Properties

Label 490.3.f.m.393.2
Level $490$
Weight $3$
Character 490.393
Analytic conductor $13.352$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,3,Mod(197,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 490.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,0,-8,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3515329537\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 393.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 490.393
Dual form 490.3.f.m.197.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +(0.707107 + 0.707107i) q^{3} -2.00000i q^{4} +(3.53553 + 3.53553i) q^{5} +1.41421 q^{6} +(-2.00000 - 2.00000i) q^{8} -8.00000i q^{9} +7.07107 q^{10} +5.00000 q^{11} +(1.41421 - 1.41421i) q^{12} +(2.12132 + 2.12132i) q^{13} +5.00000i q^{15} -4.00000 q^{16} +(19.0919 - 19.0919i) q^{17} +(-8.00000 - 8.00000i) q^{18} +12.7279i q^{19} +(7.07107 - 7.07107i) q^{20} +(5.00000 - 5.00000i) q^{22} +(8.00000 + 8.00000i) q^{23} -2.82843i q^{24} +25.0000i q^{25} +4.24264 q^{26} +(12.0208 - 12.0208i) q^{27} -17.0000i q^{29} +(5.00000 + 5.00000i) q^{30} +57.9828 q^{31} +(-4.00000 + 4.00000i) q^{32} +(3.53553 + 3.53553i) q^{33} -38.1838i q^{34} -16.0000 q^{36} +(-24.0000 + 24.0000i) q^{37} +(12.7279 + 12.7279i) q^{38} +3.00000i q^{39} -14.1421i q^{40} +26.8701 q^{41} +(11.0000 + 11.0000i) q^{43} -10.0000i q^{44} +(28.2843 - 28.2843i) q^{45} +16.0000 q^{46} +(-50.2046 + 50.2046i) q^{47} +(-2.82843 - 2.82843i) q^{48} +(25.0000 + 25.0000i) q^{50} +27.0000 q^{51} +(4.24264 - 4.24264i) q^{52} +(-33.0000 - 33.0000i) q^{53} -24.0416i q^{54} +(17.6777 + 17.6777i) q^{55} +(-9.00000 + 9.00000i) q^{57} +(-17.0000 - 17.0000i) q^{58} -55.1543i q^{59} +10.0000 q^{60} -45.2548 q^{61} +(57.9828 - 57.9828i) q^{62} +8.00000i q^{64} +15.0000i q^{65} +7.07107 q^{66} +(75.0000 - 75.0000i) q^{67} +(-38.1838 - 38.1838i) q^{68} +11.3137i q^{69} -104.000 q^{71} +(-16.0000 + 16.0000i) q^{72} +(-39.5980 - 39.5980i) q^{73} +48.0000i q^{74} +(-17.6777 + 17.6777i) q^{75} +25.4558 q^{76} +(3.00000 + 3.00000i) q^{78} -115.000i q^{79} +(-14.1421 - 14.1421i) q^{80} -55.0000 q^{81} +(26.8701 - 26.8701i) q^{82} +(73.5391 + 73.5391i) q^{83} +135.000 q^{85} +22.0000 q^{86} +(12.0208 - 12.0208i) q^{87} +(-10.0000 - 10.0000i) q^{88} +113.137i q^{89} -56.5685i q^{90} +(16.0000 - 16.0000i) q^{92} +(41.0000 + 41.0000i) q^{93} +100.409i q^{94} +(-45.0000 + 45.0000i) q^{95} -5.65685 q^{96} +(-81.3173 + 81.3173i) q^{97} -40.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} + 20 q^{11} - 16 q^{16} - 32 q^{18} + 20 q^{22} + 32 q^{23} + 20 q^{30} - 16 q^{32} - 64 q^{36} - 96 q^{37} + 44 q^{43} + 64 q^{46} + 100 q^{50} + 108 q^{51} - 132 q^{53} - 36 q^{57}+ \cdots - 180 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 0.707107 + 0.707107i 0.235702 + 0.235702i 0.815068 0.579366i \(-0.196700\pi\)
−0.579366 + 0.815068i \(0.696700\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 3.53553 + 3.53553i 0.707107 + 0.707107i
\(6\) 1.41421 0.235702
\(7\) 0 0
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 8.00000i 0.888889i
\(10\) 7.07107 0.707107
\(11\) 5.00000 0.454545 0.227273 0.973831i \(-0.427019\pi\)
0.227273 + 0.973831i \(0.427019\pi\)
\(12\) 1.41421 1.41421i 0.117851 0.117851i
\(13\) 2.12132 + 2.12132i 0.163178 + 0.163178i 0.783973 0.620795i \(-0.213190\pi\)
−0.620795 + 0.783973i \(0.713190\pi\)
\(14\) 0 0
\(15\) 5.00000i 0.333333i
\(16\) −4.00000 −0.250000
\(17\) 19.0919 19.0919i 1.12305 1.12305i 0.131772 0.991280i \(-0.457933\pi\)
0.991280 0.131772i \(-0.0420666\pi\)
\(18\) −8.00000 8.00000i −0.444444 0.444444i
\(19\) 12.7279i 0.669891i 0.942238 + 0.334945i \(0.108718\pi\)
−0.942238 + 0.334945i \(0.891282\pi\)
\(20\) 7.07107 7.07107i 0.353553 0.353553i
\(21\) 0 0
\(22\) 5.00000 5.00000i 0.227273 0.227273i
\(23\) 8.00000 + 8.00000i 0.347826 + 0.347826i 0.859299 0.511473i \(-0.170900\pi\)
−0.511473 + 0.859299i \(0.670900\pi\)
\(24\) 2.82843i 0.117851i
\(25\) 25.0000i 1.00000i
\(26\) 4.24264 0.163178
\(27\) 12.0208 12.0208i 0.445215 0.445215i
\(28\) 0 0
\(29\) 17.0000i 0.586207i −0.956081 0.293103i \(-0.905312\pi\)
0.956081 0.293103i \(-0.0946880\pi\)
\(30\) 5.00000 + 5.00000i 0.166667 + 0.166667i
\(31\) 57.9828 1.87041 0.935206 0.354105i \(-0.115214\pi\)
0.935206 + 0.354105i \(0.115214\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) 3.53553 + 3.53553i 0.107137 + 0.107137i
