gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
Newform invariants
sage: traces = [1,-4,23]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 23 T_{3} - 23 T 3 − 2 3
T3 - 23
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T − 23 T - 23 T − 2 3
T - 23
5 5 5
T + 25 T + 25 T + 2 5
T + 25
7 7 7
T T T
T
11 11 1 1
T − 555 T - 555 T − 5 5 5
T - 555
13 13 1 3
T − 241 T - 241 T − 2 4 1
T - 241
17 17 1 7
T − 1491 T - 1491 T − 1 4 9 1
T - 1491
19 19 1 9
T − 2038 T - 2038 T − 2 0 3 8
T - 2038
23 23 2 3
T + 1230 T + 1230 T + 1 2 3 0
T + 1230
29 29 2 9
T + 5001 T + 5001 T + 5 0 0 1
T + 5001
31 31 3 1
T + 5696 T + 5696 T + 5 6 9 6
T + 5696
37 37 3 7
T + 5602 T + 5602 T + 5 6 0 2
T + 5602
41 41 4 1
T − 2424 T - 2424 T − 2 4 2 4
T - 2424
43 43 4 3
T − 602 T - 602 T − 6 0 2
T - 602
47 47 4 7
T − 23163 T - 23163 T − 2 3 1 6 3
T - 23163
53 53 5 3
T + 25296 T + 25296 T + 2 5 2 9 6
T + 25296
59 59 5 9
T + 5724 T + 5724 T + 5 7 2 4
T + 5724
61 61 6 1
T − 36112 T - 36112 T − 3 6 1 1 2
T - 36112
67 67 6 7
T − 66104 T - 66104 T − 6 6 1 0 4
T - 66104
71 71 7 1
T − 16080 T - 16080 T − 1 6 0 8 0
T - 16080
73 73 7 3
T − 80482 T - 80482 T − 8 0 4 8 2
T - 80482
79 79 7 9
T + 64147 T + 64147 T + 6 4 1 4 7
T + 64147
83 83 8 3
T − 106284 T - 106284 T − 1 0 6 2 8 4
T - 106284
89 89 8 9
T − 71676 T - 71676 T − 7 1 6 7 6
T - 71676
97 97 9 7
T + 151025 T + 151025 T + 1 5 1 0 2 5
T + 151025
show more
show less