.9908i) q^{58} +102.317i q^{59} -16.6024 q^{61} +(-51.1333 + 51.1333i) q^{62} -34.7362i q^{64} +(9.25725 + 67.4723i) q^{65} +(10.5885 - 10.5885i) q^{67} +(8.73484 + 8.73484i) q^{68} +(-103.154 + 135.961i) q^{70} -17.2149 q^{71} +(8.68911 + 8.68911i) q^{73} +140.712i q^{74} +107.496 q^{76} +(29.9243 - 29.9243i) q^{77} +105.357i q^{79} +(-74.3448 - 56.4058i) q^{80} +(-82.4750 + 82.4750i) q^{82} +(5.74103 + 5.74103i) q^{83} +(19.3902 - 2.66035i) q^{85} +78.0996 q^{86} +(5.29615 + 5.29615i) q^{88} -172.638i q^{89} +173.799 q^{91} +(-65.2318 + 65.2318i) q^{92} +28.0628i q^{94} +(102.944 - 135.684i) q^{95} +(75.1277 - 75.1277i) q^{97} +(215.279 + 215.279i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 24 q^{10} - 88 q^{13} - 296 q^{16} + 168 q^{25} + 248 q^{28} - 32 q^{31} - 24 q^{37} + 296 q^{40} - 48 q^{43} + 48 q^{46} + 64 q^{52} + 104 q^{58} + 576 q^{61} - 544 q^{67} - 1048 q^{70} - 408 q^{73}+ \cdots + 712 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.89153 + 1.89153i −0.945766 + 0.945766i −0.998603 0.0528369i \(-0.983174\pi\)
0.0528369 + 0.998603i \(0.483174\pi\)
\(3\) 0 0
\(4\) 3.15579i 0.788948i
\(5\) −3.98330 3.02214i −0.796659 0.604429i
\(6\) 0 0
\(7\) −9.02252 + 9.02252i −1.28893 + 1.28893i −0.353495 + 0.935436i \(0.615007\pi\)
−0.935436 + 0.353495i \(0.884993\pi\)
\(8\) −1.59685 1.59685i −0.199606 0.199606i
\(9\) 0 0
\(10\) 13.2510 1.81805i 1.32510 0.181805i
\(11\) −3.31662 −0.301511
\(12\) 0 0
\(13\) −9.63142 9.63142i −0.740878 0.740878i 0.231869 0.972747i \(-0.425516\pi\)
−0.972747 + 0.231869i \(0.925516\pi\)
\(14\) 34.1328i 2.43806i
\(15\) 0 0
\(16\) 18.6641 1.16651
\(17\) −2.76788 + 2.76788i −0.162816 + 0.162816i −0.783813 0.620997i \(-0.786728\pi\)
0.620997 + 0.783813i \(0.286728\pi\)
\(18\) 0 0
\(19\) 34.0632i 1.79280i 0.443249 + 0.896399i \(0.353826\pi\)
−0.443249 + 0.896399i \(0.646174\pi\)
\(20\) −9.53725 + 12.5704i −0.476863 + 0.628522i
\(21\) 0 0
\(22\) 6.27350 6.27350i 0.285159 0.285159i
\(23\) −20.6705 20.6705i −0.898717 0.898717i 0.0966055 0.995323i \(-0.469201\pi\)
−0.995323 + 0.0966055i \(0.969201\pi\)
\(24\) 0 0
\(25\) 6.73329 + 24.0762i 0.269331 + 0.963048i
\(26\) 36.4363 1.40139
\(27\) 0 0
\(28\) 28.4732 + 28.4732i 1.01690 + 1.01690i
\(29\) 23.7854i 0.820186i −0.912044 0.410093i \(-0.865496\pi\)
0.912044 0.410093i \(-0.134504\pi\)
\(30\) 0 0
\(31\) 27.0328 0.872024 0.436012 0.899941i \(-0.356390\pi\)
0.436012 + 0.899941i \(0.356390\pi\)
\(32\) −28.9164 + 28.9164i −0.903639 + 0.903639i
\(33\) 0 0
\(34\) 10.4711i 0.307972i
\(35\) 63.2067 8.67201i 1.80591 0.247772i
\(36\) 0 0
\(37\) 37.1952 37.1952i 1.00528 1.00528i 0.00528942 0.999986i \(-0.498316\pi\)
0.999986 0.00528942i \(-0.00168368\pi\)
\(38\) −64.4316 64.4316i −1.69557 1.69557i
\(39\) 0 0
\(40\) 1.53481 + 11.1866i 0.0383704 + 0.279666i
\(41\) 43.6022 1.06347 0.531734 0.846911i \(-0.321540\pi\)
0.531734 + 0.846911i \(0.321540\pi\)
\(42\) 0 0
\(43\) −20.6445 20.6445i −0.480105 0.480105i 0.425060 0.905165i \(-0.360253\pi\)
−0.905165 + 0.425060i \(0.860253\pi\)
\(44\) 10.4666i 0.237877i
\(45\) 0 0
\(46\) 78.1978 1.69995
\(47\) 7.41800 7.41800i 0.157830 0.157830i −0.623775 0.781604i \(-0.714402\pi\)
0.781604 + 0.623775i \(0.214402\pi\)
\(48\) 0 0
\(49\) 113.812i 2.32269i
\(50\) −58.2771 32.8047i −1.16554 0.656093i
\(51\) 0 0
\(52\) −30.3947 + 30.3947i −0.584514 + 0.584514i
\(53\) 36.6271 + 36.6271i 0.691078 + 0.691078i 0.962469 0.271391i \(-0.0874838\pi\)
−0.271391 + 0.962469i \(0.587484\pi\)
\(54\) 0 0
\(55\) 13.2111 + 10.0233i 0.240202 + 0.182242i
\(56\) 28.8152 0.514558
\(57\) 0 0
\(58\) 44.9908 + 44.9908i 0.775704 + 0.775704i
\(59\) 102.317i 1.73418i 0.498150 + 0.867091i \(0.334013\pi\)
−0.498150 + 0.867091i \(0.665987\pi\)
\(60\) 0 0
\(61\) −16.6024 −0.272171 −0.136086 0.990697i \(-0.543452\pi\)
−0.136086 + 0.990697i \(0.543452\pi\)
\(62\) −51.1333 + 51.1333i −0.824731 + 0.824731i
\(63\) 0 0
\(64\) 34.7362i 0.542753i
\(65\) 9.25725 + 67.4723i 0.142419 + 1.03804i
\(66\) 0 0
\(67\) 10.5885 10.5885i 0.158037 0.158037i −0.623659 0.781696i \(-0.714355\pi\)
0.781696 + 0.623659i \(0.214355\pi\)
\(68\) 8.73484 + 8.73484i 0.128454 + 0.128454i
\(69\) 0 0
\(70\) −103.154 + 135.961i −1.47363 + 1.94230i
\(71\) −17.2149 −0.242463 −0.121232 0.992624i \(-0.538684\pi\)
−0.121232 + 0.992624i \(0.538684\pi\)
\(72\) 0 0
\(73\) 8.68911 + 8.68911i 0.119029 + 0.119029i 0.764112 0.645083i \(-0.223177\pi\)
−0.645083 + 0.764112i \(0.723177\pi\)
\(74\) 140.712i 1.90151i
\(75\) 0 0
\(76\) 107.496 1.41442
\(77\) 29.9243 29.9243i 0.388627 0.388627i
\(78\) 0 0
\(79\) 105.357i 1.33363i 0.745222 + 0.666816i \(0.232343\pi\)
−0.745222 + 0.666816i \(0.767657\pi\)
\(80\) −74.3448 56.4058i −0.929310 0.705072i
\(81\) 0 0
\(82\) −82.4750 + 82.4750i −1.00579 + 1.00579i
\(83\) 5.74103 + 5.74103i 0.0691690 + 0.0691690i 0.740845 0.671676i \(-0.234425\pi\)
−0.671676 + 0.740845i \(0.734425\pi\)
\(84\) 0 0
\(85\) 19.3902 2.66035i 0.228120 0.0312982i
\(86\) 78.0996 0.908134
\(87\) 0 0
\(88\) 5.29615 + 5.29615i 0.0601836 + 0.0601836i
\(89\) 172.638i 1.93975i −0.243609 0.969874i \(-0.578331\pi\)
0.243609 0.969874i \(-0.421669\pi\)
\(90\) 0 0
\(91\) 173.799 1.90988
\(92\) −65.2318 + 65.2318i −0.709041 + 0.709041i
\(93\) 0 0
\(94\) 28.0628i 0.298540i
\(95\) 102.944 135.684i 1.08362 1.42825i
\(96\) 0 0
\(97\) 75.1277 75.1277i 0.774512 0.774512i −0.204380 0.978892i \(-0.565518\pi\)
0.978892 + 0.204380i \(0.0655177\pi\)
\(98\) 215.279 + 215.279i 2.19672 + 2.19672i
