gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,-4,-18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 + 18 T_{3} + 18 T 3 + 1 8
T3 + 18
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T + 18 T + 18 T + 1 8
T + 18
5 5 5
T − 25 T - 25 T − 2 5
T - 25
7 7 7
T T T
T
11 11 1 1
T + 505 T + 505 T + 5 0 5
T + 505
13 13 1 3
T + 897 T + 897 T + 8 9 7
T + 897
17 17 1 7
T + 782 T + 782 T + 7 8 2
T + 782
19 19 1 9
T − 1683 T - 1683 T − 1 6 8 3
T - 1683
23 23 2 3
T + 1371 T + 1371 T + 1 3 7 1
T + 1371
29 29 2 9
T − 4374 T - 4374 T − 4 3 7 4
T - 4374
31 31 3 1
T + 7600 T + 7600 T + 7 6 0 0
T + 7600
37 37 3 7
T + 11263 T + 11263 T + 1 1 2 6 3
T + 11263
41 41 4 1
T + 13493 T + 13493 T + 1 3 4 9 3
T + 13493
43 43 4 3
T + 6830 T + 6830 T + 6 8 3 0
T + 6830
47 47 4 7
T + 19067 T + 19067 T + 1 9 0 6 7
T + 19067
53 53 5 3
T − 12569 T - 12569 T − 1 2 5 6 9
T - 12569
59 59 5 9
T + 26488 T + 26488 T + 2 6 4 8 8
T + 26488
61 61 6 1
T + 18224 T + 18224 T + 1 8 2 2 4
T + 18224
67 67 6 7
T + 13032 T + 13032 T + 1 3 0 3 2
T + 13032
71 71 7 1
T − 77056 T - 77056 T − 7 7 0 5 6
T - 77056
73 73 7 3
T − 2540 T - 2540 T − 2 5 4 0
T - 2540
79 79 7 9
T + 530 T + 530 T + 5 3 0
T + 530
83 83 8 3
T + 78344 T + 78344 T + 7 8 3 4 4
T + 78344
89 89 8 9
T − 90758 T - 90758 T − 9 0 7 5 8
T - 90758
97 97 9 7
T − 116750 T - 116750 T − 1 1 6 7 5 0
T - 116750
show more
show less