\(34\) 38.1838i 1.12305i
\(35\) 0 0
\(36\) −16.0000 −0.444444
\(37\) −24.0000 + 24.0000i −0.648649 + 0.648649i −0.952666 0.304018i \(-0.901672\pi\)
0.304018 + 0.952666i \(0.401672\pi\)
\(38\) 12.7279 + 12.7279i 0.334945 + 0.334945i
\(39\) 3.00000i 0.0769231i
\(40\) 14.1421i 0.353553i
\(41\) 26.8701 0.655367 0.327684 0.944788i \(-0.393732\pi\)
0.327684 + 0.944788i \(0.393732\pi\)
\(42\) 0 0
\(43\) 11.0000 + 11.0000i 0.255814 + 0.255814i 0.823349 0.567535i \(-0.192103\pi\)
−0.567535 + 0.823349i \(0.692103\pi\)
\(44\) 10.0000i 0.227273i
\(45\) 28.2843 28.2843i 0.628539 0.628539i
\(46\) 16.0000 0.347826
\(47\) −50.2046 + 50.2046i −1.06818 + 1.06818i −0.0706838 + 0.997499i \(0.522518\pi\)
−0.997499 + 0.0706838i \(0.977482\pi\)
\(48\) −2.82843 2.82843i −0.0589256 0.0589256i
\(49\) 0 0
\(50\) 25.0000 + 25.0000i 0.500000 + 0.500000i
\(51\) 27.0000 0.529412
\(52\) 4.24264 4.24264i 0.0815892 0.0815892i
\(53\) −33.0000 33.0000i −0.622642 0.622642i 0.323565 0.946206i \(-0.395119\pi\)
−0.946206 + 0.323565i \(0.895119\pi\)
\(54\) 24.0416i 0.445215i
\(55\) 17.6777 + 17.6777i 0.321412 + 0.321412i
\(56\) 0 0
\(57\) −9.00000 + 9.00000i −0.157895 + 0.157895i
\(58\) −17.0000 17.0000i −0.293103 0.293103i
\(59\) 55.1543i 0.934819i −0.884041 0.467410i \(-0.845187\pi\)
0.884041 0.467410i \(-0.154813\pi\)
\(60\) 10.0000 0.166667
\(61\) −45.2548 −0.741883 −0.370941 0.928656i \(-0.620965\pi\)
−0.370941 + 0.928656i \(0.620965\pi\)
\(62\) 57.9828 57.9828i 0.935206 0.935206i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 15.0000i 0.230769i
\(66\) 7.07107 0.107137
\(67\) 75.0000 75.0000i 1.11940 1.11940i 0.127574 0.991829i \(-0.459281\pi\)
0.991829 0.127574i \(-0.0407190\pi\)
\(68\) −38.1838 38.1838i −0.561526 0.561526i
\(69\) 11.3137i 0.163967i
\(70\) 0 0
\(71\) −104.000 −1.46479 −0.732394 0.680881i \(-0.761597\pi\)
−0.732394 + 0.680881i \(0.761597\pi\)
\(72\) −16.0000 + 16.0000i −0.222222 + 0.222222i
\(73\) −39.5980 39.5980i −0.542438 0.542438i 0.381805 0.924243i \(-0.375303\pi\)
−0.924243 + 0.381805i \(0.875303\pi\)
\(74\) 48.0000i 0.648649i
\(75\) −17.6777 + 17.6777i −0.235702 + 0.235702i
\(76\) 25.4558 0.334945
\(77\) 0 0
\(78\) 3.00000 + 3.00000i 0.0384615 + 0.0384615i
\(79\) 115.000i 1.45570i −0.685738 0.727848i \(-0.740521\pi\)
0.685738 0.727848i \(-0.259479\pi\)
\(80\) −14.1421 14.1421i −0.176777 0.176777i
\(81\) −55.0000 −0.679012
\(82\) 26.8701 26.8701i 0.327684 0.327684i
\(83\) 73.5391 + 73.5391i 0.886013 + 0.886013i 0.994137 0.108124i \(-0.0344844\pi\)
−0.108124 + 0.994137i \(0.534484\pi\)
\(84\) 0 0
\(85\) 135.000 1.58824
\(86\) 22.0000 0.255814
\(87\) 12.0208 12.0208i 0.138170 0.138170i
\(88\) −10.0000 10.0000i −0.113636 0.113636i
\(89\) 113.137i 1.27120i 0.772017 + 0.635602i \(0.219248\pi\)
−0.772017 + 0.635602i \(0.780752\pi\)
\(90\) 56.5685i 0.628539i
\(91\) 0 0
\(92\) 16.0000 16.0000i 0.173913 0.173913i
\(93\) 41.0000 + 41.0000i 0.440860 + 0.440860i
\(94\) 100.409i 1.06818i
\(95\) −45.0000 + 45.0000i −0.473684 + 0.473684i
\(96\) −5.65685 −0.0589256
\(97\) −81.3173 + 81.3173i −0.838322 + 0.838322i −0.988638 0.150316i \(-0.951971\pi\)
0.150316 + 0.988638i \(0.451971\pi\)
\(98\) 0 0
\(99\) 40.0000i 0.404040i
\(100\) 50.0000 0.500000
\(101\) −97.5807 −0.966146 −0.483073 0.875580i \(-0.660479\pi\)
−0.483073 + 0.875580i \(0.660479\pi\)
\(102\) 27.0000 27.0000i 0.264706 0.264706i
\(103\) −34.6482 34.6482i −0.336391 0.336391i 0.518616 0.855007i \(-0.326447\pi\)
−0.855007 + 0.518616i \(0.826447\pi\)
\(104\) 8.48528i 0.0815892i
\(105\) 0 0
\(106\) −66.0000 −0.622642
\(107\) −75.0000 + 75.0000i −0.700935 + 0.700935i −0.964611 0.263677i \(-0.915065\pi\)
0.263677 + 0.964611i \(0.415065\pi\)
\(108\) −24.0416 24.0416i −0.222608 0.222608i
\(109\) 119.000i 1.09174i 0.837869 + 0.545872i \(0.183801\pi\)
−0.837869 + 0.545872i \(0.816199\pi\)
\(110\) 35.3553 0.321412
\(111\) −33.9411 −0.305776
\(112\) 0 0
\(113\) −16.0000 16.0000i −0.141593 0.141593i 0.632757 0.774350i \(-0.281923\pi\)
−0.774350 + 0.632757i \(0.781923\pi\)
\(114\) 18.0000i 0.157895i
\(115\) 56.5685i 0.491900i
\(116\) −34.0000 −0.293103
\(117\) 16.9706 16.9706i 0.145048 0.145048i
\(118\) −55.1543 55.1543i −0.467410 0.467410i
\(119\) 0 0
\(120\) 10.0000 10.0000i 0.0833333 0.0833333i
\(121\) −96.0000 −0.793388
\(122\) −45.2548 + 45.2548i −0.370941 + 0.370941i
