Newspace parameters
Level: | \( N \) | \(=\) | \( 494 = 2 \cdot 13 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 494.h (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.94460985985\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
315.1 | 1.00000 | −2.68823 | 1.00000 | −1.17933 | + | 2.04265i | −2.68823 | −0.535524 | + | 0.927555i | 1.00000 | 4.22658 | −1.17933 | + | 2.04265i | ||||||||||||
315.2 | 1.00000 | −2.31319 | 1.00000 | 0.965984 | − | 1.67313i | −2.31319 | −2.34460 | + | 4.06096i | 1.00000 | 2.35083 | 0.965984 | − | 1.67313i | ||||||||||||
315.3 | 1.00000 | −2.03309 | 1.00000 | −0.408503 | + | 0.707549i | −2.03309 | 1.37607 | − | 2.38343i | 1.00000 | 1.13347 | −0.408503 | + | 0.707549i | ||||||||||||
315.4 | 1.00000 | −1.38760 | 1.00000 | 1.40461 | − | 2.43285i | −1.38760 | 1.16976 | − | 2.02609i | 1.00000 | −1.07457 | 1.40461 | − | 2.43285i | ||||||||||||
315.5 | 1.00000 | −0.950705 | 1.00000 | −0.586201 | + | 1.01533i | −0.950705 | −1.23430 | + | 2.13788i | 1.00000 | −2.09616 | −0.586201 | + | 1.01533i | ||||||||||||
315.6 | 1.00000 | 0.403363 | 1.00000 | −2.03730 | + | 3.52871i | 0.403363 | −0.716626 | + | 1.24123i | 1.00000 | −2.83730 | −2.03730 | + | 3.52871i | ||||||||||||
315.7 | 1.00000 | 0.831715 | 1.00000 | 0.104192 | − | 0.180466i | 0.831715 | 1.81134 | − | 3.13733i | 1.00000 | −2.30825 | 0.104192 | − | 0.180466i | ||||||||||||
315.8 | 1.00000 | 1.40196 | 1.00000 | 2.07009 | − | 3.58550i | 1.40196 | −1.49255 | + | 2.58517i | 1.00000 | −1.03450 | 2.07009 | − | 3.58550i | ||||||||||||
315.9 | 1.00000 | 1.68589 | 1.00000 | 0.731502 | − | 1.26700i | 1.68589 | 0.461554 | − | 0.799435i | 1.00000 | −0.157773 | 0.731502 | − | 1.26700i | ||||||||||||
315.10 | 1.00000 | 2.37163 | 1.00000 | −0.834227 | + | 1.44492i | 2.37163 | 1.15324 | − | 1.99746i | 1.00000 | 2.62465 | −0.834227 | + | 1.44492i | ||||||||||||
315.11 | 1.00000 | 2.67825 | 1.00000 | −1.23081 | + | 2.13183i | 2.67825 | −2.14836 | + | 3.72108i | 1.00000 | 4.17302 | −1.23081 | + | 2.13183i | ||||||||||||
425.1 | 1.00000 | −2.68823 | 1.00000 | −1.17933 | − | 2.04265i | −2.68823 | −0.535524 | − | 0.927555i | 1.00000 | 4.22658 | −1.17933 | − | 2.04265i | ||||||||||||
425.2 | 1.00000 | −2.31319 | 1.00000 | 0.965984 | + | 1.67313i | −2.31319 | −2.34460 | − | 4.06096i | 1.00000 | 2.35083 | 0.965984 | + | 1.67313i | ||||||||||||
425.3 | 1.00000 | −2.03309 | 1.00000 | −0.408503 | − | 0.707549i | −2.03309 | 1.37607 | + | 2.38343i | 1.00000 | 1.13347 | −0.408503 | − | 0.707549i | ||||||||||||
425.4 | 1.00000 | −1.38760 | 1.00000 | 1.40461 | + | 2.43285i | −1.38760 | 1.16976 | + | 2.02609i | 1.00000 | −1.07457 | 1.40461 | + | 2.43285i | ||||||||||||
425.5 | 1.00000 | −0.950705 | 1.00000 | −0.586201 | − | 1.01533i | −0.950705 | −1.23430 | − | 2.13788i | 1.00000 | −2.09616 | −0.586201 | − | 1.01533i | ||||||||||||
425.6 | 1.00000 | 0.403363 | 1.00000 | −2.03730 | − | 3.52871i | 0.403363 | −0.716626 | − | 1.24123i | 1.00000 | −2.83730 | −2.03730 | − | 3.52871i | ||||||||||||
425.7 | 1.00000 | 0.831715 | 1.00000 | 0.104192 | + | 0.180466i | 0.831715 | 1.81134 | + | 3.13733i | 1.00000 | −2.30825 | 0.104192 | + | 0.180466i | ||||||||||||
425.8 | 1.00000 | 1.40196 | 1.00000 | 2.07009 | + | 3.58550i | 1.40196 | −1.49255 | − | 2.58517i | 1.00000 | −1.03450 | 2.07009 | + | 3.58550i | ||||||||||||
425.9 | 1.00000 | 1.68589 | 1.00000 | 0.731502 | + | 1.26700i | 1.68589 | 0.461554 | + | 0.799435i | 1.00000 | −0.157773 | 0.731502 | + | 1.26700i | ||||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
247.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 494.2.h.d | yes | 22 |
13.c | even | 3 | 1 | 494.2.e.d | ✓ | 22 | |
19.c | even | 3 | 1 | 494.2.e.d | ✓ | 22 | |
247.h | even | 3 | 1 | inner | 494.2.h.d | yes | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
494.2.e.d | ✓ | 22 | 13.c | even | 3 | 1 | |
494.2.e.d | ✓ | 22 | 19.c | even | 3 | 1 | |
494.2.h.d | yes | 22 | 1.a | even | 1 | 1 | trivial |
494.2.h.d | yes | 22 | 247.h | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(494, [\chi])\):
\( T_{3}^{11} - 19T_{3}^{9} + T_{3}^{8} + 131T_{3}^{7} - 16T_{3}^{6} - 400T_{3}^{5} + 83T_{3}^{4} + 525T_{3}^{3} - 151T_{3}^{2} - 228T_{3} + 84 \)
|
\( T_{5}^{22} + 2 T_{5}^{21} + 34 T_{5}^{20} + 66 T_{5}^{19} + 760 T_{5}^{18} + 1429 T_{5}^{17} + \cdots + 67081 \)
|