Properties

Label 495.3.g.a.89.25
Level $495$
Weight $3$
Character 495.89
Analytic conductor $13.488$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(89,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.89"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 89.25
Character \(\chi\) \(=\) 495.89
Dual form 495.3.g.a.89.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.881621 q^{2} -3.22275 q^{4} +(-4.45405 + 2.27188i) q^{5} -4.31988i q^{7} -6.36772 q^{8} +(-3.92678 + 2.00293i) q^{10} +3.31662i q^{11} -0.805140i q^{13} -3.80850i q^{14} +7.27707 q^{16} +23.4538 q^{17} +24.5089 q^{19} +(14.3543 - 7.32168i) q^{20} +2.92400i q^{22} +9.68854 q^{23} +(14.6771 - 20.2381i) q^{25} -0.709828i q^{26} +13.9219i q^{28} -11.7672i q^{29} -26.1512 q^{31} +31.8865 q^{32} +20.6773 q^{34} +(9.81424 + 19.2410i) q^{35} -16.0917i q^{37} +21.6076 q^{38} +(28.3622 - 14.4667i) q^{40} +72.3595i q^{41} -44.7144i q^{43} -10.6886i q^{44} +8.54162 q^{46} +51.7564 q^{47} +30.3386 q^{49} +(12.9397 - 17.8423i) q^{50} +2.59476i q^{52} +39.9939 q^{53} +(-7.53497 - 14.7724i) q^{55} +27.5078i q^{56} -10.3742i q^{58} +72.6424i q^{59} -51.9859 q^{61} -23.0555 q^{62} -0.996477 q^{64} +(1.82918 + 3.58613i) q^{65} -80.0624i q^{67} -75.5856 q^{68} +(8.65244 + 16.9632i) q^{70} -6.50151i q^{71} -48.8081i q^{73} -14.1868i q^{74} -78.9861 q^{76} +14.3274 q^{77} +65.8002 q^{79} +(-32.4124 + 16.5326i) q^{80} +63.7936i q^{82} +54.1991 q^{83} +(-104.464 + 53.2841i) q^{85} -39.4211i q^{86} -21.1193i q^{88} -147.434i q^{89} -3.47811 q^{91} -31.2237 q^{92} +45.6295 q^{94} +(-109.164 + 55.6813i) q^{95} -155.533i q^{97} +26.7472 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 72 q^{4} + 8 q^{10} + 184 q^{16} - 80 q^{19} + 32 q^{25} - 16 q^{31} - 160 q^{34} - 136 q^{40} + 560 q^{46} - 104 q^{49} - 96 q^{61} + 264 q^{64} - 872 q^{70} - 176 q^{76} - 672 q^{79} + 16 q^{85}+ \cdots + 400 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.881621 0.440810 0.220405 0.975408i \(-0.429262\pi\)
0.220405 + 0.975408i \(0.429262\pi\)
\(3\) 0 0
\(4\) −3.22275 −0.805686
\(5\) −4.45405 + 2.27188i −0.890810 + 0.454375i
\(6\) 0 0
\(7\) 4.31988i 0.617126i −0.951204 0.308563i \(-0.900152\pi\)
0.951204 0.308563i \(-0.0998480\pi\)
\(8\) −6.36772 −0.795965
\(9\) 0 0
\(10\) −3.92678 + 2.00293i −0.392678 + 0.200293i
\(11\) 3.31662i 0.301511i
\(12\) 0 0
\(13\) 0.805140i 0.0619338i −0.999520 0.0309669i \(-0.990141\pi\)
0.999520 0.0309669i \(-0.00985865\pi\)
\(14\) 3.80850i 0.272035i
\(15\) 0 0
\(16\) 7.27707 0.454817
\(17\) 23.4538 1.37963 0.689817 0.723983i \(-0.257691\pi\)
0.689817 + 0.723983i \(0.257691\pi\)
\(18\) 0 0
\(19\) 24.5089 1.28994 0.644972 0.764206i \(-0.276869\pi\)
0.644972 + 0.764206i \(0.276869\pi\)
\(20\) 14.3543 7.32168i 0.717714 0.366084i
\(21\) 0 0
\(22\) 2.92400i 0.132909i
\(23\) 9.68854 0.421241 0.210620 0.977568i \(-0.432452\pi\)
0.210620 + 0.977568i \(0.432452\pi\)
\(24\) 0 0
\(25\) 14.6771 20.2381i 0.587086 0.809525i
\(26\) 0.709828i 0.0273011i
\(27\) 0 0
\(28\) 13.9219i 0.497210i
\(29\) 11.7672i 0.405766i −0.979203 0.202883i \(-0.934969\pi\)
0.979203 0.202883i \(-0.0650311\pi\)
\(30\) 0 0
\(31\) −26.1512 −0.843588 −0.421794 0.906692i \(-0.638599\pi\)
−0.421794 + 0.906692i \(0.638599\pi\)
\(32\) 31.8865 0.996453
\(33\) 0 0
\(34\) 20.6773 0.608157
\(35\) 9.81424 + 19.2410i 0.280407 + 0.549742i
\(36\) 0 0
\(37\) 16.0917i 0.434911i −0.976070 0.217455i \(-0.930224\pi\)
0.976070 0.217455i \(-0.0697757\pi\)
\(38\) 21.6076 0.568621
\(39\) 0 0
\(40\) 28.3622 14.4667i 0.709054 0.361667i
\(41\) 72.3595i 1.76486i 0.470439 + 0.882432i \(0.344095\pi\)
−0.470439 + 0.882432i \(0.655905\pi\)
\(42\) 0 0
\(43\) 44.7144i 1.03987i −0.854206 0.519935i \(-0.825956\pi\)
0.854206 0.519935i \(-0.174044\pi\)
\(44\) 10.6886i 0.242924i
\(45\) 0 0
\(46\) 8.54162 0.185687
\(47\) 51.7564 1.10120 0.550600 0.834769i \(-0.314399\pi\)
0.550600 + 0.834769i \(0.314399\pi\)
\(48\) 0 0
\(49\) 30.3386 0.619156
\(50\) 12.9397 17.8423i 0.258793 0.356847i
\(51\) 0 0
\(52\) 2.59476i 0.0498992i
\(53\) 39.9939 0.754602 0.377301 0.926091i \(-0.376852\pi\)
0.377301 + 0.926091i \(0.376852\pi\)
\(54\) 0 0
\(55\) −7.53497 14.7724i −0.136999 0.268589i
\(56\) 27.5078i 0.491211i
\(57\) 0 0
\(58\) 10.3742i 0.178866i
\(59\) 72.6424i 1.23123i 0.788048 + 0.615613i \(0.211092\pi\)
−0.788048 + 0.615613i \(0.788908\pi\)
\(60\) 0 0
\(61\) −51.9859 −0.852228 −0.426114 0.904669i \(-0.640118\pi\)
−0.426114 + 0.904669i \(0.640118\pi\)
\(62\) −23.0555 −0.371862
\(63\) 0 0
\(64\) −0.996477 −0.0155699
\(65\) 1.82918 + 3.58613i 0.0281412 + 0.0551713i
\(66\) 0 0
\(67\) 80.0624i 1.19496i −0.801884 0.597480i \(-0.796169\pi\)
0.801884 0.597480i \(-0.203831\pi\)
\(68\) −75.5856 −1.11155
\(69\) 0 0
\(70\) 8.65244 + 16.9632i 0.123606 + 0.242332i
\(71\) 6.50151i 0.0915706i −0.998951 0.0457853i \(-0.985421\pi\)
0.998951 0.0457853i \(-0.0145790\pi\)
\(72\) 0 0