\(123\) 19.0000 + 19.0000i 0.154472 + 0.154472i
\(124\) 115.966i 0.935206i
\(125\) −88.3883 + 88.3883i −0.707107 + 0.707107i
\(126\) 0 0
\(127\) −19.0000 + 19.0000i −0.149606 + 0.149606i −0.777942 0.628336i \(-0.783736\pi\)
0.628336 + 0.777942i \(0.283736\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 15.5563i 0.120592i
\(130\) 15.0000 + 15.0000i 0.115385 + 0.115385i
\(131\) 79.1960 0.604549 0.302275 0.953221i \(-0.402254\pi\)
0.302275 + 0.953221i \(0.402254\pi\)
\(132\) 7.07107 7.07107i 0.0535687 0.0535687i
\(133\) 0 0
\(134\) 150.000i 1.11940i
\(135\) 85.0000 0.629630
\(136\) −76.3675 −0.561526
\(137\) 88.0000 88.0000i 0.642336 0.642336i −0.308793 0.951129i \(-0.599925\pi\)
0.951129 + 0.308793i \(0.0999252\pi\)
\(138\) 11.3137 + 11.3137i 0.0819834 + 0.0819834i
\(139\) 124.451i 0.895329i 0.894201 + 0.447665i \(0.147744\pi\)
−0.894201 + 0.447665i \(0.852256\pi\)
\(140\) 0 0
\(141\) −71.0000 −0.503546
\(142\) −104.000 + 104.000i −0.732394 + 0.732394i
\(143\) 10.6066 + 10.6066i 0.0741720 + 0.0741720i
\(144\) 32.0000i 0.222222i
\(145\) 60.1041 60.1041i 0.414511 0.414511i
\(146\) −79.1960 −0.542438
\(147\) 0 0
\(148\) 48.0000 + 48.0000i 0.324324 + 0.324324i
\(149\) 232.000i 1.55705i −0.627615 0.778523i \(-0.715969\pi\)
0.627615 0.778523i \(-0.284031\pi\)
\(150\) 35.3553i 0.235702i
\(151\) −3.00000 −0.0198675 −0.00993377 0.999951i \(-0.503162\pi\)
−0.00993377 + 0.999951i \(0.503162\pi\)
\(152\) 25.4558 25.4558i 0.167473 0.167473i
\(153\) −152.735 152.735i −0.998268 0.998268i
\(154\) 0 0
\(155\) 205.000 + 205.000i 1.32258 + 1.32258i
\(156\) 6.00000 0.0384615
\(157\) −181.019 + 181.019i −1.15299 + 1.15299i −0.167039 + 0.985950i \(0.553421\pi\)
−0.985950 + 0.167039i \(0.946579\pi\)
\(158\) −115.000 115.000i −0.727848 0.727848i
\(159\) 46.6690i 0.293516i
\(160\) −28.2843 −0.176777
\(161\) 0 0
\(162\) −55.0000 + 55.0000i −0.339506 + 0.339506i
\(163\) 136.000 + 136.000i 0.834356 + 0.834356i 0.988109 0.153753i \(-0.0491361\pi\)
−0.153753 + 0.988109i \(0.549136\pi\)
\(164\) 53.7401i 0.327684i
\(165\) 25.0000i 0.151515i
\(166\) 147.078 0.886013
\(167\) −74.2462 + 74.2462i −0.444588 + 0.444588i −0.893551 0.448963i \(-0.851794\pi\)
0.448963 + 0.893551i \(0.351794\pi\)
\(168\) 0 0
\(169\) 160.000i 0.946746i
\(170\) 135.000 135.000i 0.794118 0.794118i
\(171\) 101.823 0.595458
\(172\) 22.0000 22.0000i 0.127907 0.127907i
\(173\) 183.141 + 183.141i 1.05862 + 1.05862i 0.998172 + 0.0604450i \(0.0192520\pi\)
0.0604450 + 0.998172i \(0.480748\pi\)
\(174\) 24.0416i 0.138170i
\(175\) 0 0
\(176\) −20.0000 −0.113636
\(177\) 39.0000 39.0000i 0.220339 0.220339i
\(178\) 113.137 + 113.137i 0.635602 + 0.635602i
\(179\) 16.0000i 0.0893855i −0.999001 0.0446927i \(-0.985769\pi\)
0.999001 0.0446927i \(-0.0142309\pi\)
\(180\) −56.5685 56.5685i −0.314270 0.314270i
\(181\) −207.889 −1.14856 −0.574280 0.818659i \(-0.694718\pi\)
−0.574280 + 0.818659i \(0.694718\pi\)
\(182\) 0 0
\(183\) −32.0000 32.0000i −0.174863 0.174863i
\(184\) 32.0000i 0.173913i
\(185\) −169.706 −0.917328
\(186\) 82.0000 0.440860
\(187\) 95.4594 95.4594i 0.510478 0.510478i
\(188\) 100.409 + 100.409i 0.534091 + 0.534091i
\(189\) 0 0
\(190\) 90.0000i 0.473684i
\(191\) −341.000 −1.78534 −0.892670 0.450711i \(-0.851171\pi\)
−0.892670 + 0.450711i \(0.851171\pi\)
\(192\) −5.65685 + 5.65685i −0.0294628 + 0.0294628i
\(193\) −72.0000 72.0000i −0.373057 0.373057i 0.495532 0.868589i \(-0.334973\pi\)
−0.868589 + 0.495532i \(0.834973\pi\)
\(194\) 162.635i 0.838322i
\(195\) −10.6066 + 10.6066i −0.0543928 + 0.0543928i
\(196\) 0 0
\(197\) −169.000 + 169.000i −0.857868 + 0.857868i −0.991087 0.133219i \(-0.957469\pi\)
0.133219 + 0.991087i \(0.457469\pi\)
\(198\) −40.0000 40.0000i −0.202020 0.202020i
\(199\) 213.546i 1.07310i 0.843870 + 0.536548i \(0.180272\pi\)
−0.843870 + 0.536548i \(0.819728\pi\)
\(200\) 50.0000 50.0000i 0.250000 0.250000i
\(201\) 106.066 0.527692
\(202\) −97.5807 + 97.5807i −0.483073 + 0.483073i
\(203\) 0 0
\(204\) 54.0000i 0.264706i
\(205\) 95.0000 + 95.0000i 0.463415 + 0.463415i
\(206\) −69.2965 −0.336391
\(207\) 64.0000 64.0000i 0.309179 0.309179i
\(208\) −8.48528 8.48528i −0.0407946 0.0407946i
\(209\) 63.6396i 0.304496i
\(210\) 0 0
\(211\) −179.000 −0.848341 −0.424171 0.905582i \(-0.639434\pi\)
−0.424171 + 0.905582i \(0.639434\pi\)
\(212\) −66.0000 + 66.0000i −0.311321 + 0.311321i
\(213\) −73.5391 73.5391i −0.345254 0.345254i