\(99\) 0 0
\(100\) 75.9794 21.2488i 0.759794 0.212488i
\(101\) −28.6221 −0.283387 −0.141693 0.989911i \(-0.545255\pi\)
−0.141693 + 0.989911i \(0.545255\pi\)
\(102\) 0 0
\(103\) −52.5309 52.5309i −0.510009 0.510009i 0.404520 0.914529i \(-0.367439\pi\)
−0.914529 + 0.404520i \(0.867439\pi\)
\(104\) 30.7599i 0.295768i
\(105\) 0 0
\(106\) −138.563 −1.30720
\(107\) −106.333 + 106.333i −0.993765 + 0.993765i −0.999981 0.00621527i \(-0.998022\pi\)
0.00621527 + 0.999981i \(0.498022\pi\)
\(108\) 0 0
\(109\) 101.439i 0.930629i −0.885146 0.465314i \(-0.845941\pi\)
0.885146 0.465314i \(-0.154059\pi\)
\(110\) −43.9487 + 6.02978i −0.399533 + 0.0548162i
\(111\) 0 0
\(112\) −168.398 + 168.398i −1.50355 + 1.50355i
\(113\) 135.825 + 135.825i 1.20199 + 1.20199i 0.973561 + 0.228428i \(0.0733584\pi\)
0.228428 + 0.973561i \(0.426642\pi\)
\(114\) 0 0
\(115\) 19.8675 + 144.806i 0.172761 + 1.25918i
\(116\) −75.0617 −0.647084
\(117\) 0 0
\(118\) −193.535 193.535i −1.64013 1.64013i
\(119\) 49.9465i 0.419718i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 31.4041 31.4041i 0.257410 0.257410i
\(123\) 0 0
\(124\) 85.3097i 0.687982i
\(125\) 45.9410 116.252i 0.367528 0.930012i
\(126\) 0 0
\(127\) 16.2124 16.2124i 0.127657 0.127657i −0.640392 0.768048i \(-0.721228\pi\)
0.768048 + 0.640392i \(0.221228\pi\)
\(128\) −49.9611 49.9611i −0.390321 0.390321i
\(129\) 0 0
\(130\) −145.136 110.116i −1.11643 0.847044i
\(131\) −60.6113 −0.462682 −0.231341 0.972873i \(-0.574311\pi\)
−0.231341 + 0.972873i \(0.574311\pi\)
\(132\) 0 0
\(133\) −307.336 307.336i −2.31079 2.31079i
\(134\) 40.0569i 0.298932i
\(135\) 0 0
\(136\) 8.83977 0.0649983
\(137\) −10.1705 + 10.1705i −0.0742372 + 0.0742372i −0.743250 0.669013i \(-0.766717\pi\)
0.669013 + 0.743250i \(0.266717\pi\)
\(138\) 0 0
\(139\) 159.552i 1.14786i −0.818905 0.573928i \(-0.805419\pi\)
0.818905 0.573928i \(-0.194581\pi\)
\(140\) −27.3670 199.467i −0.195479 1.42477i
\(141\) 0 0
\(142\) 32.5625 32.5625i 0.229314 0.229314i
\(143\) 31.9438 + 31.9438i 0.223383 + 0.223383i
\(144\) 0 0
\(145\) −71.8829 + 94.7442i −0.495744 + 0.653408i
\(146\) −32.8715 −0.225147
\(147\) 0 0
\(148\) −117.380 117.380i −0.793110 0.793110i
\(149\) 112.746i 0.756684i −0.925666 0.378342i \(-0.876494\pi\)
0.925666 0.378342i \(-0.123506\pi\)
\(150\) 0 0
\(151\) 271.977 1.80117 0.900585 0.434680i \(-0.143138\pi\)
0.900585 + 0.434680i \(0.143138\pi\)
\(152\) 54.3937 54.3937i 0.357854 0.357854i
\(153\) 0 0
\(154\) 113.206i 0.735102i
\(155\) −107.679 81.6969i −0.694706 0.527077i
\(156\) 0 0
\(157\) −43.5369 + 43.5369i −0.277305 + 0.277305i −0.832032 0.554727i \(-0.812823\pi\)
0.554727 + 0.832032i \(0.312823\pi\)
\(158\) −199.286 199.286i −1.26130 1.26130i
\(159\) 0 0
\(160\) 202.572 27.7931i 1.26608 0.173707i
\(161\) 373.000 2.31677
\(162\) 0 0
\(163\) 52.9791 + 52.9791i 0.325025 + 0.325025i 0.850691 0.525666i \(-0.176184\pi\)
−0.525666 + 0.850691i \(0.676184\pi\)
\(164\) 137.599i 0.839021i
\(165\) 0 0
\(166\) −21.7187 −0.130835
\(167\) −64.9985 + 64.9985i −0.389213 + 0.389213i −0.874407 0.485194i \(-0.838749\pi\)
0.485194 + 0.874407i \(0.338749\pi\)
\(168\) 0 0
\(169\) 16.5283i 0.0978007i
\(170\) −31.6450 + 41.7093i −0.186147 + 0.245349i
\(171\) 0 0
\(172\) −65.1498 + 65.1498i −0.378778 + 0.378778i
\(173\) −70.4358 70.4358i −0.407143 0.407143i 0.473598 0.880741i \(-0.342955\pi\)
−0.880741 + 0.473598i \(0.842955\pi\)
\(174\) 0 0
\(175\) −277.979 156.477i −1.58845 0.894153i
\(176\) −61.9020 −0.351716
\(177\) 0 0
\(178\) 326.549 + 326.549i 1.83455 + 1.83455i
\(179\) 320.667i 1.79144i −0.444620 0.895719i \(-0.646661\pi\)
0.444620 0.895719i \(-0.353339\pi\)
\(180\) 0 0
\(181\) −149.775 −0.827485 −0.413742 0.910394i \(-0.635779\pi\)
−0.413742 + 0.910394i \(0.635779\pi\)
\(182\) −328.747 + 328.747i −1.80630 + 1.80630i
\(183\) 0 0
\(184\) 66.0154i 0.358779i
\(185\) −260.569 + 35.7502i −1.40848 + 0.193244i
\(186\) 0 0
\(187\) 9.18001 9.18001i 0.0490910 0.0490910i
\(188\) −23.4096 23.4096i −0.124519 0.124519i
\(189\) 0 0
\(190\) 61.9285 + 451.371i 0.325939 + 2.37564i
\(191\) −362.459 −1.89769 −0.948845 0.315741i \(-0.897747\pi\)
−0.948845 + 0.315741i \(0.897747\pi\)
\(192\) 0 0
\(193\) 68.5121 + 68.5121i 0.354985 + 0.354985i 0.861960 0.506976i \(-0.169237\pi\)
−0.506976 + 0.861960i \(0.669237\pi\)
\(194\) 284.213i 1.46501i
\(195\) 0 0
\(196\) −359.166 −1.83248
\(197\) 154.787 154.787i 0.785719 0.785719i −0.195070 0.980789i \(-0.562493\pi\)
0.980789 + 0.195070i \(0.0624934\pi\)
\(198\) 0 0
\(199\) 272.319i 1.36844i −0.729277 0.684219i \(-0.760143\pi\)
0.729277 0.684219i \(-0.239857\pi\)
\(200\) 27.6940 49.1981i 0.138470 0.245991i
\(201\) 0 0
\(202\) 54.1395 54.1395i 0.268018 0.268018i
\(203\) 214.604 + 214.604i 1.05716 + 1.05716i
\(204\) 0 0
\(205\) −173.681 131.772i −0.847222 0.642791i
\(206\) 198.728 0.964698
\(207\) 0 0
\(208\) −179.762 179.762i −0.864241 0.864241i
\(209\) 112.975i 0.540549i
\(210\) 0 0
\(211\) 38.2636 0.181344 0.0906720 0.995881i \(-0.471098\pi\)
0.0906720 + 0.995881i \(0.471098\pi\)
\(212\) 115.587 115.587i 0.545224 0.545224i
\(213\) 0 0
\(214\) 402.264i 1.87974i
\(215\) 19.8425 + 144.624i 0.0922907 + 0.672670i
\(216\) 0 0
\(217\) −243.904 + 243.904i −1.12398 + 1.12398i
\(218\) 191.874 + 191.874i 0.880157 + 0.880157i
\(219\) 0 0
\(220\) 31.6315 41.6915i 0.143780 0.189507i
\(221\) 53.3171 0.241254
\(222\) 0 0
\(223\) 28.1568 + 28.1568i 0.126264 + 0.126264i 0.767415 0.641151i \(-0.221543\pi\)