\(73\) 48.8081i 0.668604i −0.942466 0.334302i \(-0.891500\pi\)
0.942466 0.334302i \(-0.108500\pi\)
\(74\) 14.1868i 0.191713i
\(75\) 0 0
\(76\) −78.9861 −1.03929
\(77\) 14.3274 0.186070
\(78\) 0 0
\(79\) 65.8002 0.832915 0.416457 0.909155i \(-0.363272\pi\)
0.416457 + 0.909155i \(0.363272\pi\)
\(80\) −32.4124 + 16.5326i −0.405155 + 0.206658i
\(81\) 0 0
\(82\) 63.7936i 0.777971i
\(83\) 54.1991 0.653001 0.326501 0.945197i \(-0.394130\pi\)
0.326501 + 0.945197i \(0.394130\pi\)
\(84\) 0 0
\(85\) −104.464 + 53.2841i −1.22899 + 0.626872i
\(86\) 39.4211i 0.458385i
\(87\) 0 0
\(88\) 21.1193i 0.239993i
\(89\) 147.434i 1.65656i −0.560317 0.828278i \(-0.689321\pi\)
0.560317 0.828278i \(-0.310679\pi\)
\(90\) 0 0
\(91\) −3.47811 −0.0382210
\(92\) −31.2237 −0.339388
\(93\) 0 0
\(94\) 45.6295 0.485421
\(95\) −109.164 + 55.6813i −1.14910 + 0.586119i
\(96\) 0 0
\(97\) 155.533i 1.60343i −0.597706 0.801715i \(-0.703921\pi\)
0.597706 0.801715i \(-0.296079\pi\)
\(98\) 26.7472 0.272930
\(99\) 0 0
\(100\) −47.3007 + 65.2223i −0.473007 + 0.652223i
\(101\) 60.8521i 0.602496i 0.953546 + 0.301248i \(0.0974032\pi\)
−0.953546 + 0.301248i \(0.902597\pi\)
\(102\) 0 0
\(103\) 165.708i 1.60881i 0.594080 + 0.804406i \(0.297516\pi\)
−0.594080 + 0.804406i \(0.702484\pi\)
\(104\) 5.12691i 0.0492972i
\(105\) 0 0
\(106\) 35.2595 0.332636
\(107\) 38.8630 0.363206 0.181603 0.983372i \(-0.441871\pi\)
0.181603 + 0.983372i \(0.441871\pi\)
\(108\) 0 0
\(109\) −3.33758 −0.0306200 −0.0153100 0.999883i \(-0.504874\pi\)
−0.0153100 + 0.999883i \(0.504874\pi\)
\(110\) −6.64298 13.0237i −0.0603907 0.118397i
\(111\) 0 0
\(112\) 31.4361i 0.280679i
\(113\) −8.23449 −0.0728716 −0.0364358 0.999336i \(-0.511600\pi\)
−0.0364358 + 0.999336i \(0.511600\pi\)
\(114\) 0 0
\(115\) −43.1533 + 22.0112i −0.375246 + 0.191402i
\(116\) 37.9227i 0.326920i
\(117\) 0 0
\(118\) 64.0430i 0.542737i
\(119\) 101.318i 0.851408i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) −45.8318 −0.375671
\(123\) 0 0
\(124\) 84.2787 0.679667
\(125\) −19.3942 + 123.486i −0.155154 + 0.987890i
\(126\) 0 0
\(127\) 199.289i 1.56921i 0.619998 + 0.784603i \(0.287133\pi\)
−0.619998 + 0.784603i \(0.712867\pi\)
\(128\) −128.424 −1.00332
\(129\) 0 0
\(130\) 1.61264 + 3.16161i 0.0124049 + 0.0243201i
\(131\) 17.4859i 0.133480i −0.997770 0.0667402i \(-0.978740\pi\)
0.997770 0.0667402i \(-0.0212599\pi\)
\(132\) 0 0
\(133\) 105.876i 0.796058i
\(134\) 70.5846i 0.526751i
\(135\) 0 0
\(136\) −149.347 −1.09814
\(137\) 148.470 1.08373 0.541863 0.840467i \(-0.317719\pi\)
0.541863 + 0.840467i \(0.317719\pi\)
\(138\) 0 0
\(139\) 119.272 0.858075 0.429038 0.903287i \(-0.358853\pi\)
0.429038 + 0.903287i \(0.358853\pi\)
\(140\) −31.6288 62.0087i −0.225920 0.442920i
\(141\) 0 0
\(142\) 5.73186i 0.0403652i
\(143\) 2.67035 0.0186738
\(144\) 0 0
\(145\) 26.7337 + 52.4118i 0.184370 + 0.361460i
\(146\) 43.0302i 0.294727i
\(147\) 0 0
\(148\) 51.8595i 0.350402i
\(149\) 71.6881i 0.481128i 0.970633 + 0.240564i \(0.0773324\pi\)
−0.970633 + 0.240564i \(0.922668\pi\)
\(150\) 0 0
\(151\) 168.913 1.11863 0.559313 0.828957i \(-0.311065\pi\)
0.559313 + 0.828957i \(0.311065\pi\)
\(152\) −156.066 −1.02675
\(153\) 0 0
\(154\) 12.6314 0.0820218
\(155\) 116.479 59.4124i 0.751477 0.383306i
\(156\) 0 0
\(157\) 183.252i 1.16721i −0.812039 0.583604i \(-0.801642\pi\)
0.812039 0.583604i \(-0.198358\pi\)
\(158\) 58.0109 0.367157
\(159\) 0 0
\(160\) −142.024 + 72.4422i −0.887651 + 0.452764i
\(161\) 41.8533i 0.259959i
\(162\) 0 0
\(163\) 100.620i 0.617303i 0.951175 + 0.308651i \(0.0998776\pi\)
−0.951175 + 0.308651i \(0.900122\pi\)
\(164\) 233.196i 1.42193i
\(165\) 0 0
\(166\) 47.7831 0.287850
\(167\) −214.819 −1.28634 −0.643169 0.765724i \(-0.722381\pi\)
−0.643169 + 0.765724i \(0.722381\pi\)
\(168\) 0 0
\(169\) 168.352 0.996164
\(170\) −92.0980 + 46.9764i −0.541753 + 0.276332i
\(171\) 0 0
\(172\) 144.103i 0.837808i
\(173\) −143.522 −0.829606 −0.414803 0.909911i \(-0.636150\pi\)
−0.414803 + 0.909911i \(0.636150\pi\)
\(174\) 0 0
\(175\) −87.4263 63.4035i −0.499579 0.362306i
\(176\) 24.1353i 0.137132i
\(177\) 0 0
\(178\) 129.980i 0.730227i
\(179\) 132.148i 0.738256i −0.929379 0.369128i \(-0.879656\pi\)
0.929379 0.369128i \(-0.120344\pi\)
\(180\) 0 0
\(181\) −248.395 −1.37235 −0.686174 0.727438i \(-0.740711\pi\)
−0.686174 + 0.727438i \(0.740711\pi\)
\(182\) −3.06637 −0.0168482
\(183\) 0 0
\(184\) −61.6939 −0.335293
\(185\) 36.5584 + 71.6733i 0.197613 + 0.387423i
\(186\) 0 0
\(187\) 77.7874i 0.415976i
\(188\) −166.798 −0.887222
\(189\) 0 0
\(190\) −96.2413 + 49.0898i −0.506533 + 0.258367i
\(191\) 184.466i 0.965793i −0.875678 0.482896i \(-0.839585\pi\)
0.875678 0.482896i \(-0.160415\pi\)
\(192\) 0 0
\(193\) 242.874i 1.25841i 0.777238 + 0.629207i \(0.216620\pi\)
−0.777238 + 0.629207i \(0.783380\pi\)
\(194\) 137.121i 0.706809i
\(195\) 0 0
\(196\) −97.7737 −0.498845
\(197\) 115.056 0.584041 0.292021 0.956412i \(-0.405672\pi\)