\(214\) 150.000i 0.700935i
\(215\) 77.7817i 0.361776i
\(216\) −48.0833 −0.222608
\(217\) 0 0
\(218\) 119.000 + 119.000i 0.545872 + 0.545872i
\(219\) 56.0000i 0.255708i
\(220\) 35.3553 35.3553i 0.160706 0.160706i
\(221\) 81.0000 0.366516
\(222\) −33.9411 + 33.9411i −0.152888 + 0.152888i
\(223\) 40.3051 + 40.3051i 0.180740 + 0.180740i 0.791678 0.610938i \(-0.209208\pi\)
−0.610938 + 0.791678i \(0.709208\pi\)
\(224\) 0 0
\(225\) 200.000 0.888889
\(226\) −32.0000 −0.141593
\(227\) 129.401 129.401i 0.570046 0.570046i −0.362095 0.932141i \(-0.617938\pi\)
0.932141 + 0.362095i \(0.117938\pi\)
\(228\) 18.0000 + 18.0000i 0.0789474 + 0.0789474i
\(229\) 233.345i 1.01897i −0.860478 0.509487i \(-0.829835\pi\)
0.860478 0.509487i \(-0.170165\pi\)
\(230\) 56.5685 + 56.5685i 0.245950 + 0.245950i
\(231\) 0 0
\(232\) −34.0000 + 34.0000i −0.146552 + 0.146552i
\(233\) 320.000 + 320.000i 1.37339 + 1.37339i 0.855365 + 0.518025i \(0.173333\pi\)
0.518025 + 0.855365i \(0.326667\pi\)
\(234\) 33.9411i 0.145048i
\(235\) −355.000 −1.51064
\(236\) −110.309 −0.467410
\(237\) 81.3173 81.3173i 0.343111 0.343111i
\(238\) 0 0
\(239\) 397.000i 1.66109i −0.556953 0.830544i \(-0.688030\pi\)
0.556953 0.830544i \(-0.311970\pi\)
\(240\) 20.0000i 0.0833333i
\(241\) −248.902 −1.03279 −0.516393 0.856352i \(-0.672726\pi\)
−0.516393 + 0.856352i \(0.672726\pi\)
\(242\) −96.0000 + 96.0000i −0.396694 + 0.396694i
\(243\) −147.078 147.078i −0.605260 0.605260i
\(244\) 90.5097i 0.370941i
\(245\) 0 0
\(246\) 38.0000 0.154472
\(247\) −27.0000 + 27.0000i −0.109312 + 0.109312i
\(248\) −115.966 115.966i −0.467603 0.467603i
\(249\) 104.000i 0.417671i
\(250\) 176.777i 0.707107i
\(251\) 452.548 1.80298 0.901491 0.432798i \(-0.142474\pi\)
0.901491 + 0.432798i \(0.142474\pi\)
\(252\) 0 0
\(253\) 40.0000 + 40.0000i 0.158103 + 0.158103i
\(254\) 38.0000i 0.149606i
\(255\) 95.4594 + 95.4594i 0.374351 + 0.374351i
\(256\) 16.0000 0.0625000
\(257\) 28.2843 28.2843i 0.110056 0.110056i −0.649935 0.759990i \(-0.725204\pi\)
0.759990 + 0.649935i \(0.225204\pi\)
\(258\) 15.5563 + 15.5563i 0.0602959 + 0.0602959i
\(259\) 0 0
\(260\) 30.0000 0.115385
\(261\) −136.000 −0.521073
\(262\) 79.1960 79.1960i 0.302275 0.302275i
\(263\) 245.000 + 245.000i 0.931559 + 0.931559i 0.997803 0.0662445i \(-0.0211017\pi\)
−0.0662445 + 0.997803i \(0.521102\pi\)
\(264\) 14.1421i 0.0535687i
\(265\) 233.345i 0.880548i
\(266\) 0 0
\(267\) −80.0000 + 80.0000i −0.299625 + 0.299625i
\(268\) −150.000 150.000i −0.559701 0.559701i
\(269\) 305.470i 1.13558i −0.823175 0.567788i \(-0.807799\pi\)
0.823175 0.567788i \(-0.192201\pi\)
\(270\) 85.0000 85.0000i 0.314815 0.314815i
\(271\) −463.862 −1.71167 −0.855834 0.517251i \(-0.826956\pi\)
−0.855834 + 0.517251i \(0.826956\pi\)
\(272\) −76.3675 + 76.3675i −0.280763 + 0.280763i
\(273\) 0 0
\(274\) 176.000i 0.642336i
\(275\) 125.000i 0.454545i
\(276\) 22.6274 0.0819834
\(277\) 160.000 160.000i 0.577617 0.577617i −0.356629 0.934246i \(-0.616074\pi\)
0.934246 + 0.356629i \(0.116074\pi\)
\(278\) 124.451 + 124.451i 0.447665 + 0.447665i
\(279\) 463.862i 1.66259i
\(280\) 0 0
\(281\) −47.0000 −0.167260 −0.0836299 0.996497i \(-0.526651\pi\)
−0.0836299 + 0.996497i \(0.526651\pi\)
\(282\) −71.0000 + 71.0000i −0.251773 + 0.251773i
\(283\) 225.567 + 225.567i 0.797057 + 0.797057i 0.982630 0.185574i \(-0.0594143\pi\)
−0.185574 + 0.982630i \(0.559414\pi\)
\(284\) 208.000i 0.732394i
\(285\) −63.6396 −0.223297
\(286\) 21.2132 0.0741720
\(287\) 0 0
\(288\) 32.0000 + 32.0000i 0.111111 + 0.111111i
\(289\) 440.000i 1.52249i
\(290\) 120.208i 0.414511i
\(291\) −115.000 −0.395189
\(292\) −79.1960 + 79.1960i −0.271219 + 0.271219i
\(293\) 20.5061 + 20.5061i 0.0699867 + 0.0699867i 0.741234 0.671247i \(-0.234241\pi\)
−0.671247 + 0.741234i \(0.734241\pi\)
\(294\) 0 0
\(295\) 195.000 195.000i 0.661017 0.661017i
\(296\) 96.0000 0.324324
\(297\) 60.1041 60.1041i 0.202371 0.202371i
\(298\) −232.000 232.000i −0.778523 0.778523i
\(299\) 33.9411i 0.113515i
\(300\) 35.3553 + 35.3553i 0.117851 + 0.117851i
\(301\) 0 0
\(302\) −3.00000 + 3.00000i −0.00993377 + 0.00993377i
\(303\) −69.0000 69.0000i −0.227723 0.227723i
\(304\) 50.9117i 0.167473i
\(305\) −160.000 160.000i −0.524590 0.524590i
\(306\) −305.470 −0.998268
\(307\) 310.420 310.420i 1.01114 1.01114i 0.0112024 0.999937i \(-0.496434\pi\)
0.999937 0.0112024i \(-0.00356591\pi\)
\(308\) 0 0
