L(s) = 1 | + 2-s + 2.37·3-s + 4-s + (−0.834 − 1.44i)5-s + 2.37·6-s + (1.15 + 1.99i)7-s + 8-s + 2.62·9-s + (−0.834 − 1.44i)10-s + (0.0489 − 0.0847i)11-s + 2.37·12-s + (−0.883 − 3.49i)13-s + (1.15 + 1.99i)14-s + (−1.97 − 3.42i)15-s + 16-s + (−1.26 + 2.18i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.36·3-s + 0.5·4-s + (−0.373 − 0.646i)5-s + 0.968·6-s + (0.435 + 0.754i)7-s + 0.353·8-s + 0.874·9-s + (−0.263 − 0.456i)10-s + (0.0147 − 0.0255i)11-s + 0.684·12-s + (−0.244 − 0.969i)13-s + (0.308 + 0.533i)14-s + (−0.510 − 0.884i)15-s + 0.250·16-s + (−0.305 + 0.529i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.133i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.133i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.08823 - 0.207492i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.08823 - 0.207492i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 13 | \( 1 + (0.883 + 3.49i)T \) |
| 19 | \( 1 + (3.53 - 2.54i)T \) |
good | 3 | \( 1 - 2.37T + 3T^{2} \) |
| 5 | \( 1 + (0.834 + 1.44i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.15 - 1.99i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.0489 + 0.0847i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.26 - 2.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.20 - 3.82i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.89 + 3.28i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.143T + 31T^{2} \) |
| 37 | \( 1 + (-2.73 + 4.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.98T + 41T^{2} \) |
| 43 | \( 1 + (2.70 - 4.68i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.57 - 11.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.07 + 3.58i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.49 - 9.51i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 12.9T + 61T^{2} \) |
| 67 | \( 1 + (7.39 + 12.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.848 + 1.46i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.54 - 2.67i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.855 + 1.48i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4.64T + 83T^{2} \) |
| 89 | \( 1 + (0.711 + 1.23i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.622 - 1.07i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07120229439180990396891294183, −9.917906515563037893084467364484, −8.879469792603028595709626470582, −8.226562143434313210012832355030, −7.63601125813820770084411577559, −6.13492330887687095883600881279, −5.07720092718183980411084346218, −4.02619783331948215076714504711, −2.99027406186285780833458871421, −1.89656918046273132882401016818,
2.02395181756533360664996628112, 3.09039097971270199386032595325, 4.01299235355226239184666179922, 4.91833333111003062082346378173, 6.79818635554785735981491672622, 7.11627649408527400359508235930, 8.242864703259298987218783641033, 9.019787603453488976662434468113, 10.15911980023526861596864125666, 11.07030962102419423871326772375