0.292021 + 0.956412i \(0.405672\pi\)
\(198\) 0 0
\(199\) −66.2275 −0.332802 −0.166401 0.986058i \(-0.553215\pi\)
−0.166401 + 0.986058i \(0.553215\pi\)
\(200\) −93.4600 + 128.871i −0.467300 + 0.644353i
\(201\) 0 0
\(202\) 53.6485i 0.265586i
\(203\) −50.8329 −0.250409
\(204\) 0 0
\(205\) −164.392 322.293i −0.801911 1.57216i
\(206\) 146.091i 0.709181i
\(207\) 0 0
\(208\) 5.85906i 0.0281685i
\(209\) 81.2869i 0.388933i
\(210\) 0 0
\(211\) 222.115 1.05268 0.526339 0.850275i \(-0.323564\pi\)
0.526339 + 0.850275i \(0.323564\pi\)
\(212\) −128.890 −0.607973
\(213\) 0 0
\(214\) 34.2624 0.160105
\(215\) 101.586 + 199.160i 0.472491 + 0.926326i
\(216\) 0 0
\(217\) 112.970i 0.520600i
\(218\) −2.94248 −0.0134976
\(219\) 0 0
\(220\) 24.2833 + 47.6077i 0.110379 + 0.216399i
\(221\) 18.8836i 0.0854461i
\(222\) 0 0
\(223\) 82.8808i 0.371663i 0.982582 + 0.185831i \(0.0594978\pi\)
−0.982582 + 0.185831i \(0.940502\pi\)
\(224\) 137.746i 0.614937i
\(225\) 0 0
\(226\) −7.25970 −0.0321226
\(227\) −38.0897 −0.167796 −0.0838979 0.996474i \(-0.526737\pi\)
−0.0838979 + 0.996474i \(0.526737\pi\)
\(228\) 0 0
\(229\) 331.747 1.44868 0.724339 0.689443i \(-0.242145\pi\)
0.724339 + 0.689443i \(0.242145\pi\)
\(230\) −38.0448 + 19.4055i −0.165412 + 0.0843718i
\(231\) 0 0
\(232\) 74.9303i 0.322975i
\(233\) −119.256 −0.511828 −0.255914 0.966700i \(-0.582376\pi\)
−0.255914 + 0.966700i \(0.582376\pi\)
\(234\) 0 0
\(235\) −230.526 + 117.584i −0.980961 + 0.500359i
\(236\) 234.108i 0.991983i
\(237\) 0 0
\(238\) 89.3237i 0.375310i
\(239\) 53.3917i 0.223396i −0.993742 0.111698i \(-0.964371\pi\)
0.993742 0.111698i \(-0.0356289\pi\)
\(240\) 0 0
\(241\) 192.817 0.800072 0.400036 0.916499i \(-0.368998\pi\)
0.400036 + 0.916499i \(0.368998\pi\)
\(242\) −9.69783 −0.0400737
\(243\) 0 0
\(244\) 167.537 0.686628
\(245\) −135.130 + 68.9256i −0.551550 + 0.281329i
\(246\) 0 0
\(247\) 19.7331i 0.0798912i
\(248\) 166.524 0.671467
\(249\) 0 0
\(250\) −17.0984 + 108.868i −0.0683934 + 0.435472i
\(251\) 148.869i 0.593105i −0.955017 0.296553i \(-0.904163\pi\)
0.955017 0.296553i \(-0.0958370\pi\)
\(252\) 0 0
\(253\) 32.1333i 0.127009i
\(254\) 175.698i 0.691723i
\(255\) 0 0
\(256\) −109.236 −0.426702
\(257\) 437.976 1.70419 0.852093 0.523390i \(-0.175333\pi\)
0.852093 + 0.523390i \(0.175333\pi\)
\(258\) 0 0
\(259\) −69.5142 −0.268395
\(260\) −5.89498 11.5572i −0.0226730 0.0444508i
\(261\) 0 0
\(262\) 15.4160i 0.0588395i
\(263\) −271.978 −1.03414 −0.517069 0.855944i \(-0.672977\pi\)
−0.517069 + 0.855944i \(0.672977\pi\)
\(264\) 0 0
\(265\) −178.135 + 90.8613i −0.672207 + 0.342873i
\(266\) 93.3422i 0.350910i
\(267\) 0 0
\(268\) 258.021i 0.962763i
\(269\) 59.8748i 0.222583i −0.993788 0.111291i \(-0.964501\pi\)
0.993788 0.111291i \(-0.0354987\pi\)
\(270\) 0 0
\(271\) 107.993 0.398499 0.199250 0.979949i \(-0.436150\pi\)
0.199250 + 0.979949i \(0.436150\pi\)
\(272\) 170.675 0.627481
\(273\) 0 0
\(274\) 130.895 0.477717
\(275\) 67.1222 + 48.6786i 0.244081 + 0.177013i
\(276\) 0 0
\(277\) 421.095i 1.52020i −0.649808 0.760098i \(-0.725151\pi\)
0.649808 0.760098i \(-0.274849\pi\)
\(278\) 105.153 0.378248
\(279\) 0 0
\(280\) −62.4943 122.521i −0.223194 0.437575i
\(281\) 477.167i 1.69810i 0.528311 + 0.849051i \(0.322825\pi\)
−0.528311 + 0.849051i \(0.677175\pi\)
\(282\) 0 0
\(283\) 487.972i 1.72428i −0.506667 0.862142i \(-0.669123\pi\)
0.506667 0.862142i \(-0.330877\pi\)
\(284\) 20.9527i 0.0737771i
\(285\) 0 0
\(286\) 2.35423 0.00823158
\(287\) 312.584 1.08914
\(288\) 0 0
\(289\) 261.080 0.903392
\(290\) 23.5689 + 46.2073i 0.0812722 + 0.159335i
\(291\) 0 0
\(292\) 157.296i 0.538685i
\(293\) 183.025 0.624658 0.312329 0.949974i \(-0.398891\pi\)
0.312329 + 0.949974i \(0.398891\pi\)
\(294\) 0 0
\(295\) −165.035 323.553i −0.559439 1.09679i
\(296\) 102.467i 0.346174i
\(297\) 0 0
\(298\) 63.2017i 0.212086i
\(299\) 7.80063i 0.0260891i
\(300\) 0 0
\(301\) −193.161 −0.641730
\(302\) 148.917 0.493102
\(303\) 0 0
\(304\) 178.353 0.586688
\(305\) 231.548 118.106i 0.759173 0.387232i
\(306\) 0 0
\(307\) 63.3011i 0.206193i 0.994671 + 0.103096i \(0.0328750\pi\)
−0.994671 + 0.103096i \(0.967125\pi\)
\(308\) −46.1736 −0.149914
\(309\) 0 0
\(310\) 102.690 52.3792i 0.331259 0.168965i
\(311\) 576.118i 1.85247i 0.376948 + 0.926234i \(0.376974\pi\)
−0.376948 + 0.926234i \(0.623026\pi\)
\(312\) 0 0
\(313\) 59.5453i 0.190240i −0.995466 0.0951202i \(-0.969676\pi\)
0.995466 0.0951202i \(-0.0303236\pi\)
\(314\) 161.558i 0.514517i
\(315\) 0 0
\(316\) −212.057 −0.671068
\(317\) −342.936 −1.08182 −0.540908 0.841082i \(-0.681919\pi\)
−0.540908 + 0.841082i \(0.681919\pi\)
\(318\) 0 0
\(319\) 39.0274 0.122343
\(320\) 4.43836 2.26387i 0.0138699 0.00707460i
\(321\) 0 0
\(322\) 36.8988i 0.114592i
\(323\) 574.827 1.77965
\(324\) 0 0
\(325\) −16.2945 11.8172i −0.0501370 0.0363605i
\(326\) 88.7089i 0.272113i
\(327\) 0 0
\(328\) 460.765i 1.40477i
\(329\) 223.582i 0.679579i
\(330\) 0 0