\(309\) 49.0000i 0.158576i
\(310\) 410.000 1.32258
\(311\) 405.879 1.30508 0.652539 0.757755i \(-0.273704\pi\)
0.652539 + 0.757755i \(0.273704\pi\)
\(312\) 6.00000 6.00000i 0.0192308 0.0192308i
\(313\) −195.869 195.869i −0.625778 0.625778i 0.321225 0.947003i \(-0.395905\pi\)
−0.947003 + 0.321225i \(0.895905\pi\)
\(314\) 362.039i 1.15299i
\(315\) 0 0
\(316\) −230.000 −0.727848
\(317\) −1.00000 + 1.00000i −0.00315457 + 0.00315457i −0.708682 0.705528i \(-0.750710\pi\)
0.705528 + 0.708682i \(0.250710\pi\)
\(318\) −46.6690 46.6690i −0.146758 0.146758i
\(319\) 85.0000i 0.266458i
\(320\) −28.2843 + 28.2843i −0.0883883 + 0.0883883i
\(321\) −106.066 −0.330424
\(322\) 0 0
\(323\) 243.000 + 243.000i 0.752322 + 0.752322i
\(324\) 110.000i 0.339506i
\(325\) −53.0330 + 53.0330i −0.163178 + 0.163178i
\(326\) 272.000 0.834356
\(327\) −84.1457 + 84.1457i −0.257326 + 0.257326i
\(328\) −53.7401 53.7401i −0.163842 0.163842i
\(329\) 0 0
\(330\) 25.0000 + 25.0000i 0.0757576 + 0.0757576i
\(331\) 32.0000 0.0966767 0.0483384 0.998831i \(-0.484607\pi\)
0.0483384 + 0.998831i \(0.484607\pi\)
\(332\) 147.078 147.078i 0.443007 0.443007i
\(333\) 192.000 + 192.000i 0.576577 + 0.576577i
\(334\) 148.492i 0.444588i
\(335\) 530.330 1.58307
\(336\) 0 0
\(337\) −400.000 + 400.000i −1.18694 + 1.18694i −0.209036 + 0.977908i \(0.567032\pi\)
−0.977908 + 0.209036i \(0.932968\pi\)
\(338\) −160.000 160.000i −0.473373 0.473373i
\(339\) 22.6274i 0.0667475i
\(340\) 270.000i 0.794118i
\(341\) 289.914 0.850187
\(342\) 101.823 101.823i 0.297729 0.297729i
\(343\) 0 0
\(344\) 44.0000i 0.127907i
\(345\) −40.0000 + 40.0000i −0.115942 + 0.115942i
\(346\) 366.281 1.05862
\(347\) −120.000 + 120.000i −0.345821 + 0.345821i −0.858550 0.512729i \(-0.828635\pi\)
0.512729 + 0.858550i \(0.328635\pi\)
\(348\) −24.0416 24.0416i −0.0690851 0.0690851i
\(349\) 482.247i 1.38180i −0.722952 0.690898i \(-0.757215\pi\)
0.722952 0.690898i \(-0.242785\pi\)
\(350\) 0 0
\(351\) 51.0000 0.145299
\(352\) −20.0000 + 20.0000i −0.0568182 + 0.0568182i
\(353\) −122.329 122.329i −0.346542 0.346542i 0.512278 0.858820i \(-0.328802\pi\)
−0.858820 + 0.512278i \(0.828802\pi\)
\(354\) 78.0000i 0.220339i
\(355\) −367.696 367.696i −1.03576 1.03576i
\(356\) 226.274 0.635602
\(357\) 0 0
\(358\) −16.0000 16.0000i −0.0446927 0.0446927i
\(359\) 360.000i 1.00279i −0.865220 0.501393i \(-0.832821\pi\)
0.865220 0.501393i \(-0.167179\pi\)
\(360\) −113.137 −0.314270
\(361\) 199.000 0.551247
\(362\) −207.889 + 207.889i −0.574280 + 0.574280i
\(363\) −67.8823 67.8823i −0.187003 0.187003i
\(364\) 0 0
\(365\) 280.000i 0.767123i
\(366\) −64.0000 −0.174863
\(367\) 136.472 136.472i 0.371857 0.371857i −0.496296 0.868153i \(-0.665307\pi\)
0.868153 + 0.496296i \(0.165307\pi\)
\(368\) −32.0000 32.0000i −0.0869565 0.0869565i
\(369\) 214.960i 0.582549i
\(370\) −169.706 + 169.706i −0.458664 + 0.458664i
\(371\) 0 0
\(372\) 82.0000 82.0000i 0.220430 0.220430i
\(373\) −8.00000 8.00000i −0.0214477 0.0214477i 0.696302 0.717749i \(-0.254828\pi\)
−0.717749 + 0.696302i \(0.754828\pi\)
\(374\) 190.919i 0.510478i
\(375\) −125.000 −0.333333
\(376\) 200.818 0.534091
\(377\) 36.0624 36.0624i 0.0956564 0.0956564i
\(378\) 0 0
\(379\) 202.000i 0.532982i 0.963837 + 0.266491i \(0.0858642\pi\)
−0.963837 + 0.266491i \(0.914136\pi\)
\(380\) 90.0000 + 90.0000i 0.236842 + 0.236842i
\(381\) −26.8701 −0.0705251
\(382\) −341.000 + 341.000i −0.892670 + 0.892670i
\(383\) 282.843 + 282.843i 0.738493 + 0.738493i 0.972286 0.233794i \(-0.0751140\pi\)
−0.233794 + 0.972286i \(0.575114\pi\)
\(384\) 11.3137i 0.0294628i
\(385\) 0 0
\(386\) −144.000 −0.373057
\(387\) 88.0000 88.0000i 0.227390 0.227390i
\(388\) 162.635 + 162.635i 0.419161 + 0.419161i
\(389\) 319.000i 0.820051i −0.912074 0.410026i \(-0.865520\pi\)
0.912074 0.410026i \(-0.134480\pi\)
\(390\) 21.2132i 0.0543928i
\(391\) 305.470 0.781254
\(392\) 0 0
\(393\) 56.0000 + 56.0000i 0.142494 + 0.142494i
\(394\) 338.000i 0.857868i
\(395\) 406.586 406.586i 1.02933 1.02933i
\(396\) −80.0000 −0.202020
\(397\) −3.53553 + 3.53553i −0.00890563 + 0.00890563i −0.711546 0.702640i \(-0.752004\pi\)
0.702640 + 0.711546i \(0.252004\pi\)
\(398\) 213.546 + 213.546i 0.536548 + 0.536548i
\(399\) 0 0
\(400\) 100.000i 0.250000i
\(401\) −151.000 −0.376559 −0.188279 0.982116i \(-0.560291\pi\)
−0.188279 + 0.982116i \(0.560291\pi\)
\(402\) 106.066 106.066i 0.263846 0.263846i