−0.641151 + 0.767415i \(0.721543\pi\)
\(224\) 521.798i 2.32946i
\(225\) 0 0
\(226\) −513.834 −2.27360
\(227\) 28.0968 28.0968i 0.123775 0.123775i −0.642506 0.766281i \(-0.722105\pi\)
0.766281 + 0.642506i \(0.222105\pi\)
\(228\) 0 0
\(229\) 159.216i 0.695268i −0.937630 0.347634i \(-0.886985\pi\)
0.937630 0.347634i \(-0.113015\pi\)
\(230\) −311.485 236.325i −1.35428 1.02750i
\(231\) 0 0
\(232\) −37.9817 + 37.9817i −0.163714 + 0.163714i
\(233\) 8.00096 + 8.00096i 0.0343389 + 0.0343389i 0.724068 0.689729i \(-0.242270\pi\)
−0.689729 + 0.724068i \(0.742270\pi\)
\(234\) 0 0
\(235\) −51.9663 + 7.12982i −0.221133 + 0.0303396i
\(236\) 322.890 1.36818
\(237\) 0 0
\(238\) 94.4753 + 94.4753i 0.396955 + 0.396955i
\(239\) 91.1272i 0.381285i −0.981659 0.190643i \(-0.938943\pi\)
0.981659 0.190643i \(-0.0610572\pi\)
\(240\) 0 0
\(241\) 159.288 0.660946 0.330473 0.943816i \(-0.392792\pi\)
0.330473 + 0.943816i \(0.392792\pi\)
\(242\) −20.8069 + 20.8069i −0.0859787 + 0.0859787i
\(243\) 0 0
\(244\) 52.3938i 0.214729i
\(245\) −343.956 + 453.346i −1.40390 + 1.85039i
\(246\) 0 0
\(247\) 328.076 328.076i 1.32824 1.32824i
\(248\) −43.1673 43.1673i −0.174062 0.174062i
\(249\) 0 0
\(250\) 132.995 + 306.793i 0.531978 + 1.22717i
\(251\) 24.3526 0.0970225 0.0485112 0.998823i \(-0.484552\pi\)
0.0485112 + 0.998823i \(0.484552\pi\)
\(252\) 0 0
\(253\) 68.5563 + 68.5563i 0.270973 + 0.270973i
\(254\) 61.3325i 0.241467i
\(255\) 0 0
\(256\) 327.951 1.28106
\(257\) −251.126 + 251.126i −0.977144 + 0.977144i −0.999745 0.0226003i \(-0.992805\pi\)
0.0226003 + 0.999745i \(0.492805\pi\)
\(258\) 0 0
\(259\) 671.189i 2.59146i
\(260\) 212.928 29.2139i 0.818955 0.112361i
\(261\) 0 0
\(262\) 114.648 114.648i 0.437589 0.437589i
\(263\) 124.748 + 124.748i 0.474326 + 0.474326i 0.903311 0.428986i \(-0.141129\pi\)
−0.428986 + 0.903311i \(0.641129\pi\)
\(264\) 0 0
\(265\) −35.2042 256.589i −0.132846 0.968261i
\(266\) 1162.67 4.37094
\(267\) 0 0
\(268\) −33.4150 33.4150i −0.124683 0.124683i
\(269\) 4.21663i 0.0156752i 0.999969 + 0.00783760i \(0.00249481\pi\)
−0.999969 + 0.00783760i \(0.997505\pi\)
\(270\) 0 0
\(271\) 287.404 1.06053 0.530267 0.847831i \(-0.322092\pi\)
0.530267 + 0.847831i \(0.322092\pi\)
\(272\) −51.6601 + 51.6601i −0.189927 + 0.189927i
\(273\) 0 0
\(274\) 38.4756i 0.140422i
\(275\) −22.3318 79.8517i −0.0812065 0.290370i
\(276\) 0 0
\(277\) 151.000 151.000i 0.545126 0.545126i −0.379901 0.925027i \(-0.624042\pi\)
0.925027 + 0.379901i \(0.124042\pi\)
\(278\) 301.798 + 301.798i 1.08560 + 1.08560i
\(279\) 0 0
\(280\) −114.780 87.0838i −0.409927 0.311014i
\(281\) −14.4957 −0.0515863 −0.0257931 0.999667i \(-0.508211\pi\)
−0.0257931 + 0.999667i \(0.508211\pi\)
\(282\) 0 0
\(283\) −167.596 167.596i −0.592213 0.592213i 0.346015 0.938229i \(-0.387535\pi\)
−0.938229 + 0.346015i \(0.887535\pi\)
\(284\) 54.3266i 0.191291i
\(285\) 0 0
\(286\) −120.845 −0.422536
\(287\) −393.402 + 393.402i −1.37074 + 1.37074i
\(288\) 0 0
\(289\) 273.678i 0.946982i
\(290\) −43.2430 315.181i −0.149114 1.08683i
\(291\) 0 0
\(292\) 27.4210 27.4210i 0.0939076 0.0939076i
\(293\) 89.8118 + 89.8118i 0.306525 + 0.306525i 0.843560 0.537035i \(-0.180456\pi\)
−0.537035 + 0.843560i \(0.680456\pi\)
\(294\) 0 0
\(295\) 309.216 407.558i 1.04819 1.38155i
\(296\) −118.790 −0.401319
\(297\) 0 0
\(298\) 213.263 + 213.263i 0.715646 + 0.715646i
\(299\) 398.172i 1.33168i
\(300\) 0 0
\(301\) 372.531 1.23765
\(302\) −514.453 + 514.453i −1.70349 + 1.70349i
\(303\) 0 0
\(304\) 635.760i 2.09131i
\(305\) 66.1324 + 50.1750i 0.216828 + 0.164508i
\(306\) 0 0
\(307\) −34.6779 + 34.6779i −0.112957 + 0.112957i −0.761326 0.648369i \(-0.775451\pi\)
0.648369 + 0.761326i \(0.275451\pi\)
\(308\) −94.4349 94.4349i −0.306607 0.306607i
\(309\) 0 0
\(310\) 358.212 49.1469i 1.15552 0.158538i
\(311\) 362.566 1.16581 0.582903 0.812542i \(-0.301917\pi\)
0.582903 + 0.812542i \(0.301917\pi\)
\(312\) 0 0
\(313\) −17.9680 17.9680i −0.0574059 0.0574059i 0.677821 0.735227i \(-0.262924\pi\)
−0.735227 + 0.677821i \(0.762924\pi\)
\(314\) 164.703i 0.524531i
\(315\) 0 0
\(316\) 332.484 1.05217
\(317\) −30.4366 + 30.4366i −0.0960146 + 0.0960146i −0.753483 0.657468i \(-0.771628\pi\)
0.657468 + 0.753483i \(0.271628\pi\)
\(318\) 0 0
\(319\) 78.8872i 0.247295i
\(320\) −104.978 + 138.365i −0.328056 + 0.432389i
\(321\) 0 0
\(322\) −705.542 + 705.542i −2.19112 + 2.19112i
\(323\) −94.2826 94.2826i −0.291897 0.291897i
\(324\) 0 0
\(325\) 167.037 296.739i 0.513959 0.913043i
\(326\) −200.423 −0.614796
\(327\) 0 0
\(328\) −69.6262 69.6262i −0.212275 0.212275i
\(329\) 133.858i 0.406863i
\(330\) 0 0
\(331\) −484.224 −1.46291 −0.731455 0.681889i \(-0.761159\pi\)
−0.731455 + 0.681889i \(0.761159\pi\)
\(332\) 18.1175 18.1175i 0.0545707 0.0545707i
\(333\) 0 0
\(334\) 245.894i 0.736209i
\(335\) −74.1769 + 10.1771i −0.221424 + 0.0303795i
\(336\) 0 0
\(337\) 345.058 345.058i 1.02391 1.02391i 0.0242030 0.999707i \(-0.492295\pi\)
0.999707 0.0242030i \(-0.00770481\pi\)
\(338\) −31.2638 31.2638i −0.0924966 0.0924966i
\(339\) 0 0
\(340\) −8.39550 61.1914i −0.0246926 0.179975i
\(341\) −89.6575 −0.262925
\(342\) 0 0
\(343\) 584.766 + 584.766i 1.70486 + 1.70486i
\(344\) 65.9324i 0.191664i
\(345\) 0 0
\(346\) 266.463 0.770125
\(347\) 308.727 308.727i 0.889704 0.889704i −0.104790 0.994494i \(-0.533417\pi\)
0.994494 + 0.104790i \(0.0334172\pi\)
\(348\) 0 0
\(349\) 235.849i 0.675784i 0.941185 + 0.337892i \(0.109714\pi\)
−0.941185 + 0.337892i \(0.890286\pi\)
