L(s) = 1 | + 2-s + 2.67·3-s + 4-s + (−1.23 + 2.13i)5-s + 2.67·6-s + (−2.14 + 3.72i)7-s + 8-s + 4.17·9-s + (−1.23 + 2.13i)10-s + (−0.741 − 1.28i)11-s + 2.67·12-s + (2.46 − 2.62i)13-s + (−2.14 + 3.72i)14-s + (−3.29 + 5.70i)15-s + 16-s + (−3.03 − 5.26i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.54·3-s + 0.5·4-s + (−0.550 + 0.953i)5-s + 1.09·6-s + (−0.812 + 1.40i)7-s + 0.353·8-s + 1.39·9-s + (−0.389 + 0.674i)10-s + (−0.223 − 0.387i)11-s + 0.773·12-s + (0.684 − 0.728i)13-s + (−0.574 + 0.994i)14-s + (−0.851 + 1.47i)15-s + 0.250·16-s + (−0.737 − 1.27i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.748 - 0.663i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.748 - 0.663i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.79411 + 1.05953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.79411 + 1.05953i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 13 | \( 1 + (-2.46 + 2.62i)T \) |
| 19 | \( 1 + (-3.87 + 1.99i)T \) |
good | 3 | \( 1 - 2.67T + 3T^{2} \) |
| 5 | \( 1 + (1.23 - 2.13i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.14 - 3.72i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.741 + 1.28i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.03 + 5.26i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (2.53 - 4.38i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.90 + 8.49i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.64T + 31T^{2} \) |
| 37 | \( 1 + (1.04 + 1.81i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.10T + 41T^{2} \) |
| 43 | \( 1 + (1.64 + 2.84i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.11 - 1.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.66 - 2.88i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.78 + 4.82i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 1.68T + 61T^{2} \) |
| 67 | \( 1 + (-3.12 + 5.41i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.18 - 7.24i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (8.24 - 14.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.83 - 3.17i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 11.1T + 83T^{2} \) |
| 89 | \( 1 + (0.0215 - 0.0373i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.28 - 16.0i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30181066702256275449400571601, −9.987959860603852568241033941250, −9.213057214802927664284643697047, −8.306261921614485181095977103646, −7.47790415286998029437035844651, −6.49239133254996044974478757312, −5.42449928936901211938798098164, −3.81351884886817614628423708535, −2.88752545169682151493715302193, −2.62592538667262379332331674019,
1.51611158421144071739880749631, 3.16543338677802272530103332075, 3.99939096937989874098471127052, 4.56163075311170218620277570688, 6.41186842164244180363383000787, 7.26735177784177588269020257836, 8.232805991081405261580855240293, 8.819077421546105808776068878717, 9.965789441111556273780661623297, 10.67837386251857701738686318971