L(s) = 1 | + 0.881·2-s − 3.22·4-s + (−4.45 + 2.27i)5-s − 4.31i·7-s − 6.36·8-s + (−3.92 + 2.00i)10-s + 3.31i·11-s − 0.805i·13-s − 3.80i·14-s + 7.27·16-s + 23.4·17-s + 24.5·19-s + (14.3 − 7.32i)20-s + 2.92i·22-s + 9.68·23-s + ⋯ |
L(s) = 1 | + 0.440·2-s − 0.805·4-s + (−0.890 + 0.454i)5-s − 0.617i·7-s − 0.795·8-s + (−0.392 + 0.200i)10-s + 0.301i·11-s − 0.0619i·13-s − 0.272i·14-s + 0.454·16-s + 1.37·17-s + 1.28·19-s + (0.717 − 0.366i)20-s + 0.132i·22-s + 0.421·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.143i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.989 + 0.143i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.409902682\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.409902682\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (4.45 - 2.27i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 2 | \( 1 - 0.881T + 4T^{2} \) |
| 7 | \( 1 + 4.31iT - 49T^{2} \) |
| 13 | \( 1 + 0.805iT - 169T^{2} \) |
| 17 | \( 1 - 23.4T + 289T^{2} \) |
| 19 | \( 1 - 24.5T + 361T^{2} \) |
| 23 | \( 1 - 9.68T + 529T^{2} \) |
| 29 | \( 1 + 11.7iT - 841T^{2} \) |
| 31 | \( 1 + 26.1T + 961T^{2} \) |
| 37 | \( 1 + 16.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 72.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 44.7iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 51.7T + 2.20e3T^{2} \) |
| 53 | \( 1 - 39.9T + 2.80e3T^{2} \) |
| 59 | \( 1 - 72.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 51.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + 80.0iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 6.50iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 48.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 65.8T + 6.24e3T^{2} \) |
| 83 | \( 1 - 54.1T + 6.88e3T^{2} \) |
| 89 | \( 1 + 147. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 155. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69055592505958913427638175397, −9.886511713332852702613971723457, −8.960711382530115928385766785031, −7.77836823583007521573681024805, −7.30139975394540775082766388348, −5.87893604286603195107733698542, −4.86508204900991339725604341141, −3.85589523002169534840032736930, −3.12474686615086265660937045730, −0.78041274026352000394021776153,
0.889287789859818761146187371930, 3.11580566497311989732225271650, 3.92041301257513061001243232685, 5.17578639042284097535228492224, 5.63187236144744748103967702390, 7.24995844973887116556743073569, 8.144147175624898599116399490027, 8.965455042766787509636276446378, 9.638875790193559226534733821206, 10.89742325556579902897695995016