\(350\) 821.787 229.826i 2.34796 0.656645i
\(351\) 0 0
\(352\) 95.9050 95.9050i 0.272457 0.272457i
\(353\) 144.951 + 144.951i 0.410626 + 0.410626i 0.881956 0.471331i \(-0.156226\pi\)
−0.471331 + 0.881956i \(0.656226\pi\)
\(354\) 0 0
\(355\) 68.5720 + 52.0259i 0.193161 + 0.146552i
\(356\) −544.808 −1.53036
\(357\) 0 0
\(358\) 606.553 + 606.553i 1.69428 + 1.69428i
\(359\) 118.990i 0.331450i −0.986172 0.165725i \(-0.947004\pi\)
0.986172 0.165725i \(-0.0529963\pi\)
\(360\) 0 0
\(361\) −799.298 −2.21412
\(362\) 283.304 283.304i 0.782607 0.782607i
\(363\) 0 0
\(364\) 548.474i 1.50680i
\(365\) −8.35155 60.8711i −0.0228810 0.166770i
\(366\) 0 0
\(367\) 148.169 148.169i 0.403730 0.403730i −0.475815 0.879545i \(-0.657847\pi\)
0.879545 + 0.475815i \(0.157847\pi\)
\(368\) −385.797 385.797i −1.04836 1.04836i
\(369\) 0 0
\(370\) 425.251 560.497i 1.14933 1.51486i
\(371\) −660.938 −1.78150
\(372\) 0 0
\(373\) −28.9818 28.9818i −0.0776993 0.0776993i 0.667189 0.744888i \(-0.267497\pi\)
−0.744888 + 0.667189i \(0.767497\pi\)
\(374\) 34.7286i 0.0928571i
\(375\) 0 0
\(376\) −23.6909 −0.0630076
\(377\) −229.087 + 229.087i −0.607658 + 0.607658i
\(378\) 0 0
\(379\) 106.926i 0.282126i −0.990001 0.141063i \(-0.954948\pi\)
0.990001 0.141063i \(-0.0450520\pi\)
\(380\) −428.189 324.869i −1.12681 0.854918i
\(381\) 0 0
\(382\) 685.603 685.603i 1.79477 1.79477i
\(383\) 311.497 + 311.497i 0.813309 + 0.813309i 0.985128 0.171819i \(-0.0549646\pi\)
−0.171819 + 0.985128i \(0.554965\pi\)
\(384\) 0 0
\(385\) −209.633 + 28.7618i −0.544501 + 0.0747060i
\(386\) −259.186 −0.671465
\(387\) 0 0
\(388\) −237.087 237.087i −0.611050 0.611050i
\(389\) 416.377i 1.07038i 0.844733 + 0.535189i \(0.179759\pi\)
−0.844733 + 0.535189i \(0.820241\pi\)
\(390\) 0 0
\(391\) 114.427 0.292652
\(392\) −181.740 + 181.740i −0.463623 + 0.463623i
\(393\) 0 0
\(394\) 585.568i 1.48621i
\(395\) 318.404 419.668i 0.806086 1.06245i
\(396\) 0 0
\(397\) 54.0423 54.0423i 0.136127 0.136127i −0.635760 0.771887i \(-0.719313\pi\)
0.771887 + 0.635760i \(0.219313\pi\)
\(398\) 515.100 + 515.100i 1.29422 + 1.29422i
\(399\) 0 0
\(400\) 125.671 + 449.362i 0.314178 + 1.12340i
\(401\) 36.2893 0.0904971 0.0452485 0.998976i \(-0.485592\pi\)
0.0452485 + 0.998976i \(0.485592\pi\)
\(402\) 0 0
\(403\) −260.364 260.364i −0.646064 0.646064i
\(404\) 90.3252i 0.223577i
\(405\) 0 0
\(406\) −811.861 −1.99966
\(407\) −123.362 + 123.362i −0.303102 + 0.303102i
\(408\) 0 0
\(409\) 642.763i 1.57155i 0.618514 + 0.785774i \(0.287735\pi\)
−0.618514 + 0.785774i \(0.712265\pi\)
\(410\) 577.774 79.2709i 1.40920 0.193344i
\(411\) 0 0
\(412\) −165.777 + 165.777i −0.402370 + 0.402370i
\(413\) −923.155 923.155i −2.23524 2.23524i
\(414\) 0 0
\(415\) −5.51800 40.2184i −0.0132964 0.0969119i
\(416\) 557.013 1.33897
\(417\) 0 0
\(418\) 213.695 + 213.695i 0.511233 + 0.511233i
\(419\) 216.828i 0.517489i 0.965946 + 0.258745i \(0.0833088\pi\)
−0.965946 + 0.258745i \(0.916691\pi\)
\(420\) 0 0
\(421\) 419.087 0.995457 0.497728 0.867333i \(-0.334168\pi\)
0.497728 + 0.867333i \(0.334168\pi\)
\(422\) −72.3769 + 72.3769i −0.171509 + 0.171509i
\(423\) 0 0
\(424\) 116.976i 0.275887i
\(425\) −85.2768 48.0030i −0.200651 0.112948i
\(426\) 0 0
\(427\) 149.796 149.796i 0.350810 0.350810i
\(428\) 335.564 + 335.564i 0.784029 + 0.784029i
\(429\) 0 0
\(430\) −311.094 236.028i −0.723474 0.548903i
\(431\) −299.101 −0.693970 −0.346985 0.937871i \(-0.612795\pi\)
−0.346985 + 0.937871i \(0.612795\pi\)
\(432\) 0 0
\(433\) 282.647 + 282.647i 0.652764 + 0.652764i 0.953658 0.300893i \(-0.0972849\pi\)
−0.300893 + 0.953658i \(0.597285\pi\)
\(434\) 922.703i 2.12604i
\(435\) 0 0
\(436\) −320.119 −0.734217
\(437\) 704.102 704.102i 1.61122 1.61122i
\(438\) 0 0
\(439\) 129.560i 0.295126i 0.989053 + 0.147563i \(0.0471430\pi\)
−0.989053 + 0.147563i \(0.952857\pi\)
\(440\) −5.09040 37.1019i −0.0115691 0.0843225i
\(441\) 0 0
\(442\) −100.851 + 100.851i −0.228170 + 0.228170i
\(443\) −535.163 535.163i −1.20804 1.20804i −0.971660 0.236384i \(-0.924038\pi\)
−0.236384 0.971660i \(-0.575962\pi\)
\(444\) 0 0
\(445\) −521.735 + 687.666i −1.17244 + 1.54532i
\(446\) −106.519 −0.238832
\(447\) 0 0
\(448\) 313.408 + 313.408i 0.699571 + 0.699571i
\(449\) 90.9277i 0.202512i −0.994860 0.101256i \(-0.967714\pi\)
0.994860 0.101256i \(-0.0322861\pi\)
\(450\) 0 0
\(451\) −144.612 −0.320648
\(452\) 428.634 428.634i 0.948306 0.948306i
\(453\) 0 0
\(454\) 106.292i 0.234124i
\(455\) −692.294 525.247i −1.52153 1.15439i
\(456\) 0 0
\(457\) 104.188 104.188i 0.227982 0.227982i −0.583867 0.811849i \(-0.698461\pi\)
0.811849 + 0.583867i \(0.198461\pi\)
\(458\) 301.163 + 301.163i 0.657561 + 0.657561i
\(459\) 0 0
\(460\) 456.977 62.6976i 0.993429 0.136299i
\(461\) 399.301 0.866163 0.433081 0.901355i \(-0.357426\pi\)
0.433081 + 0.901355i \(0.357426\pi\)
\(462\) 0 0
\(463\) 163.597 + 163.597i 0.353342 + 0.353342i 0.861352 0.508009i \(-0.169618\pi\)
−0.508009 + 0.861352i \(0.669618\pi\)
\(464\) 443.934i 0.956754i
\(465\) 0 0
\(466\) −30.2682 −0.0649531
\(467\) 426.533 426.533i 0.913347 0.913347i −0.0831872 0.996534i \(-0.526510\pi\)
0.996534 + 0.0831872i \(0.0265099\pi\)
\(468\) 0 0
\(469\) 191.069i 0.407398i
\(470\) 84.8097 111.782i 0.180446 0.237835i
\(471\) 0 0
\(472\) 163.385 163.385i 0.346154 0.346154i
\(473\) 68.4701 + 68.4701i 0.144757 + 0.144757i
\(474\) 0 0
\(475\) −820.111 + 229.357i −1.72655 + 0.482857i
\(476\) −157.621 −0.331136
\(477\) 0 0
\(478\) 172.370 + 172.370i 0.360607 + 0.360607i