\(403\) 123.000 + 123.000i 0.305211 + 0.305211i
\(404\) 195.161i 0.483073i
\(405\) −194.454 194.454i −0.480134 0.480134i
\(406\) 0 0
\(407\) −120.000 + 120.000i −0.294840 + 0.294840i
\(408\) −54.0000 54.0000i −0.132353 0.132353i
\(409\) 117.380i 0.286992i −0.989651 0.143496i \(-0.954166\pi\)
0.989651 0.143496i \(-0.0458344\pi\)
\(410\) 190.000 0.463415
\(411\) 124.451 0.302800
\(412\) −69.2965 + 69.2965i −0.168195 + 0.168195i
\(413\) 0 0
\(414\) 128.000i 0.309179i
\(415\) 520.000i 1.25301i
\(416\) −16.9706 −0.0407946
\(417\) −88.0000 + 88.0000i −0.211031 + 0.211031i
\(418\) 63.6396 + 63.6396i 0.152248 + 0.152248i
\(419\) 496.389i 1.18470i 0.805681 + 0.592350i \(0.201800\pi\)
−0.805681 + 0.592350i \(0.798200\pi\)
\(420\) 0 0
\(421\) 425.000 1.00950 0.504751 0.863265i \(-0.331584\pi\)
0.504751 + 0.863265i \(0.331584\pi\)
\(422\) −179.000 + 179.000i −0.424171 + 0.424171i
\(423\) 401.637 + 401.637i 0.949496 + 0.949496i
\(424\) 132.000i 0.311321i
\(425\) 477.297 + 477.297i 1.12305 + 1.12305i
\(426\) −147.078 −0.345254
\(427\) 0 0
\(428\) 150.000 + 150.000i 0.350467 + 0.350467i
\(429\) 15.0000i 0.0349650i
\(430\) 77.7817 + 77.7817i 0.180888 + 0.180888i
\(431\) 171.000 0.396752 0.198376 0.980126i \(-0.436433\pi\)
0.198376 + 0.980126i \(0.436433\pi\)
\(432\) −48.0833 + 48.0833i −0.111304 + 0.111304i
\(433\) −190.919 190.919i −0.440921 0.440921i 0.451400 0.892322i \(-0.350925\pi\)
−0.892322 + 0.451400i \(0.850925\pi\)
\(434\) 0 0
\(435\) 85.0000 0.195402
\(436\) 238.000 0.545872
\(437\) −101.823 + 101.823i −0.233005 + 0.233005i
\(438\) −56.0000 56.0000i −0.127854 0.127854i
\(439\) 147.078i 0.335030i 0.985870 + 0.167515i \(0.0535743\pi\)
−0.985870 + 0.167515i \(0.946426\pi\)
\(440\) 70.7107i 0.160706i
\(441\) 0 0
\(442\) 81.0000 81.0000i 0.183258 0.183258i
\(443\) 333.000 + 333.000i 0.751693 + 0.751693i 0.974795 0.223102i \(-0.0716183\pi\)
−0.223102 + 0.974795i \(0.571618\pi\)
\(444\) 67.8823i 0.152888i
\(445\) −400.000 + 400.000i −0.898876 + 0.898876i
\(446\) 80.6102 0.180740
\(447\) 164.049 164.049i 0.366999 0.366999i
\(448\) 0 0
\(449\) 305.000i 0.679287i −0.940554 0.339644i \(-0.889694\pi\)
0.940554 0.339644i \(-0.110306\pi\)
\(450\) 200.000 200.000i 0.444444 0.444444i
\(451\) 134.350 0.297894
\(452\) −32.0000 + 32.0000i −0.0707965 + 0.0707965i
\(453\) −2.12132 2.12132i −0.00468283 0.00468283i
\(454\) 258.801i 0.570046i
\(455\) 0 0
\(456\) 36.0000 0.0789474
\(457\) −207.000 + 207.000i −0.452954 + 0.452954i −0.896334 0.443380i \(-0.853779\pi\)
0.443380 + 0.896334i \(0.353779\pi\)
\(458\) −233.345 233.345i −0.509487 0.509487i
\(459\) 459.000i 1.00000i
\(460\) 113.137 0.245950
\(461\) −305.470 −0.662625 −0.331313 0.943521i \(-0.607491\pi\)
−0.331313 + 0.943521i \(0.607491\pi\)
\(462\) 0 0
\(463\) −312.000 312.000i −0.673866 0.673866i 0.284739 0.958605i \(-0.408093\pi\)
−0.958605 + 0.284739i \(0.908093\pi\)
\(464\) 68.0000i 0.146552i
\(465\) 289.914i 0.623470i
\(466\) 640.000 1.37339
\(467\) 321.734 321.734i 0.688937 0.688937i −0.273060 0.961997i \(-0.588036\pi\)
0.961997 + 0.273060i \(0.0880358\pi\)
\(468\) −33.9411 33.9411i −0.0725238 0.0725238i
\(469\) 0 0
\(470\) −355.000 + 355.000i −0.755319 + 0.755319i
\(471\) −256.000 −0.543524
\(472\) −110.309 + 110.309i −0.233705 + 0.233705i
\(473\) 55.0000 + 55.0000i 0.116279 + 0.116279i
\(474\) 162.635i 0.343111i
\(475\) −318.198 −0.669891
\(476\) 0 0
\(477\) −264.000 + 264.000i −0.553459 + 0.553459i
\(478\) −397.000 397.000i −0.830544 0.830544i
\(479\) 610.940i 1.27545i 0.770264 + 0.637725i \(0.220124\pi\)
−0.770264 + 0.637725i \(0.779876\pi\)
\(480\) −20.0000 20.0000i −0.0416667 0.0416667i
\(481\) −101.823 −0.211691
\(482\) −248.902 + 248.902i −0.516393 + 0.516393i
\(483\) 0 0
\(484\) 192.000i 0.396694i
\(485\) −575.000 −1.18557
\(486\) −294.156 −0.605260
\(487\) 8.00000 8.00000i 0.0164271 0.0164271i −0.698846 0.715273i \(-0.746303\pi\)
0.715273 + 0.698846i \(0.246303\pi\)
\(488\) 90.5097 + 90.5097i 0.185471 + 0.185471i
\(489\) 192.333i 0.393319i
\(490\) 0 0
\(491\) 99.0000 0.201629 0.100815 0.994905i \(-0.467855\pi\)
0.100815 + 0.994905i \(0.467855\pi\)
\(492\) 38.0000 38.0000i 0.0772358 0.0772358i
\(493\) −324.562 324.562i −0.658341 0.658341i
\(494\) 54.0000i 0.109312i
\(495\) 141.421 141.421i 0.285700 0.285700i
\(496\) −231.931 −0.467603
\(497\) 0 0
\(498\) 104.000 + 104.000i 0.208835 + 0.208835i
