Properties

Label 490.6.a.i
Level 490490
Weight 66
Character orbit 490.a
Self dual yes
Analytic conductor 78.58878.588
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,6,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: N N == 490=2572 490 = 2 \cdot 5 \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 78.588071708478.5880717084
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 70)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4q2+23q3+16q425q592q664q8+286q9+100q10+555q11+368q12+241q13575q15+256q16+1491q171144q18+2038q19400q20++158730q99+O(q100) q - 4 q^{2} + 23 q^{3} + 16 q^{4} - 25 q^{5} - 92 q^{6} - 64 q^{8} + 286 q^{9} + 100 q^{10} + 555 q^{11} + 368 q^{12} + 241 q^{13} - 575 q^{15} + 256 q^{16} + 1491 q^{17} - 1144 q^{18} + 2038 q^{19} - 400 q^{20}+ \cdots + 158730 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 23.0000 16.0000 −25.0000 −92.0000 0 −64.0000 286.000 100.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.6.a.i 1
7.b odd 2 1 70.6.a.a 1
21.c even 2 1 630.6.a.j 1
28.d even 2 1 560.6.a.i 1
35.c odd 2 1 350.6.a.n 1
35.f even 4 2 350.6.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.a 1 7.b odd 2 1
350.6.a.n 1 35.c odd 2 1
350.6.c.h 2 35.f even 4 2
490.6.a.i 1 1.a even 1 1 trivial
560.6.a.i 1 28.d even 2 1
630.6.a.j 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T323 T_{3} - 23 acting on S6new(Γ0(490))S_{6}^{\mathrm{new}}(\Gamma_0(490)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T23 T - 23 Copy content Toggle raw display
55 T+25 T + 25 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T555 T - 555 Copy content Toggle raw display
1313 T241 T - 241 Copy content Toggle raw display
1717 T1491 T - 1491 Copy content Toggle raw display
1919 T2038 T - 2038 Copy content Toggle raw display
2323 T+1230 T + 1230 Copy content Toggle raw display
2929 T+5001 T + 5001 Copy content Toggle raw display
3131 T+5696 T + 5696 Copy content Toggle raw display
3737 T+5602 T + 5602 Copy content Toggle raw display
4141 T2424 T - 2424 Copy content Toggle raw display
4343 T602 T - 602 Copy content Toggle raw display
4747 T23163 T - 23163 Copy content Toggle raw display
5353 T+25296 T + 25296 Copy content Toggle raw display
5959 T+5724 T + 5724 Copy content Toggle raw display
6161 T36112 T - 36112 Copy content Toggle raw display
6767 T66104 T - 66104 Copy content Toggle raw display
7171 T16080 T - 16080 Copy content Toggle raw display
7373 T80482 T - 80482 Copy content Toggle raw display
7979 T+64147 T + 64147 Copy content Toggle raw display
8383 T106284 T - 106284 Copy content Toggle raw display
8989 T71676 T - 71676 Copy content Toggle raw display
9797 T+151025 T + 151025 Copy content Toggle raw display
show more
show less