\(479\) 151.509i 0.316302i −0.987415 0.158151i \(-0.949447\pi\)
0.987415 0.158151i \(-0.0505533\pi\)
\(480\) 0 0
\(481\) −716.485 −1.48957
\(482\) −301.298 + 301.298i −0.625100 + 0.625100i
\(483\) 0 0
\(484\) 34.7137i 0.0717225i
\(485\) −526.302 + 72.2091i −1.08516 + 0.148885i
\(486\) 0 0
\(487\) 360.092 360.092i 0.739408 0.739408i −0.233056 0.972463i \(-0.574872\pi\)
0.972463 + 0.233056i \(0.0748724\pi\)
\(488\) 26.5116 + 26.5116i 0.0543271 + 0.0543271i
\(489\) 0 0
\(490\) −206.915 1508.12i −0.422276 3.07780i
\(491\) 60.0286 0.122258 0.0611289 0.998130i \(-0.480530\pi\)
0.0611289 + 0.998130i \(0.480530\pi\)
\(492\) 0 0
\(493\) 65.8350 + 65.8350i 0.133540 + 0.133540i
\(494\) 1241.13i 2.51242i
\(495\) 0 0
\(496\) 504.543 1.01722
\(497\) 155.322 155.322i 0.312519 0.312519i
\(498\) 0 0
\(499\) 148.056i 0.296705i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473970\pi\)
\(500\) −366.865 144.980i −0.733731 0.289961i
\(501\) 0 0
\(502\) −46.0638 + 46.0638i −0.0917606 + 0.0917606i
\(503\) 481.606 + 481.606i 0.957467 + 0.957467i 0.999132 0.0416643i \(-0.0132660\pi\)
−0.0416643 + 0.999132i \(0.513266\pi\)
\(504\) 0 0
\(505\) 114.010 + 86.5000i 0.225763 + 0.171287i
\(506\) −259.353 −0.512555
\(507\) 0 0
\(508\) −51.1629 51.1629i −0.100714 0.100714i
\(509\) 16.6842i 0.0327783i 0.999866 + 0.0163892i \(0.00521707\pi\)
−0.999866 + 0.0163892i \(0.994783\pi\)
\(510\) 0 0
\(511\) −156.795 −0.306840
\(512\) −420.485 + 420.485i −0.821261 + 0.821261i
\(513\) 0 0
\(514\) 950.026i 1.84830i
\(515\) 50.4901 + 368.002i 0.0980391 + 0.714567i
\(516\) 0 0
\(517\) −24.6027 + 24.6027i −0.0475875 + 0.0475875i
\(518\) −1269.58 1269.58i −2.45092 2.45092i
\(519\) 0 0
\(520\) 92.9607 122.526i 0.178771 0.235626i
\(521\) −693.350 −1.33081 −0.665404 0.746484i \(-0.731741\pi\)
−0.665404 + 0.746484i \(0.731741\pi\)
\(522\) 0 0
\(523\) −107.263 107.263i −0.205091 0.205091i 0.597086 0.802177i \(-0.296325\pi\)
−0.802177 + 0.597086i \(0.796325\pi\)
\(524\) 191.277i 0.365032i
\(525\) 0 0
\(526\) −471.928 −0.897202
\(527\) −74.8233 + 74.8233i −0.141980 + 0.141980i
\(528\) 0 0
\(529\) 325.539i 0.615385i
\(530\) 551.936 + 418.757i 1.04139 + 0.790107i
\(531\) 0 0
\(532\) −969.886 + 969.886i −1.82309 + 1.82309i
\(533\) −419.951 419.951i −0.787901 0.787901i
\(534\) 0 0
\(535\) 744.909 102.202i 1.39235 0.191032i
\(536\) −33.8164 −0.0630903
\(537\) 0 0
\(538\) −7.97589 7.97589i −0.0148251 0.0148251i
\(539\) 377.471i 0.700317i
\(540\) 0 0
\(541\) −331.077 −0.611972 −0.305986 0.952036i \(-0.598986\pi\)
−0.305986 + 0.952036i \(0.598986\pi\)
\(542\) −543.635 + 543.635i −1.00302 + 1.00302i
\(543\) 0 0
\(544\) 160.074i 0.294254i
\(545\) −306.562 + 404.060i −0.562499 + 0.741394i
\(546\) 0 0
\(547\) −536.209 + 536.209i −0.980273 + 0.980273i −0.999809 0.0195366i \(-0.993781\pi\)
0.0195366 + 0.999809i \(0.493781\pi\)
\(548\) 32.0959 + 32.0959i 0.0585692 + 0.0585692i
\(549\) 0 0
\(550\) 193.283 + 108.801i 0.351424 + 0.197820i
\(551\) 810.205 1.47043
\(552\) 0 0
\(553\) −950.585 950.585i −1.71896 1.71896i
\(554\) 571.243i 1.03112i
\(555\) 0 0
\(556\) −503.513 −0.905599
\(557\) 167.861 167.861i 0.301366 0.301366i −0.540182 0.841548i \(-0.681645\pi\)
0.841548 + 0.540182i \(0.181645\pi\)
\(558\) 0 0
\(559\) 397.672i 0.711399i
\(560\) 1179.70 161.856i 2.10661 0.289028i
\(561\) 0 0
\(562\) 27.4192 27.4192i 0.0487886 0.0487886i
\(563\) 627.439 + 627.439i 1.11446 + 1.11446i 0.992541 + 0.121915i \(0.0389036\pi\)
0.121915 + 0.992541i \(0.461096\pi\)
\(564\) 0 0
\(565\) −130.548 951.512i −0.231059 1.68409i
\(566\) 634.028 1.12019
\(567\) 0 0
\(568\) 27.4896 + 27.4896i 0.0483972 + 0.0483972i
\(569\) 96.3156i 0.169272i −0.996412 0.0846358i \(-0.973027\pi\)
0.996412 0.0846358i \(-0.0269727\pi\)
\(570\) 0 0
\(571\) 613.950 1.07522 0.537609 0.843194i \(-0.319327\pi\)
0.537609 + 0.843194i \(0.319327\pi\)
\(572\) 100.808 100.808i 0.176238 0.176238i
\(573\) 0 0
\(574\) 1488.27i 2.59280i
\(575\) 358.486 636.847i 0.623455 1.10756i
\(576\) 0 0
\(577\) 5.29825 5.29825i 0.00918241 0.00918241i −0.702501 0.711683i \(-0.747933\pi\)
0.711683 + 0.702501i \(0.247933\pi\)
\(578\) −517.670 517.670i −0.895623 0.895623i
\(579\) 0 0
\(580\) 298.993 + 226.847i 0.515505 + 0.391116i
\(581\) −103.597 −0.178308
\(582\) 0 0
\(583\) −121.478 121.478i −0.208368 0.208368i
\(584\) 27.7504i 0.0475178i
\(585\) 0 0
\(586\) −339.764 −0.579802
\(587\) 574.839 574.839i 0.979283 0.979283i −0.0205069 0.999790i \(-0.506528\pi\)
0.999790 + 0.0205069i \(0.00652802\pi\)
\(588\) 0 0
\(589\) 920.821i 1.56336i
\(590\) 186.017 + 1355.80i 0.315283 + 2.29797i
\(591\) 0 0
\(592\) 694.217 694.217i 1.17266 1.17266i
\(593\) 142.619 + 142.619i 0.240505 + 0.240505i 0.817059 0.576554i \(-0.195603\pi\)
−0.576554 + 0.817059i \(0.695603\pi\)
\(594\) 0 0
\(595\) −150.945 + 198.951i −0.253690 + 0.334372i
\(596\) −355.802 −0.596984
\(597\) 0 0
\(598\) −753.156 753.156i −1.25946 1.25946i
\(599\) 809.182i 1.35089i −0.737412 0.675444i \(-0.763952\pi\)
0.737412 0.675444i \(-0.236048\pi\)
\(600\) 0 0
\(601\) −571.827 −0.951459 −0.475729 0.879592i \(-0.657816\pi\)
−0.475729 + 0.879592i \(0.657816\pi\)
\(602\) −704.655 + 704.655i −1.17052 + 1.17052i
\(603\) 0 0
\(604\) 858.301i 1.42103i
\(605\) −43.8163 33.2436i −0.0724236 0.0549481i
\(606\) 0 0
\(607\) 746.235 746.235i 1.22938 1.22938i 0.265184 0.964198i \(-0.414567\pi\)
0.964198 0.265184i \(-0.0854327\pi\)
\(608\) −984.985 984.985i −1.62004 1.62004i
\(609\) 0 0
\(610\) −219.999 + 30.1840i −0.360655 + 0.0494820i