\(331\) −413.679 −1.24978 −0.624892 0.780711i \(-0.714857\pi\)
−0.624892 + 0.780711i \(0.714857\pi\)
\(332\) −174.670 −0.526114
\(333\) 0 0
\(334\) −189.388 −0.567031
\(335\) 181.892 + 356.602i 0.542961 + 1.06448i
\(336\) 0 0
\(337\) 605.660i 1.79721i −0.438759 0.898605i \(-0.644582\pi\)
0.438759 0.898605i \(-0.355418\pi\)
\(338\) 148.422 0.439119
\(339\) 0 0
\(340\) 336.662 171.721i 0.990183 0.505062i
\(341\) 86.7338i 0.254351i
\(342\) 0 0
\(343\) 342.733i 0.999223i
\(344\) 284.729i 0.827700i
\(345\) 0 0
\(346\) −126.532 −0.365699
\(347\) −357.744 −1.03096 −0.515481 0.856901i \(-0.672387\pi\)
−0.515481 + 0.856901i \(0.672387\pi\)
\(348\) 0 0
\(349\) 293.440 0.840802 0.420401 0.907338i \(-0.361889\pi\)
0.420401 + 0.907338i \(0.361889\pi\)
\(350\) −77.0768 55.8978i −0.220219 0.159708i
\(351\) 0 0
\(352\) 105.756i 0.300442i
\(353\) 560.030 1.58649 0.793243 0.608905i \(-0.208391\pi\)
0.793243 + 0.608905i \(0.208391\pi\)
\(354\) 0 0
\(355\) 14.7706 + 28.9581i 0.0416074 + 0.0815720i
\(356\) 475.141i 1.33466i
\(357\) 0 0
\(358\) 116.504i 0.325431i
\(359\) 217.132i 0.604824i −0.953177 0.302412i \(-0.902208\pi\)
0.953177 0.302412i \(-0.0977918\pi\)
\(360\) 0 0
\(361\) 239.688 0.663956
\(362\) −218.990 −0.604945
\(363\) 0 0
\(364\) 11.2091 0.0307941
\(365\) 110.886 + 217.394i 0.303797 + 0.595599i
\(366\) 0 0
\(367\) 547.500i 1.49183i 0.666044 + 0.745913i \(0.267986\pi\)
−0.666044 + 0.745913i \(0.732014\pi\)
\(368\) 70.5042 0.191587
\(369\) 0 0
\(370\) 32.2306 + 63.1886i 0.0871098 + 0.170780i
\(371\) 172.769i 0.465685i
\(372\) 0 0
\(373\) 462.335i 1.23950i −0.784798 0.619752i \(-0.787233\pi\)
0.784798 0.619752i \(-0.212767\pi\)
\(374\) 68.5790i 0.183366i
\(375\) 0 0
\(376\) −329.570 −0.876517
\(377\) −9.47425 −0.0251306
\(378\) 0 0
\(379\) 105.655 0.278772 0.139386 0.990238i \(-0.455487\pi\)
0.139386 + 0.990238i \(0.455487\pi\)
\(380\) 351.808 179.447i 0.925810 0.472228i
\(381\) 0 0
\(382\) 162.629i 0.425731i
\(383\) 45.8064 0.119599 0.0597995 0.998210i \(-0.480954\pi\)
0.0597995 + 0.998210i \(0.480954\pi\)
\(384\) 0 0
\(385\) −63.8151 + 32.5502i −0.165753 + 0.0845459i
\(386\) 214.123i 0.554722i
\(387\) 0 0
\(388\) 501.242i 1.29186i
\(389\) 387.639i 0.996501i 0.867033 + 0.498250i \(0.166024\pi\)
−0.867033 + 0.498250i \(0.833976\pi\)
\(390\) 0 0
\(391\) 227.233 0.581159
\(392\) −193.188 −0.492826
\(393\) 0 0
\(394\) 101.436 0.257451
\(395\) −293.078 + 149.490i −0.741969 + 0.378456i
\(396\) 0 0
\(397\) 559.989i 1.41055i 0.708933 + 0.705276i \(0.249177\pi\)
−0.708933 + 0.705276i \(0.750823\pi\)
\(398\) −58.3875 −0.146702
\(399\) 0 0
\(400\) 106.807 147.274i 0.267016 0.368185i
\(401\) 202.648i 0.505358i −0.967550 0.252679i \(-0.918688\pi\)
0.967550 0.252679i \(-0.0813116\pi\)
\(402\) 0 0
\(403\) 21.0554i 0.0522466i
\(404\) 196.111i 0.485423i
\(405\) 0 0
\(406\) −44.8154 −0.110383
\(407\) 53.3701 0.131131
\(408\) 0 0
\(409\) 379.874 0.928788 0.464394 0.885629i \(-0.346272\pi\)
0.464394 + 0.885629i \(0.346272\pi\)
\(410\) −144.931 284.140i −0.353491 0.693024i
\(411\) 0 0
\(412\) 534.033i 1.29620i
\(413\) 313.806 0.759822
\(414\) 0 0
\(415\) −241.406 + 123.134i −0.581700 + 0.296708i
\(416\) 25.6731i 0.0617141i
\(417\) 0 0
\(418\) 71.6642i 0.171446i
\(419\) 493.630i 1.17811i −0.808091 0.589057i \(-0.799499\pi\)
0.808091 0.589057i \(-0.200501\pi\)
\(420\) 0 0
\(421\) 675.728 1.60505 0.802527 0.596616i \(-0.203488\pi\)
0.802527 + 0.596616i \(0.203488\pi\)
\(422\) 195.821 0.464031
\(423\) 0 0
\(424\) −254.670 −0.600637
\(425\) 344.235 474.661i 0.809964 1.11685i
\(426\) 0 0
\(427\) 224.573i 0.525932i
\(428\) −125.246 −0.292630
\(429\) 0 0
\(430\) 89.5599 + 175.584i 0.208279 + 0.408334i
\(431\) 656.908i 1.52415i −0.647489 0.762075i \(-0.724181\pi\)
0.647489 0.762075i \(-0.275819\pi\)
\(432\) 0 0
\(433\) 767.919i 1.77348i 0.462265 + 0.886742i \(0.347037\pi\)
−0.462265 + 0.886742i \(0.652963\pi\)
\(434\) 99.5969i 0.229486i
\(435\) 0 0
\(436\) 10.7562 0.0246701
\(437\) 237.456 0.543377
\(438\) 0 0
\(439\) 221.614 0.504815 0.252408 0.967621i \(-0.418778\pi\)
0.252408 + 0.967621i \(0.418778\pi\)
\(440\) 47.9806 + 94.0666i 0.109047 + 0.213788i
\(441\) 0 0
\(442\) 16.6482i 0.0376655i
\(443\) −705.229 −1.59194 −0.795970 0.605336i \(-0.793039\pi\)
−0.795970 + 0.605336i \(0.793039\pi\)
\(444\) 0 0
\(445\) 334.951 + 656.676i 0.752699 + 1.47568i
\(446\) 73.0694i 0.163833i
\(447\) 0 0
\(448\) 4.30466i 0.00960862i
\(449\) 210.018i 0.467746i 0.972267 + 0.233873i \(0.0751400\pi\)
−0.972267 + 0.233873i \(0.924860\pi\)
\(450\) 0 0
\(451\) −239.989 −0.532127
\(452\) 26.5377 0.0587116
\(453\) 0 0
\(454\) −33.5806 −0.0739661
\(455\) 15.4917 7.90183i 0.0340476 0.0173667i
\(456\) 0 0
\(457\) 142.090i 0.310918i 0.987842 + 0.155459i \(0.0496857\pi\)
−0.987842 + 0.155459i \(0.950314\pi\)
\(458\) 292.475 0.638593
\(459\) 0 0
\(460\) 139.072 70.9364i 0.302330 0.154210i
\(461\) 249.655i 0.541552i −0.962642 0.270776i \(-0.912720\pi\)