\(499\) 195.000i 0.390782i −0.980725 0.195391i \(-0.937402\pi\)
0.980725 0.195391i \(-0.0625975\pi\)
\(500\) 176.777 + 176.777i 0.353553 + 0.353553i
\(501\) −105.000 −0.209581
\(502\) 452.548 452.548i 0.901491 0.901491i
\(503\) 395.273 + 395.273i 0.785830 + 0.785830i 0.980808 0.194977i \(-0.0624633\pi\)
−0.194977 + 0.980808i \(0.562463\pi\)
\(504\) 0 0
\(505\) −345.000 345.000i −0.683168 0.683168i
\(506\) 80.0000 0.158103
\(507\) 113.137 113.137i 0.223150 0.223150i
\(508\) 38.0000 + 38.0000i 0.0748031 + 0.0748031i
\(509\) 294.156i 0.577910i 0.957343 + 0.288955i \(0.0933079\pi\)
−0.957343 + 0.288955i \(0.906692\pi\)
\(510\) 190.919 0.374351
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 153.000 + 153.000i 0.298246 + 0.298246i
\(514\) 56.5685i 0.110056i
\(515\) 245.000i 0.475728i
\(516\) 31.1127 0.0602959
\(517\) −251.023 + 251.023i −0.485538 + 0.485538i
\(518\) 0 0
\(519\) 259.000i 0.499037i
\(520\) 30.0000 30.0000i 0.0576923 0.0576923i
\(521\) −592.555 −1.13734 −0.568671 0.822565i \(-0.692542\pi\)
−0.568671 + 0.822565i \(0.692542\pi\)
\(522\) −136.000 + 136.000i −0.260536 + 0.260536i
\(523\) −502.046 502.046i −0.959935 0.959935i 0.0392931 0.999228i \(-0.487489\pi\)
−0.999228 + 0.0392931i \(0.987489\pi\)
\(524\) 158.392i 0.302275i
\(525\) 0 0
\(526\) 490.000 0.931559
\(527\) 1107.00 1107.00i 2.10057 2.10057i
\(528\) −14.1421 14.1421i −0.0267843 0.0267843i
\(529\) 401.000i 0.758034i
\(530\) −233.345 233.345i −0.440274 0.440274i
\(531\) −441.235 −0.830950
\(532\) 0 0
\(533\) 57.0000 + 57.0000i 0.106942 + 0.106942i
\(534\) 160.000i 0.299625i
\(535\) −530.330 −0.991271
\(536\) −300.000 −0.559701
\(537\) 11.3137 11.3137i 0.0210684 0.0210684i
\(538\) −305.470 305.470i −0.567788 0.567788i
\(539\) 0 0
\(540\) 170.000i 0.314815i
\(541\) 393.000 0.726433 0.363216 0.931705i \(-0.381679\pi\)
0.363216 + 0.931705i \(0.381679\pi\)
\(542\) −463.862 + 463.862i −0.855834 + 0.855834i
\(543\) −147.000 147.000i −0.270718 0.270718i
\(544\) 152.735i 0.280763i
\(545\) −420.729 + 420.729i −0.771979 + 0.771979i
\(546\) 0 0
\(547\) 448.000 448.000i 0.819013 0.819013i −0.166952 0.985965i \(-0.553393\pi\)
0.985965 + 0.166952i \(0.0533926\pi\)
\(548\) −176.000 176.000i −0.321168 0.321168i
\(549\) 362.039i 0.659451i
\(550\) 125.000 + 125.000i 0.227273 + 0.227273i
\(551\) 216.375 0.392695
\(552\) 22.6274 22.6274i 0.0409917 0.0409917i
\(553\) 0 0
\(554\) 320.000i 0.577617i
\(555\) −120.000 120.000i −0.216216 0.216216i
\(556\) 248.902 0.447665
\(557\) −208.000 + 208.000i −0.373429 + 0.373429i −0.868725 0.495295i \(-0.835060\pi\)
0.495295 + 0.868725i \(0.335060\pi\)
\(558\) −463.862 463.862i −0.831294 0.831294i
\(559\) 46.6690i 0.0834867i
\(560\) 0 0
\(561\) 135.000 0.240642
\(562\) −47.0000 + 47.0000i −0.0836299 + 0.0836299i
\(563\) −243.245 243.245i −0.432051 0.432051i 0.457275 0.889326i \(-0.348826\pi\)
−0.889326 + 0.457275i \(0.848826\pi\)
\(564\) 142.000i 0.251773i
\(565\) 113.137i 0.200243i
\(566\) 451.134 0.797057
\(567\) 0 0
\(568\) 208.000 + 208.000i 0.366197 + 0.366197i
\(569\) 352.000i 0.618629i 0.950960 + 0.309315i \(0.100100\pi\)
−0.950960 + 0.309315i \(0.899900\pi\)
\(570\) −63.6396 + 63.6396i −0.111648 + 0.111648i
\(571\) 592.000 1.03678 0.518389 0.855145i \(-0.326532\pi\)
0.518389 + 0.855145i \(0.326532\pi\)
\(572\) 21.2132 21.2132i 0.0370860 0.0370860i
\(573\) −241.123 241.123i −0.420809 0.420809i
\(574\) 0 0
\(575\) −200.000 + 200.000i −0.347826 + 0.347826i
\(576\) 64.0000 0.111111
\(577\) −573.464 + 573.464i −0.993871 + 0.993871i −0.999981 0.00611028i \(-0.998055\pi\)
0.00611028 + 0.999981i \(0.498055\pi\)
\(578\) −440.000 440.000i −0.761246 0.761246i
\(579\) 101.823i 0.175861i
\(580\) −120.208 120.208i −0.207255 0.207255i
\(581\) 0 0
\(582\) −115.000 + 115.000i −0.197595 + 0.197595i
\(583\) −165.000 165.000i −0.283019 0.283019i
\(584\) 158.392i 0.271219i
\(585\) 120.000 0.205128
\(586\) 41.0122 0.0699867
\(587\) −526.087 + 526.087i −0.896231 + 0.896231i −0.995100 0.0988697i \(-0.968477\pi\)
0.0988697 + 0.995100i \(0.468477\pi\)
\(588\) 0 0
\(589\) 738.000i 1.25297i
\(590\) 390.000i 0.661017i
\(591\) −239.002 −0.404403
\(592\) 96.0000 96.0000i 0.162162 0.162162i
\(593\) 359.917 + 359.917i 0.606943 + 0.606943i 0.942146 0.335203i \(-0.108805\pi\)
−0.335203 + 0.942146i \(0.608805\pi\)
\(594\) 120.208i 0.202371i
\(595\) 0 0
\(596\) −464.000 −0.778523