\(611\) −142.892 −0.233865
\(612\) 0 0
\(613\) −606.293 606.293i −0.989059 0.989059i 0.0108820 0.999941i \(-0.496536\pi\)
−0.999941 + 0.0108820i \(0.996536\pi\)
\(614\) 131.189i 0.213663i
\(615\) 0 0
\(616\) −95.5693 −0.155145
\(617\) −745.890 + 745.890i −1.20890 + 1.20890i −0.237514 + 0.971384i \(0.576332\pi\)
−0.971384 + 0.237514i \(0.923668\pi\)
\(618\) 0 0
\(619\) 680.541i 1.09942i 0.835356 + 0.549710i \(0.185262\pi\)
−0.835356 + 0.549710i \(0.814738\pi\)
\(620\) −257.818 + 339.814i −0.415836 + 0.548087i
\(621\) 0 0
\(622\) −685.805 + 685.805i −1.10258 + 1.10258i
\(623\) 1557.63 + 1557.63i 2.50020 + 2.50020i
\(624\) 0 0
\(625\) −534.326 + 324.224i −0.854921 + 0.518758i
\(626\) 67.9742 0.108585
\(627\) 0 0
\(628\) 137.393 + 137.393i 0.218779 + 0.218779i
\(629\) 205.903i 0.327350i
\(630\) 0 0
\(631\) 645.293 1.02265 0.511326 0.859387i \(-0.329155\pi\)
0.511326 + 0.859387i \(0.329155\pi\)
\(632\) 168.239 168.239i 0.266201 0.266201i
\(633\) 0 0
\(634\) 115.144i 0.181615i
\(635\) −113.575 + 15.5826i −0.178858 + 0.0245395i
\(636\) 0 0
\(637\) −1096.17 + 1096.17i −1.72083 + 1.72083i
\(638\) −149.218 149.218i −0.233884 0.233884i
\(639\) 0 0
\(640\) 48.0202 + 350.000i 0.0750316 + 0.546875i
\(641\) 948.999 1.48050 0.740249 0.672333i \(-0.234708\pi\)
0.740249 + 0.672333i \(0.234708\pi\)
\(642\) 0 0
\(643\) 161.270 + 161.270i 0.250808 + 0.250808i 0.821302 0.570494i \(-0.193248\pi\)
−0.570494 + 0.821302i \(0.693248\pi\)
\(644\) 1177.11i 1.82781i
\(645\) 0 0
\(646\) 356.677 0.552132
\(647\) 469.948 469.948i 0.726350 0.726350i −0.243541 0.969891i \(-0.578309\pi\)
0.969891 + 0.243541i \(0.0783091\pi\)
\(648\) 0 0
\(649\) 339.346i 0.522876i
\(650\) 245.336 + 877.246i 0.377440 + 1.34961i
\(651\) 0 0
\(652\) 167.191 167.191i 0.256428 0.256428i
\(653\) 652.446 + 652.446i 0.999152 + 0.999152i 1.00000 0.000847636i \(-0.000269811\pi\)
−0.000847636 1.00000i \(0.500270\pi\)
\(654\) 0 0
\(655\) 241.433 + 183.176i 0.368600 + 0.279658i
\(656\) 813.798 1.24055
\(657\) 0 0
\(658\) −253.197 253.197i −0.384798 0.384798i
\(659\) 725.168i 1.10041i 0.835031 + 0.550204i \(0.185450\pi\)
−0.835031 + 0.550204i \(0.814550\pi\)
\(660\) 0 0
\(661\) −353.874 −0.535362 −0.267681 0.963508i \(-0.586257\pi\)
−0.267681 + 0.963508i \(0.586257\pi\)
\(662\) 915.925 915.925i 1.38357 1.38357i
\(663\) 0 0
\(664\) 18.3351i 0.0276131i
\(665\) 295.396 + 2153.02i 0.444204 + 3.23762i
\(666\) 0 0
\(667\) −491.656 + 491.656i −0.737115 + 0.737115i
\(668\) 205.122 + 205.122i 0.307068 + 0.307068i
\(669\) 0 0
\(670\) 121.058 159.558i 0.180683 0.238147i
\(671\) 55.0641 0.0820627
\(672\) 0 0
\(673\) −455.680 455.680i −0.677087 0.677087i 0.282253 0.959340i \(-0.408918\pi\)
−0.959340 + 0.282253i \(0.908918\pi\)
\(674\) 1305.38i 1.93676i
\(675\) 0 0
\(676\) 52.1599 0.0771596
\(677\) 338.927 338.927i 0.500631 0.500631i −0.411003 0.911634i \(-0.634822\pi\)
0.911634 + 0.411003i \(0.134822\pi\)
\(678\) 0 0
\(679\) 1355.68i 1.99659i
\(680\) −35.2114 26.7151i −0.0517815 0.0392868i
\(681\) 0 0
\(682\) 169.590 169.590i 0.248666 0.248666i
\(683\) −299.595 299.595i −0.438645 0.438645i 0.452911 0.891556i \(-0.350386\pi\)
−0.891556 + 0.452911i \(0.850386\pi\)
\(684\) 0 0
\(685\) 71.2488 9.77538i 0.104013 0.0142706i
\(686\) −2212.21 −3.22479
\(687\) 0 0
\(688\) −385.312 385.312i −0.560047 0.560047i
\(689\) 705.542i 1.02401i
\(690\) 0 0
\(691\) 526.110 0.761375 0.380688 0.924704i \(-0.375687\pi\)
0.380688 + 0.924704i \(0.375687\pi\)
\(692\) −222.281 + 222.281i −0.321215 + 0.321215i
\(693\) 0 0
\(694\) 1167.94i 1.68290i
\(695\) −482.189 + 635.543i −0.693798 + 0.914451i
\(696\) 0 0
\(697\) −120.686 + 120.686i −0.173150 + 0.173150i
\(698\) −446.115 446.115i −0.639134 0.639134i
\(699\) 0 0
\(700\) −493.808 + 877.244i −0.705440 + 1.25321i
\(701\) −44.3857 −0.0633177 −0.0316589 0.999499i \(-0.510079\pi\)
−0.0316589 + 0.999499i \(0.510079\pi\)
\(702\) 0 0
\(703\) 1266.99 + 1266.99i 1.80226 + 1.80226i
\(704\) 115.207i 0.163646i
\(705\) 0 0
\(706\) −548.359 −0.776712
\(707\) 258.243 258.243i 0.365266 0.365266i
\(708\) 0 0
\(709\) 742.204i 1.04683i −0.852077 0.523416i \(-0.824657\pi\)
0.852077 0.523416i \(-0.175343\pi\)
\(710\) −228.115 + 31.2975i −0.321289 + 0.0440810i
\(711\) 0 0
\(712\) −275.676 + 275.676i −0.387186 + 0.387186i
\(713\) −558.781 558.781i −0.783703 0.783703i
\(714\) 0 0
\(715\) −30.7028 223.780i −0.0429410 0.312979i
\(716\) −1011.96 −1.41335
\(717\) 0 0
\(718\) 225.074 + 225.074i 0.313474 + 0.313474i
\(719\) 864.622i 1.20253i −0.799048 0.601267i \(-0.794663\pi\)
0.799048 0.601267i \(-0.205337\pi\)
\(720\) 0 0
\(721\) 947.923 1.31473
\(722\) 1511.90 1511.90i 2.09404 2.09404i
\(723\) 0 0
\(724\) 472.658i 0.652842i
\(725\) 572.661 160.154i 0.789878 0.220902i
\(726\) 0 0
\(727\) −467.068 + 467.068i −0.642460 + 0.642460i −0.951160 0.308700i \(-0.900106\pi\)
0.308700 + 0.951160i \(0.400106\pi\)
\(728\) −277.531 277.531i −0.381224 0.381224i
\(729\) 0 0
\(730\) 130.937 + 99.3424i 0.179365 + 0.136085i
\(731\) 114.283 0.156338
\(732\) 0 0
\(733\) −273.279 273.279i −0.372822 0.372822i 0.495682 0.868504i \(-0.334918\pi\)
−0.868504 + 0.495682i \(0.834918\pi\)
\(734\) 560.533i 0.763669i
\(735\) 0 0
\(736\) 1195.43 1.62423
\(737\) −35.1180 + 35.1180i −0.0476499 + 0.0476499i
\(738\) 0 0
\(739\) 665.220i 0.900162i −0.892988 0.450081i \(-0.851395\pi\)
0.892988 0.450081i \(-0.148605\pi\)
\(740\) 112.820 + 822.300i 0.152460 + 1.11122i
\(741\) 0 0