0.962642 0.270776i \(-0.0872803\pi\)
\(462\) 0 0
\(463\) 176.885i 0.382041i 0.981586 + 0.191021i \(0.0611797\pi\)
−0.981586 + 0.191021i \(0.938820\pi\)
\(464\) 85.6308i 0.184549i
\(465\) 0 0
\(466\) −105.139 −0.225619
\(467\) −555.406 −1.18931 −0.594653 0.803983i \(-0.702710\pi\)
−0.594653 + 0.803983i \(0.702710\pi\)
\(468\) 0 0
\(469\) −345.860 −0.737441
\(470\) −203.236 + 103.665i −0.432418 + 0.220563i
\(471\) 0 0
\(472\) 462.566i 0.980014i
\(473\) 148.301 0.313532
\(474\) 0 0
\(475\) 359.721 496.015i 0.757308 1.04424i
\(476\) 326.521i 0.685968i
\(477\) 0 0
\(478\) 47.0712i 0.0984753i
\(479\) 321.546i 0.671287i −0.941989 0.335643i \(-0.891046\pi\)
0.941989 0.335643i \(-0.108954\pi\)
\(480\) 0 0
\(481\) −12.9561 −0.0269357
\(482\) 169.992 0.352680
\(483\) 0 0
\(484\) 35.4502 0.0732442
\(485\) 353.351 + 692.751i 0.728559 + 1.42835i
\(486\) 0 0
\(487\) 59.1900i 0.121540i 0.998152 + 0.0607700i \(0.0193556\pi\)
−0.998152 + 0.0607700i \(0.980644\pi\)
\(488\) 331.032 0.678344
\(489\) 0 0
\(490\) −119.133 + 60.7663i −0.243129 + 0.124013i
\(491\) 139.798i 0.284721i 0.989815 + 0.142360i \(0.0454692\pi\)
−0.989815 + 0.142360i \(0.954531\pi\)
\(492\) 0 0
\(493\) 275.986i 0.559809i
\(494\) 17.3971i 0.0352168i
\(495\) 0 0
\(496\) −190.304 −0.383678
\(497\) −28.0857 −0.0565106
\(498\) 0 0
\(499\) −800.429 −1.60407 −0.802033 0.597280i \(-0.796248\pi\)
−0.802033 + 0.597280i \(0.796248\pi\)
\(500\) 62.5027 397.965i 0.125005 0.795930i
\(501\) 0 0
\(502\) 131.246i 0.261447i
\(503\) −951.201 −1.89106 −0.945528 0.325541i \(-0.894454\pi\)
−0.945528 + 0.325541i \(0.894454\pi\)
\(504\) 0 0
\(505\) −138.248 271.038i −0.273759 0.536710i
\(506\) 28.3293i 0.0559868i
\(507\) 0 0
\(508\) 642.259i 1.26429i
\(509\) 70.3645i 0.138241i −0.997608 0.0691203i \(-0.977981\pi\)
0.997608 0.0691203i \(-0.0220192\pi\)
\(510\) 0 0
\(511\) −210.845 −0.412613
\(512\) 417.393 0.815222
\(513\) 0 0
\(514\) 386.129 0.751223
\(515\) −376.467 738.070i −0.731005 1.43315i
\(516\) 0 0
\(517\) 171.657i 0.332024i
\(518\) −61.2852 −0.118311
\(519\) 0 0
\(520\) −11.6477 22.8355i −0.0223994 0.0439144i
\(521\) 211.223i 0.405419i 0.979239 + 0.202710i \(0.0649747\pi\)
−0.979239 + 0.202710i \(0.935025\pi\)
\(522\) 0 0
\(523\) 929.551i 1.77734i 0.458543 + 0.888672i \(0.348371\pi\)
−0.458543 + 0.888672i \(0.651629\pi\)
\(524\) 56.3527i 0.107543i
\(525\) 0 0
\(526\) −239.782 −0.455859
\(527\) −613.346 −1.16384
\(528\) 0 0
\(529\) −435.132 −0.822556
\(530\) −157.047 + 80.1052i −0.296316 + 0.151142i
\(531\) 0 0
\(532\) 341.210i 0.641373i
\(533\) 58.2595 0.109305
\(534\) 0 0
\(535\) −173.098 + 88.2920i −0.323547 + 0.165032i
\(536\) 509.815i 0.951147i
\(537\) 0 0
\(538\) 52.7869i 0.0981169i
\(539\) 100.622i 0.186682i
\(540\) 0 0
\(541\) −161.592 −0.298691 −0.149346 0.988785i \(-0.547717\pi\)
−0.149346 + 0.988785i \(0.547717\pi\)
\(542\) 95.2091 0.175663
\(543\) 0 0
\(544\) 747.859 1.37474
\(545\) 14.8658 7.58258i 0.0272766 0.0139130i
\(546\) 0 0
\(547\) 32.3116i 0.0590706i 0.999564 + 0.0295353i \(0.00940274\pi\)
−0.999564 + 0.0295353i \(0.990597\pi\)
\(548\) −478.482 −0.873143
\(549\) 0 0
\(550\) 59.1764 + 42.9160i 0.107593 + 0.0780292i
\(551\) 288.402i 0.523415i
\(552\) 0 0
\(553\) 284.249i 0.514013i
\(554\) 371.246i 0.670118i
\(555\) 0 0
\(556\) −384.385 −0.691340
\(557\) −742.165 −1.33243 −0.666216 0.745759i \(-0.732087\pi\)
−0.666216 + 0.745759i \(0.732087\pi\)
\(558\) 0 0
\(559\) −36.0013 −0.0644031
\(560\) 71.4189 + 140.018i 0.127534 + 0.250032i
\(561\) 0 0
\(562\) 420.680i 0.748541i
\(563\) −944.546 −1.67770 −0.838851 0.544361i \(-0.816772\pi\)
−0.838851 + 0.544361i \(0.816772\pi\)
\(564\) 0 0
\(565\) 36.6768 18.7078i 0.0649148 0.0331111i
\(566\) 430.206i 0.760082i
\(567\) 0 0
\(568\) 41.3998i 0.0728870i
\(569\) 764.699i 1.34393i 0.740581 + 0.671967i \(0.234551\pi\)
−0.740581 + 0.671967i \(0.765449\pi\)
\(570\) 0 0
\(571\) 199.849 0.349999 0.174999 0.984569i \(-0.444008\pi\)
0.174999 + 0.984569i \(0.444008\pi\)
\(572\) −8.60585 −0.0150452
\(573\) 0 0
\(574\) 275.581 0.480106
\(575\) 142.200 196.078i 0.247305 0.341005i
\(576\) 0 0
\(577\) 266.197i 0.461347i −0.973031 0.230674i \(-0.925907\pi\)
0.973031 0.230674i \(-0.0740930\pi\)
\(578\) 230.174 0.398225
\(579\) 0 0
\(580\) −86.1558 168.910i −0.148544 0.291224i
\(581\) 234.134i 0.402984i
\(582\) 0 0
\(583\) 132.645i 0.227521i
\(584\) 310.796i 0.532185i
\(585\) 0 0
\(586\) 161.358 0.275356
\(587\) 734.572 1.25140 0.625700 0.780064i \(-0.284813\pi\)
0.625700 + 0.780064i \(0.284813\pi\)
\(588\) 0 0
\(589\) −640.939 −1.08818
\(590\) −145.498 285.251i −0.246607 0.483476i
\(591\) 0 0
\(592\) 117.100i 0.197805i
\(593\) −204.161 −0.344285 −0.172143 0.985072i \(-0.555069\pi\)
−0.172143 + 0.985072i \(0.555069\pi\)
\(594\) 0 0
\(595\) 230.181 + 451.274i 0.386859 + 0.758443i
\(596\) 231.033i 0.387638i
\(597\) 0 0
\(598\) 6.87720i 0.0115003i
\(599\) 811.743i 1.35516i 0.735447 + 0.677582i \(0.236972\pi\)