\(742\) 1250.19 1250.19i 1.68489 1.68489i
\(743\) 462.551 + 462.551i 0.622545 + 0.622545i 0.946181 0.323637i \(-0.104906\pi\)
−0.323637 + 0.946181i \(0.604906\pi\)
\(744\) 0 0
\(745\) −340.734 + 449.100i −0.457362 + 0.602819i
\(746\) 109.640 0.146971
\(747\) 0 0
\(748\) −28.9702 28.9702i −0.0387302 0.0387302i
\(749\) 1918.78i 2.56179i
\(750\) 0 0
\(751\) 799.748 1.06491 0.532455 0.846458i \(-0.321269\pi\)
0.532455 + 0.846458i \(0.321269\pi\)
\(752\) 138.451 138.451i 0.184110 0.184110i
\(753\) 0 0
\(754\) 866.651i 1.14940i
\(755\) −1083.36 821.953i −1.43492 1.08868i
\(756\) 0 0
\(757\) 518.456 518.456i 0.684883 0.684883i −0.276214 0.961096i \(-0.589080\pi\)
0.961096 + 0.276214i \(0.0890797\pi\)
\(758\) 202.253 + 202.253i 0.266825 + 0.266825i
\(759\) 0 0
\(760\) −381.052 + 52.2806i −0.501384 + 0.0687903i
\(761\) 1045.23 1.37350 0.686748 0.726895i \(-0.259037\pi\)
0.686748 + 0.726895i \(0.259037\pi\)
\(762\) 0 0
\(763\) 915.231 + 915.231i 1.19952 + 1.19952i
\(764\) 1143.84i 1.49718i
\(765\) 0 0
\(766\) −1178.41 −1.53840
\(767\) 985.455 985.455i 1.28482 1.28482i
\(768\) 0 0
\(769\) 641.987i 0.834834i −0.908715 0.417417i \(-0.862935\pi\)
0.908715 0.417417i \(-0.137065\pi\)
\(770\) 342.124 450.932i 0.444317 0.585625i
\(771\) 0 0
\(772\) 216.210 216.210i 0.280064 0.280064i
\(773\) 29.6724 + 29.6724i 0.0383860 + 0.0383860i 0.726039 0.687653i \(-0.241359\pi\)
−0.687653 + 0.726039i \(0.741359\pi\)
\(774\) 0 0
\(775\) 182.019 + 650.846i 0.234864 + 0.839801i
\(776\) −239.935 −0.309195
\(777\) 0 0
\(778\) −787.590 787.590i −1.01233 1.01233i
\(779\) 1485.23i 1.90658i
\(780\) 0 0
\(781\) 57.0953 0.0731054
\(782\) −216.442 + 216.442i −0.276780 + 0.276780i
\(783\) 0 0
\(784\) 2124.20i 2.70944i
\(785\) 304.995 41.8455i 0.388528 0.0533064i
\(786\) 0 0
\(787\) −219.821 + 219.821i −0.279316 + 0.279316i −0.832836 0.553520i \(-0.813284\pi\)
0.553520 + 0.832836i \(0.313284\pi\)
\(788\) −488.474 488.474i −0.619891 0.619891i
\(789\) 0 0
\(790\) 191.544 + 1396.09i 0.242461 + 1.76720i
\(791\) −2450.96 −3.09856
\(792\) 0 0
\(793\) 159.905 + 159.905i 0.201646 + 0.201646i
\(794\) 204.445i 0.257488i
\(795\) 0 0
\(796\) −859.382 −1.07963
\(797\) −952.391 + 952.391i −1.19497 + 1.19497i −0.219316 + 0.975654i \(0.570383\pi\)
−0.975654 + 0.219316i \(0.929617\pi\)
\(798\) 0 0
\(799\) 41.0642i 0.0513945i
\(800\) −890.900 501.495i −1.11363 0.626869i
\(801\) 0 0
\(802\) −68.6425 + 68.6425i −0.0855891 + 0.0855891i
\(803\) −28.8185 28.8185i −0.0358886 0.0358886i
\(804\) 0 0
\(805\) −1485.77 1127.26i −1.84568 1.40032i
\(806\) 984.973 1.22205
\(807\) 0 0
\(808\) 45.7051 + 45.7051i 0.0565658 + 0.0565658i
\(809\) 334.364i 0.413305i −0.978414 0.206652i \(-0.933743\pi\)
0.978414 0.206652i \(-0.0662569\pi\)
\(810\) 0 0
\(811\) −99.7762 −0.123029 −0.0615143 0.998106i \(-0.519593\pi\)
−0.0615143 + 0.998106i \(0.519593\pi\)
\(812\) 677.246 677.246i 0.834046 0.834046i
\(813\) 0 0
\(814\) 466.688i 0.573327i
\(815\) −50.9209 371.142i −0.0624797 0.455389i
\(816\) 0 0
\(817\) 703.217 703.217i 0.860731 0.860731i
\(818\) −1215.81 1215.81i −1.48632 1.48632i
\(819\) 0 0
\(820\) −415.845 + 548.099i −0.507129 + 0.668414i
\(821\) −1427.05 −1.73819 −0.869094 0.494647i \(-0.835297\pi\)
−0.869094 + 0.494647i \(0.835297\pi\)
\(822\) 0 0
\(823\) 640.882 + 640.882i 0.778714 + 0.778714i 0.979612 0.200898i \(-0.0643859\pi\)
−0.200898 + 0.979612i \(0.564386\pi\)
\(824\) 167.768i 0.203602i
\(825\) 0 0
\(826\) 3492.36 4.22803
\(827\) 405.808 405.808i 0.490699 0.490699i −0.417827 0.908526i \(-0.637208\pi\)
0.908526 + 0.417827i \(0.137208\pi\)
\(828\) 0 0
\(829\) 1270.58i 1.53266i −0.642446 0.766331i \(-0.722081\pi\)
0.642446 0.766331i \(-0.277919\pi\)
\(830\) 86.5119 + 65.6370i 0.104231 + 0.0790807i
\(831\) 0 0
\(832\) −334.559 + 334.559i −0.402114 + 0.402114i
\(833\) 315.017 + 315.017i 0.378172 + 0.378172i
\(834\) 0 0
\(835\) 455.343 62.4734i 0.545321 0.0748184i
\(836\) −356.524 −0.426465
\(837\) 0 0
\(838\) −410.137 410.137i −0.489424 0.489424i
\(839\) 1131.65i 1.34881i −0.738363 0.674403i \(-0.764401\pi\)
0.738363 0.674403i \(-0.235599\pi\)
\(840\) 0 0
\(841\) 275.255 0.327295
\(842\) −792.717 + 792.717i −0.941470 + 0.941470i
\(843\) 0 0
\(844\) 120.752i 0.143071i
\(845\) 49.9509 65.8372i 0.0591135 0.0779138i
\(846\) 0 0
\(847\) −99.2477 + 99.2477i −0.117176 + 0.117176i
\(848\) 683.614 + 683.614i 0.806148 + 0.806148i
\(849\) 0 0
\(850\) 252.103 70.5046i 0.296592 0.0829466i
\(851\) −1537.69 −1.80692
\(852\) 0 0
\(853\) −1069.18 1069.18i −1.25343 1.25343i −0.954171 0.299261i \(-0.903260\pi\)
−0.299261 0.954171i \(-0.596740\pi\)
\(854\) 566.688i 0.663569i
\(855\) 0 0
\(856\) 339.595 0.396724
\(857\) 1180.15 1180.15i 1.37708 1.37708i 0.527557 0.849520i \(-0.323108\pi\)
0.849520 0.527557i \(-0.176892\pi\)
\(858\) 0 0
\(859\) 866.921i 1.00922i 0.863347 + 0.504610i \(0.168364\pi\)
−0.863347 + 0.504610i \(0.831636\pi\)
\(860\) 456.403 62.6188i 0.530701 0.0728125i
\(861\) 0 0
\(862\) 565.760 565.760i 0.656334 0.656334i
\(863\) −886.055 886.055i −1.02671 1.02671i −0.999633 0.0270816i \(-0.991379\pi\)
−0.0270816 0.999633i \(-0.508621\pi\)
\(864\) 0 0
\(865\) 67.6995 + 493.434i 0.0782653 + 0.570444i
\(866\) −1069.27 −1.23472
\(867\) 0 0
\(868\) 769.709 + 769.709i 0.886761 + 0.886761i
\(869\) 349.429i 0.402105i
\(870\) 0 0
\(871\) −203.964 −0.234172
\(872\) −161.982 + 161.982i −0.185759 + 0.185759i
\(873\) 0 0
\(874\) 2663.66i 3.04767i
\(875\) 634.378 + 1463.39i 0.725003 + 1.67244i
\(876\) 0 0