−0.735447 + 0.677582i \(0.763028\pi\)
\(600\) 0 0
\(601\) 614.601 1.02263 0.511316 0.859393i \(-0.329158\pi\)
0.511316 + 0.859393i \(0.329158\pi\)
\(602\) −170.295 −0.282881
\(603\) 0 0
\(604\) −544.362 −0.901262
\(605\) 48.9946 24.9907i 0.0809828 0.0413069i
\(606\) 0 0
\(607\) 382.001i 0.629327i 0.949203 + 0.314663i \(0.101892\pi\)
−0.949203 + 0.314663i \(0.898108\pi\)
\(608\) 781.504 1.28537
\(609\) 0 0
\(610\) 204.137 104.124i 0.334651 0.170696i
\(611\) 41.6712i 0.0682016i
\(612\) 0 0
\(613\) 35.8793i 0.0585306i −0.999572 0.0292653i \(-0.990683\pi\)
0.999572 0.0292653i \(-0.00931676\pi\)
\(614\) 55.8076i 0.0908918i
\(615\) 0 0
\(616\) −91.2330 −0.148106
\(617\) 41.8557 0.0678375 0.0339187 0.999425i \(-0.489201\pi\)
0.0339187 + 0.999425i \(0.489201\pi\)
\(618\) 0 0
\(619\) −969.366 −1.56602 −0.783010 0.622010i \(-0.786316\pi\)
−0.783010 + 0.622010i \(0.786316\pi\)
\(620\) −375.382 + 191.471i −0.605455 + 0.308824i
\(621\) 0 0
\(622\) 507.917i 0.816587i
\(623\) −636.895 −1.02230
\(624\) 0 0
\(625\) −194.163 594.076i −0.310660 0.950521i
\(626\) 52.4963i 0.0838600i
\(627\) 0 0
\(628\) 590.573i 0.940403i
\(629\) 377.411i 0.600018i
\(630\) 0 0
\(631\) −405.690 −0.642933 −0.321466 0.946921i \(-0.604176\pi\)
−0.321466 + 0.946921i \(0.604176\pi\)
\(632\) −418.998 −0.662971
\(633\) 0 0
\(634\) −302.339 −0.476876
\(635\) −452.761 887.645i −0.713009 1.39787i
\(636\) 0 0
\(637\) 24.4268i 0.0383467i
\(638\) 34.4074 0.0539301
\(639\) 0 0
\(640\) 572.009 291.765i 0.893765 0.455882i
\(641\) 775.204i 1.20937i −0.796466 0.604683i \(-0.793300\pi\)
0.796466 0.604683i \(-0.206700\pi\)
\(642\) 0 0
\(643\) 1105.14i 1.71872i 0.511369 + 0.859361i \(0.329138\pi\)
−0.511369 + 0.859361i \(0.670862\pi\)
\(644\) 134.883i 0.209445i
\(645\) 0 0
\(646\) 506.780 0.784489
\(647\) −471.466 −0.728695 −0.364348 0.931263i \(-0.618708\pi\)
−0.364348 + 0.931263i \(0.618708\pi\)
\(648\) 0 0
\(649\) −240.928 −0.371229
\(650\) −14.3656 10.4182i −0.0221009 0.0160281i
\(651\) 0 0
\(652\) 324.274i 0.497352i
\(653\) −720.386 −1.10320 −0.551598 0.834110i \(-0.685982\pi\)
−0.551598 + 0.834110i \(0.685982\pi\)
\(654\) 0 0
\(655\) 39.7259 + 77.8832i 0.0606502 + 0.118906i
\(656\) 526.565i 0.802690i
\(657\) 0 0
\(658\) 197.114i 0.299566i
\(659\) 111.043i 0.168503i 0.996445 + 0.0842514i \(0.0268499\pi\)
−0.996445 + 0.0842514i \(0.973150\pi\)
\(660\) 0 0
\(661\) 627.984 0.950051 0.475025 0.879972i \(-0.342439\pi\)
0.475025 + 0.879972i \(0.342439\pi\)
\(662\) −364.708 −0.550918
\(663\) 0 0
\(664\) −345.125 −0.519766
\(665\) 240.537 + 471.576i 0.361709 + 0.709136i
\(666\) 0 0
\(667\) 114.007i 0.170925i
\(668\) 692.306 1.03639
\(669\) 0 0
\(670\) 160.360 + 314.388i 0.239343 + 0.469235i
\(671\) 172.418i 0.256956i
\(672\) 0 0
\(673\) 83.2679i 0.123726i −0.998085 0.0618632i \(-0.980296\pi\)
0.998085 0.0618632i \(-0.0197043\pi\)
\(674\) 533.962i 0.792228i
\(675\) 0 0
\(676\) −542.555 −0.802596
\(677\) −305.320 −0.450990 −0.225495 0.974244i \(-0.572400\pi\)
−0.225495 + 0.974244i \(0.572400\pi\)
\(678\) 0 0
\(679\) −671.883 −0.989518
\(680\) 665.200 339.299i 0.978235 0.498968i
\(681\) 0 0
\(682\) 76.4663i 0.112121i
\(683\) −377.711 −0.553017 −0.276508 0.961011i \(-0.589177\pi\)
−0.276508 + 0.961011i \(0.589177\pi\)
\(684\) 0 0
\(685\) −661.295 + 337.306i −0.965393 + 0.492418i
\(686\) 302.161i 0.440468i
\(687\) 0 0
\(688\) 325.390i 0.472950i
\(689\) 32.2007i 0.0467354i
\(690\) 0 0
\(691\) 662.708 0.959057 0.479528 0.877526i \(-0.340808\pi\)
0.479528 + 0.877526i \(0.340808\pi\)
\(692\) 462.534 0.668402
\(693\) 0 0
\(694\) −315.394 −0.454459
\(695\) −531.246 + 270.972i −0.764382 + 0.389888i
\(696\) 0 0
\(697\) 1697.10i 2.43487i
\(698\) 258.703 0.370634
\(699\) 0 0
\(700\) 281.753 + 204.333i 0.402504 + 0.291905i
\(701\) 491.514i 0.701162i −0.936532 0.350581i \(-0.885984\pi\)
0.936532 0.350581i \(-0.114016\pi\)
\(702\) 0 0
\(703\) 394.391i 0.561011i
\(704\) 3.30494i 0.00469452i
\(705\) 0 0
\(706\) 493.734 0.699340
\(707\) 262.874 0.371816
\(708\) 0 0
\(709\) −990.345 −1.39682 −0.698410 0.715698i \(-0.746109\pi\)
−0.698410 + 0.715698i \(0.746109\pi\)
\(710\) 13.0221 + 25.5300i 0.0183410 + 0.0359578i
\(711\) 0 0
\(712\) 938.815i 1.31856i
\(713\) −253.367 −0.355354
\(714\) 0 0
\(715\) −11.8939 + 6.06670i −0.0166348 + 0.00848490i
\(716\) 425.879i 0.594803i
\(717\) 0 0
\(718\) 191.428i 0.266613i
\(719\) 740.697i 1.03018i 0.857137 + 0.515088i \(0.172241\pi\)
−0.857137 + 0.515088i \(0.827759\pi\)
\(720\) 0 0
\(721\) 715.837 0.992839
\(722\) 211.314 0.292678
\(723\) 0 0
\(724\) 800.514 1.10568
\(725\) −238.146 172.709i −0.328477 0.238219i
\(726\) 0 0
\(727\) 1038.96i 1.42910i −0.699582 0.714552i \(-0.746630\pi\)
0.699582 0.714552i \(-0.253370\pi\)
\(728\) 22.1476 0.0304226
\(729\) 0 0
\(730\) 97.7593 + 191.659i 0.133917 + 0.262546i
\(731\) 1048.72i 1.43464i
\(732\) 0 0
\(733\) 653.980i 0.892196i −0.894984 0.446098i \(-0.852813\pi\)
0.894984 0.446098i \(-0.147187\pi\)
\(734\) 482.687i 0.657612i
\(735\) 0 0
\(736\) 308.934 0.419747
\(737\) 265.537 0.360294
\(738\) 0 0
\(739\) −1190.97 −1.61160 −0.805799 0.592189i \(-0.798264\pi\)
−0.805799 + 0.592189i \(0.798264\pi\)
\(740\) −117.818 230.985i −0.159214 0.312141i
\(741\) 0 0
\(742\) 152.317i 0.205279i
\(743\) 210.179 0.282879 0.141439 0.989947i \(-0.454827\pi\)
0.141439 + 0.989947i \(0.454827\pi\)
\(744\) 0 0
\(745\) −162.867 319.303i −0.218613 0.428594i
\(746\) 407.604i 0.546386i
\(747\) 0 0
\(748\) 250.689i 0.335146i
\(749\) 167.884i 0.224144i
\(750\) 0 0
\(751\) 145.894 0.194266 0.0971331 0.995271i \(-0.469033\pi\)
0.0971331 + 0.995271i \(0.469033\pi\)
\(752\) 376.635 0.500844
\(753\) 0 0
\(754\) −8.35269 −0.0110778
\(755\) −752.345 + 383.749i −0.996483 + 0.508276i
\(756\) 0 0
\(757\) 630.188i 0.832480i −0.909255 0.416240i \(-0.863348\pi\)
0.909255 0.416240i \(-0.136652\pi\)
\(758\) 93.1473 0.122886
\(759\) 0 0
\(760\) 695.126 354.563i 0.914640 0.466530i
\(761\) 711.376i 0.934790i −0.884048 0.467395i \(-0.845193\pi\)
0.884048 0.467395i \(-0.154807\pi\)
\(762\) 0 0
\(763\) 14.4180i 0.0188964i
\(764\) 594.488i 0.778126i
\(765\) 0 0
\(766\) 40.3839 0.0527205
\(767\) 58.4873 0.0762546
\(768\) 0 0
\(769\) −732.462 −0.952486 −0.476243 0.879314i \(-0.658002\pi\)
−0.476243 + 0.879314i \(0.658002\pi\)
\(770\) −56.2607 + 28.6969i −0.0730658 + 0.0372687i
\(771\) 0 0
\(772\) 782.721i 1.01389i
\(773\) 573.547 0.741975 0.370988 0.928638i \(-0.379019\pi\)
0.370988 + 0.928638i \(0.379019\pi\)
\(774\) 0 0
\(775\) −383.825 + 529.252i −0.495259 + 0.682905i
\(776\) 990.389i 1.27627i
\(777\) 0 0
\(778\) 341.750i 0.439268i
\(779\) 1773.45i 2.27658i
\(780\) 0 0
\(781\) 21.5631 0.0276096
\(782\) 200.333 0.256181
\(783\) 0 0
\(784\) 220.776 0.281602
\(785\) 416.325 + 816.212i 0.530350 + 1.03976i
\(786\) 0 0
\(787\) 569.340i 0.723430i −0.932289 0.361715i \(-0.882191\pi\)
0.932289 0.361715i \(-0.117809\pi\)
\(788\) −370.796 −0.470554
\(789\) 0 0
\(790\) −258.383 + 131.794i −0.327067 + 0.166827i
\(791\) 35.5720i 0.0449709i
\(792\) 0 0
\(793\) 41.8559i 0.0527817i
\(794\) 493.698i 0.621786i
\(795\) 0 0
\(796\) 213.434 0.268134
\(797\) 525.152 0.658911 0.329456 0.944171i \(-0.393135\pi\)
0.329456 + 0.944171i \(0.393135\pi\)
\(798\) 0 0
\(799\) 1213.88 1.51925
\(800\) 468.003 645.323i 0.585003 0.806653i
\(801\) 0 0
\(802\) 178.659i 0.222767i
\(803\) 161.878 0.201592
\(804\) 0 0
\(805\) 95.0857 + 186.417i 0.118119 + 0.231574i
\(806\) 18.5629i 0.0230309i
\(807\) 0 0
\(808\) 387.489i 0.479566i
\(809\) 55.7383i 0.0688978i 0.999406 + 0.0344489i \(0.0109676\pi\)
−0.999406 + 0.0344489i \(0.989032\pi\)
\(810\) 0 0
\(811\) 466.175 0.574816 0.287408 0.957808i \(-0.407207\pi\)
0.287408 + 0.957808i \(0.407207\pi\)
\(812\) 163.822 0.201751
\(813\) 0 0
\(814\) 47.0522 0.0578037
\(815\) −228.597 448.168i −0.280487 0.549899i
\(816\) 0 0
\(817\) 1095.90i 1.34137i
\(818\) 334.905 0.409419
\(819\) 0 0
\(820\) 529.793 + 1038.67i 0.646089 + 1.26667i
\(821\) 48.0796i 0.0585622i 0.999571 + 0.0292811i \(0.00932180\pi\)
−0.999571 + 0.0292811i \(0.990678\pi\)
\(822\) 0 0
\(823\) 442.369i 0.537508i 0.963209 + 0.268754i \(0.0866119\pi\)
−0.963209 + 0.268754i \(0.913388\pi\)
\(824\) 1055.18i 1.28056i
\(825\) 0 0
\(826\) 276.658 0.334937
\(827\) 504.480 0.610012 0.305006 0.952350i \(-0.401341\pi\)
0.305006 + 0.952350i \(0.401341\pi\)
\(828\) 0 0
\(829\) 754.176 0.909742 0.454871 0.890557i \(-0.349685\pi\)
0.454871 + 0.890557i \(0.349685\pi\)
\(830\) −212.828 + 108.557i −0.256420 + 0.130792i
\(831\) 0 0
\(832\) 0.802303i 0.000964306i
\(833\) 711.556 0.854209
\(834\) 0 0
\(835\) 956.813 488.042i 1.14588 0.584481i
\(836\) 261.967i 0.313358i
\(837\) 0 0
\(838\) 435.194i 0.519325i
\(839\) 84.1954i 0.100352i −0.998740 0.0501760i \(-0.984022\pi\)
0.998740 0.0501760i \(-0.0159782\pi\)
\(840\) 0 0
\(841\) 702.533 0.835354
\(842\) 595.735 0.707524
\(843\) 0 0
\(844\) −715.820 −0.848128
\(845\) −749.847 + 382.475i −0.887393 + 0.452633i
\(846\) 0 0
\(847\) 47.5187i 0.0561023i
\(848\) 291.038 0.343206
\(849\) 0 0
\(850\) 303.484 418.471i 0.357040 0.492318i
\(851\) 155.905i 0.183202i
\(852\) 0 0
\(853\) 616.420i 0.722650i 0.932440 + 0.361325i \(0.117676\pi\)
−0.932440 + 0.361325i \(0.882324\pi\)
\(854\) 197.988i 0.231836i
\(855\) 0 0
\(856\) −247.469 −0.289099
\(857\) 1479.76 1.72668 0.863338 0.504626i \(-0.168370\pi\)
0.863338 + 0.504626i \(0.168370\pi\)
\(858\) 0 0
\(859\) −1415.85 −1.64825 −0.824127 0.566405i \(-0.808334\pi\)
−0.824127 + 0.566405i \(0.808334\pi\)
\(860\) −327.384 641.842i −0.380680 0.746328i
\(861\) 0 0
\(862\) 579.144i 0.671861i
\(863\) 371.205 0.430133 0.215067 0.976599i \(-0.431003\pi\)
0.215067 + 0.976599i \(0.431003\pi\)
\(864\) 0 0
\(865\) 639.254 326.064i 0.739022 0.376953i
\(866\) 677.013i 0.781770i
\(867\) 0 0
\(868\) 364.074i 0.419440i
\(869\) 218.235i 0.251133i
\(870\) 0 0