\(877\) 131.956 131.956i 0.150463 0.150463i −0.627862 0.778325i \(-0.716070\pi\)
0.778325 + 0.627862i \(0.216070\pi\)
\(878\) −245.068 245.068i −0.279121 0.279121i
\(879\) 0 0
\(880\) 246.574 + 187.077i 0.280198 + 0.212587i
\(881\) 1098.23 1.24658 0.623288 0.781992i \(-0.285796\pi\)
0.623288 + 0.781992i \(0.285796\pi\)
\(882\) 0 0
\(883\) −589.293 589.293i −0.667376 0.667376i 0.289732 0.957108i \(-0.406434\pi\)
−0.957108 + 0.289732i \(0.906434\pi\)
\(884\) 168.258i 0.190337i
\(885\) 0 0
\(886\) 2024.56 2.28505
\(887\) −379.152 + 379.152i −0.427454 + 0.427454i −0.887760 0.460306i \(-0.847740\pi\)
0.460306 + 0.887760i \(0.347740\pi\)
\(888\) 0 0
\(889\) 292.553i 0.329081i
\(890\) −313.863 2287.62i −0.352655 2.57036i
\(891\) 0 0
\(892\) 88.8570 88.8570i 0.0996155 0.0996155i
\(893\) 252.680 + 252.680i 0.282957 + 0.282957i
\(894\) 0 0
\(895\) −969.103 + 1277.31i −1.08280 + 1.42717i
\(896\) 901.551 1.00620
\(897\) 0 0
\(898\) 171.993 + 171.993i 0.191529 + 0.191529i
\(899\) 642.985i 0.715222i
\(900\) 0 0
\(901\) −202.759 −0.225037
\(902\) 273.539 273.539i 0.303258 0.303258i
\(903\) 0 0
\(904\) 433.783i 0.479849i
\(905\) 596.597 + 452.641i 0.659223 + 0.500156i
\(906\) 0 0
\(907\) −647.760 + 647.760i −0.714178 + 0.714178i −0.967407 0.253228i \(-0.918508\pi\)
0.253228 + 0.967407i \(0.418508\pi\)
\(908\) −88.6678 88.6678i −0.0976517 0.0976517i
\(909\) 0 0
\(910\) 2303.02 315.976i 2.53079 0.347226i
\(911\) 431.203 0.473330 0.236665 0.971591i \(-0.423946\pi\)
0.236665 + 0.971591i \(0.423946\pi\)
\(912\) 0 0
\(913\) −19.0408 19.0408i −0.0208552 0.0208552i
\(914\) 394.150i 0.431236i
\(915\) 0 0
\(916\) −502.453 −0.548530
\(917\) 546.867 546.867i 0.596365 0.596365i
\(918\) 0 0
\(919\) 1641.19i 1.78584i −0.450212 0.892921i \(-0.648652\pi\)
0.450212 0.892921i \(-0.351348\pi\)
\(920\) 199.508 262.959i 0.216857 0.285825i
\(921\) 0 0
\(922\) −755.291 + 755.291i −0.819188 + 0.819188i
\(923\) 165.804 + 165.804i 0.179636 + 0.179636i
\(924\) 0 0
\(925\) 1145.96 + 645.073i 1.23888 + 0.697376i
\(926\) −618.900 −0.668358
\(927\) 0 0
\(928\) 687.789 + 687.789i 0.741152 + 0.741152i
\(929\) 775.197i 0.834442i 0.908805 + 0.417221i \(0.136996\pi\)
−0.908805 + 0.417221i \(0.863004\pi\)
\(930\) 0 0
\(931\) 3876.79 4.16411
\(932\) 25.2494 25.2494i 0.0270916 0.0270916i
\(933\) 0 0
\(934\) 1613.60i 1.72763i
\(935\) −64.3100 + 8.82338i −0.0687807 + 0.00943677i
\(936\) 0 0
\(937\) −1109.99 + 1109.99i −1.18462 + 1.18462i −0.206082 + 0.978535i \(0.566071\pi\)
−0.978535 + 0.206082i \(0.933929\pi\)
\(938\) −361.414 361.414i −0.385303 0.385303i
\(939\) 0 0
\(940\) 22.5002 + 163.995i 0.0239364 + 0.174463i
\(941\) −632.362 −0.672011 −0.336005 0.941860i \(-0.609076\pi\)
−0.336005 + 0.941860i \(0.609076\pi\)
\(942\) 0 0
\(943\) −901.280 901.280i −0.955758 0.955758i
\(944\) 1909.65i 2.02294i
\(945\) 0 0
\(946\) −259.027 −0.273813
\(947\) 693.863 693.863i 0.732696 0.732696i −0.238457 0.971153i \(-0.576642\pi\)
0.971153 + 0.238457i \(0.0766417\pi\)
\(948\) 0 0
\(949\) 167.377i 0.176372i
\(950\) 1117.43 1985.10i 1.17624 2.08958i
\(951\) 0 0
\(952\) −79.7570 + 79.7570i −0.0837784 + 0.0837784i
\(953\) −827.010 827.010i −0.867796 0.867796i 0.124432 0.992228i \(-0.460289\pi\)
−0.992228 + 0.124432i \(0.960289\pi\)
\(954\) 0 0
\(955\) 1443.78 + 1095.40i 1.51181 + 1.14702i
\(956\) −287.578 −0.300814
\(957\) 0 0
\(958\) 286.584 + 286.584i 0.299148 + 0.299148i
\(959\) 183.527i 0.191373i
\(960\) 0 0
\(961\) −230.230 −0.239573
\(962\) 1355.25 1355.25i 1.40879 1.40879i
\(963\) 0 0
\(964\) 502.679i 0.521451i
\(965\) −65.8504 479.957i −0.0682388 0.497365i
\(966\) 0 0
\(967\) −315.855 + 315.855i −0.326634 + 0.326634i −0.851305 0.524671i \(-0.824188\pi\)
0.524671 + 0.851305i \(0.324188\pi\)
\(968\) −17.5654 17.5654i −0.0181460 0.0181460i
\(969\) 0 0
\(970\) 858.932 1132.10i 0.885497 1.16712i
\(971\) 445.544 0.458851 0.229425 0.973326i \(-0.426315\pi\)
0.229425 + 0.973326i \(0.426315\pi\)
\(972\) 0 0
\(973\) 1439.56 + 1439.56i 1.47951 + 1.47951i
\(974\) 1362.25i 1.39861i
\(975\) 0 0
\(976\) −309.870 −0.317490
\(977\) 562.840 562.840i 0.576091 0.576091i −0.357733 0.933824i \(-0.616450\pi\)
0.933824 + 0.357733i \(0.116450\pi\)
\(978\) 0 0
\(979\) 572.574i 0.584856i
\(980\) 1430.66 + 1085.45i 1.45986 + 1.10760i
\(981\) 0 0
\(982\) −113.546 + 113.546i −0.115627 + 0.115627i
\(983\) 817.886 + 817.886i 0.832031 + 0.832031i 0.987794 0.155763i \(-0.0497838\pi\)
−0.155763 + 0.987794i \(0.549784\pi\)
\(984\) 0 0
\(985\) −1084.35 + 148.773i −1.10086 + 0.151039i
\(986\) −249.058 −0.252594
\(987\) 0 0
\(988\) −1035.34 1035.34i −1.04792 1.04792i
\(989\) 853.465i 0.862958i
\(990\) 0 0
\(991\) −1479.24 −1.49268 −0.746339 0.665566i \(-0.768190\pi\)
−0.746339 + 0.665566i \(0.768190\pi\)
\(992\) −781.691 + 781.691i −0.787995 + 0.787995i
\(993\) 0 0
\(994\) 587.592i 0.591139i
\(995\) −822.987 + 1084.73i −0.827123 + 1.09018i
\(996\) 0 0
\(997\) −73.9474 + 73.9474i −0.0741699 + 0.0741699i −0.743219 0.669049i \(-0.766702\pi\)
0.669049 + 0.743219i \(0.266702\pi\)
\(998\) 280.052 + 280.052i 0.280614 + 0.280614i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.j.c.298.5 40
3.2 odd 2 inner 495.3.j.c.298.16 yes 40
5.2 odd 4 inner 495.3.j.c.397.5 yes 40
15.2 even 4 inner 495.3.j.c.397.16 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.j.c.298.5 40 1.1 even 1 trivial
495.3.j.c.298.16 yes 40 3.2 odd 2 inner
495.3.j.c.397.5 yes 40 5.2 odd 4 inner
495.3.j.c.397.16 yes 40 15.2 even 4 inner