\(871\) −64.4614 −0.0740085
\(872\) 21.2528 0.0243725
\(873\) 0 0
\(874\) 209.346 0.239526
\(875\) 533.446 + 83.7808i 0.609653 + 0.0957495i
\(876\) 0 0
\(877\) 741.354i 0.845330i −0.906286 0.422665i \(-0.861095\pi\)
0.906286 0.422665i \(-0.138905\pi\)
\(878\) 195.379 0.222528
\(879\) 0 0
\(880\) −54.8324 107.500i −0.0623096 0.122159i
\(881\) 685.220i 0.777776i 0.921285 + 0.388888i \(0.127141\pi\)
−0.921285 + 0.388888i \(0.872859\pi\)
\(882\) 0 0
\(883\) 1053.40i 1.19298i −0.802622 0.596488i \(-0.796562\pi\)
0.802622 0.596488i \(-0.203438\pi\)
\(884\) 60.8570i 0.0688427i
\(885\) 0 0
\(886\) −621.745 −0.701744
\(887\) −390.220 −0.439932 −0.219966 0.975508i \(-0.570595\pi\)
−0.219966 + 0.975508i \(0.570595\pi\)
\(888\) 0 0
\(889\) 860.906 0.968398
\(890\) 295.300 + 578.939i 0.331797 + 0.650494i
\(891\) 0 0
\(892\) 267.104i 0.299443i
\(893\) 1268.50 1.42049
\(894\) 0 0
\(895\) 300.224 + 588.593i 0.335446 + 0.657646i
\(896\) 554.779i 0.619172i
\(897\) 0 0
\(898\) 185.156i 0.206187i
\(899\) 307.727i 0.342299i
\(900\) 0 0
\(901\) 938.009 1.04108
\(902\) −211.579 −0.234567
\(903\) 0 0
\(904\) 52.4349 0.0580032
\(905\) 1106.36 564.323i 1.22250 0.623561i
\(906\) 0 0
\(907\) 414.594i 0.457105i 0.973532 + 0.228553i \(0.0733993\pi\)
−0.973532 + 0.228553i \(0.926601\pi\)
\(908\) 122.753 0.135191
\(909\) 0 0
\(910\) 13.6578 6.96642i 0.0150085 0.00765541i
\(911\) 717.772i 0.787895i −0.919133 0.393947i \(-0.871109\pi\)
0.919133 0.393947i \(-0.128891\pi\)
\(912\) 0 0
\(913\) 179.758i 0.196887i
\(914\) 125.269i 0.137056i
\(915\) 0 0
\(916\) −1069.14 −1.16718
\(917\) −75.5371 −0.0823742
\(918\) 0 0
\(919\) −1719.54 −1.87110 −0.935548 0.353199i \(-0.885094\pi\)
−0.935548 + 0.353199i \(0.885094\pi\)
\(920\) 274.788 140.161i 0.298682 0.152349i
\(921\) 0 0
\(922\) 220.101i 0.238722i
\(923\) −5.23462 −0.00567132
\(924\) 0 0
\(925\) −325.666 236.180i −0.352071 0.255330i
\(926\) 155.945i 0.168408i
\(927\) 0 0
\(928\) 375.215i 0.404327i
\(929\) 744.595i 0.801502i 0.916187 + 0.400751i \(0.131251\pi\)
−0.916187 + 0.400751i \(0.868749\pi\)
\(930\) 0 0
\(931\) 743.568 0.798676
\(932\) 384.332 0.412373
\(933\) 0 0
\(934\) −489.657 −0.524258
\(935\) −176.724 346.469i −0.189009 0.370555i
\(936\) 0 0
\(937\) 1420.79i 1.51631i −0.652072 0.758157i \(-0.726100\pi\)
0.652072 0.758157i \(-0.273900\pi\)
\(938\) −304.917 −0.325072
\(939\) 0 0
\(940\) 742.926 378.944i 0.790347 0.403132i
\(941\) 448.376i 0.476489i 0.971205 + 0.238245i \(0.0765720\pi\)
−0.971205 + 0.238245i \(0.923428\pi\)
\(942\) 0 0
\(943\) 701.057i 0.743433i
\(944\) 528.623i 0.559982i
\(945\) 0 0
\(946\) 130.745 0.138208
\(947\) −1062.83 −1.12231 −0.561154 0.827711i \(-0.689643\pi\)
−0.561154 + 0.827711i \(0.689643\pi\)
\(948\) 0 0
\(949\) −39.2973 −0.0414092
\(950\) 317.138 437.297i 0.333829 0.460312i
\(951\) 0 0
\(952\) 645.162i 0.677691i
\(953\) −425.667 −0.446661 −0.223330 0.974743i \(-0.571693\pi\)
−0.223330 + 0.974743i \(0.571693\pi\)
\(954\) 0 0
\(955\) 419.085 + 821.623i 0.438832 + 0.860338i
\(956\) 172.068i 0.179987i
\(957\) 0 0
\(958\) 283.482i 0.295910i
\(959\) 641.374i 0.668795i
\(960\) 0 0
\(961\) −277.113 −0.288359
\(962\) −11.4223 −0.0118735
\(963\) 0 0
\(964\) −621.401 −0.644607
\(965\) −551.780 1081.77i −0.571793 1.12101i
\(966\) 0 0
\(967\) 1846.11i 1.90911i 0.298030 + 0.954557i \(0.403670\pi\)
−0.298030 + 0.954557i \(0.596330\pi\)
\(968\) 70.0449 0.0723605
\(969\) 0 0
\(970\) 311.522 + 610.743i 0.321157 + 0.629632i
\(971\) 745.297i 0.767556i −0.923425 0.383778i \(-0.874623\pi\)
0.923425 0.383778i \(-0.125377\pi\)
\(972\) 0 0
\(973\) 515.243i 0.529541i
\(974\) 52.1831i 0.0535761i
\(975\) 0 0
\(976\) −378.305 −0.387608
\(977\) 780.193 0.798559 0.399280 0.916829i \(-0.369260\pi\)
0.399280 + 0.916829i \(0.369260\pi\)
\(978\) 0 0
\(979\) 488.982 0.499471
\(980\) 435.489 222.130i 0.444376 0.226663i
\(981\) 0 0
\(982\) 123.249i 0.125508i
\(983\) 58.9362 0.0599555 0.0299777 0.999551i \(-0.490456\pi\)
0.0299777 + 0.999551i \(0.490456\pi\)
\(984\) 0 0
\(985\) −512.466 + 261.393i −0.520270 + 0.265374i
\(986\) 243.315i 0.246769i
\(987\) 0 0
\(988\) 63.5948i 0.0643672i
\(989\) 433.217i 0.438035i
\(990\) 0 0
\(991\) 1627.29 1.64207 0.821034 0.570880i \(-0.193398\pi\)
0.821034 + 0.570880i \(0.193398\pi\)
\(992\) −833.871 −0.840596
\(993\) 0 0
\(994\) −24.7610 −0.0249104
\(995\) 294.981 150.461i 0.296463 0.151217i
\(996\) 0 0
\(997\) 439.025i 0.440346i 0.975461 + 0.220173i \(0.0706623\pi\)
−0.975461 + 0.220173i \(0.929338\pi\)
\(998\) −705.675 −0.707089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.g.a.89.25 yes 40
3.2 odd 2 inner 495.3.g.a.89.15 40
5.4 even 2 inner 495.3.g.a.89.16 yes 40
15.14 odd 2 inner 495.3.g.a.89.26 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.3.g.a.89.15 40 3.2 odd 2 inner
495.3.g.a.89.16 yes 40 5.4 even 2 inner
495.3.g.a.89.25 yes 40 1.1 even 1 trivial
495.3.g.a.89.26 yes 40 15.14 odd 2 inner