\(597\) −151.000 + 151.000i −0.252931 + 0.252931i
\(598\) 33.9411 + 33.9411i 0.0567577 + 0.0567577i
\(599\) 387.000i 0.646077i 0.946386 + 0.323038i \(0.104704\pi\)
−0.946386 + 0.323038i \(0.895296\pi\)
\(600\) 70.7107 0.117851
\(601\) −188.090 −0.312962 −0.156481 0.987681i \(-0.550015\pi\)
−0.156481 + 0.987681i \(0.550015\pi\)
\(602\) 0 0
\(603\) −600.000 600.000i −0.995025 0.995025i
\(604\) 6.00000i 0.00993377i
\(605\) −339.411 339.411i −0.561010 0.561010i
\(606\) −138.000 −0.227723
\(607\) −690.843 + 690.843i −1.13813 + 1.13813i −0.149342 + 0.988786i \(0.547715\pi\)
−0.988786 + 0.149342i \(0.952285\pi\)
\(608\) −50.9117 50.9117i −0.0837363 0.0837363i
\(609\) 0 0
\(610\) −320.000 −0.524590
\(611\) −213.000 −0.348609
\(612\) −305.470 + 305.470i −0.499134 + 0.499134i
\(613\) 489.000 + 489.000i 0.797716 + 0.797716i 0.982735 0.185019i \(-0.0592346\pi\)
−0.185019 + 0.982735i \(0.559235\pi\)
\(614\) 620.840i 1.01114i
\(615\) 134.350i 0.218456i
\(616\) 0 0
\(617\) 536.000 536.000i 0.868720 0.868720i −0.123611 0.992331i \(-0.539448\pi\)
0.992331 + 0.123611i \(0.0394475\pi\)
\(618\) −49.0000 49.0000i −0.0792880 0.0792880i
\(619\) 407.294i 0.657986i −0.944332 0.328993i \(-0.893291\pi\)
0.944332 0.328993i \(-0.106709\pi\)
\(620\) 410.000 410.000i 0.661290 0.661290i
\(621\) 192.333 0.309715
\(622\) 405.879 405.879i 0.652539 0.652539i
\(623\) 0 0
\(624\) 12.0000i 0.0192308i
\(625\) −625.000 −1.00000
\(626\) −391.737 −0.625778
\(627\) −45.0000 + 45.0000i −0.0717703 + 0.0717703i
\(628\) 362.039 + 362.039i 0.576495 + 0.576495i
\(629\) 916.410i 1.45693i
\(630\) 0 0
\(631\) 67.0000 0.106181 0.0530903 0.998590i \(-0.483093\pi\)
0.0530903 + 0.998590i \(0.483093\pi\)
\(632\) −230.000 + 230.000i −0.363924 + 0.363924i
\(633\) −126.572 126.572i −0.199956 0.199956i
\(634\) 2.00000i 0.00315457i
\(635\) −134.350 −0.211575
\(636\) −93.3381 −0.146758
\(637\) 0 0
\(638\) −85.0000 85.0000i −0.133229 0.133229i
\(639\) 832.000i 1.30203i
\(640\) 56.5685i 0.0883883i
\(641\) −1200.00 −1.87207 −0.936037 0.351900i \(-0.885536\pi\)
−0.936037 + 0.351900i \(0.885536\pi\)
\(642\) −106.066 + 106.066i −0.165212 + 0.165212i
\(643\) 310.420 + 310.420i 0.482768 + 0.482768i 0.906015 0.423246i \(-0.139110\pi\)
−0.423246 + 0.906015i \(0.639110\pi\)
\(644\) 0 0
\(645\) −55.0000 + 55.0000i −0.0852713 + 0.0852713i
\(646\) 486.000 0.752322
\(647\) −352.139 + 352.139i −0.544265 + 0.544265i −0.924776 0.380512i \(-0.875748\pi\)
0.380512 + 0.924776i \(0.375748\pi\)
\(648\) 110.000 + 110.000i 0.169753 + 0.169753i
\(649\) 275.772i 0.424918i
\(650\) 106.066i 0.163178i
\(651\) 0 0
\(652\) 272.000 272.000i 0.417178 0.417178i
\(653\) 239.000 + 239.000i 0.366003 + 0.366003i 0.866017 0.500014i \(-0.166672\pi\)
−0.500014 + 0.866017i \(0.666672\pi\)
\(654\) 168.291i 0.257326i
\(655\) 280.000 + 280.000i 0.427481 + 0.427481i
\(656\) −107.480 −0.163842
\(657\) −316.784 + 316.784i −0.482167 + 0.482167i
\(658\) 0 0
\(659\) 869.000i 1.31866i 0.751852 + 0.659332i \(0.229161\pi\)
−0.751852 + 0.659332i \(0.770839\pi\)
\(660\) 50.0000 0.0757576
\(661\) −588.313 −0.890035 −0.445017 0.895522i \(-0.646802\pi\)
−0.445017 + 0.895522i \(0.646802\pi\)
\(662\) 32.0000 32.0000i 0.0483384 0.0483384i
\(663\) 57.2756 + 57.2756i 0.0863886 + 0.0863886i
\(664\) 294.156i 0.443007i
\(665\) 0 0
\(666\) 384.000 0.576577
\(667\) 136.000 136.000i 0.203898 0.203898i
\(668\) 148.492 + 148.492i 0.222294 + 0.222294i
\(669\) 57.0000i 0.0852018i
\(670\) 530.330 530.330i 0.791537 0.791537i
\(671\) −226.274 −0.337219
\(672\) 0 0
\(673\) 32.0000 + 32.0000i 0.0475483 + 0.0475483i 0.730481 0.682933i \(-0.239296\pi\)
−0.682933 + 0.730481i \(0.739296\pi\)
\(674\) 800.000i 1.18694i
\(675\) 300.520 + 300.520i 0.445215 + 0.445215i
\(676\) −320.000 −0.473373
\(677\) −309.006 + 309.006i −0.456434 + 0.456434i −0.897483 0.441049i \(-0.854606\pi\)
0.441049 + 0.897483i \(0.354606\pi\)
\(678\) −22.6274 22.6274i −0.0333738 0.0333738i
\(679\) 0 0
\(680\) −270.000 270.000i −0.397059 0.397059i
\(681\) 183.000 0.268722
\(682\) 289.914 289.914i 0.425094 0.425094i
\(683\) 568.000 + 568.000i 0.831625 + 0.831625i 0.987739 0.156114i \(-0.0498967\pi\)
−0.156114 + 0.987739i \(0.549897\pi\)
\(684\) 203.647i 0.297729i
\(685\) 622.254 0.908400
\(686\) 0 0
\(687\) 165.000 165.000i 0.240175 0.240175i
\(688\) −44.0000 44.0000i −0.0639535 0.0639535i
\(689\) 140.007i 0.203203i
\(690\) 80.0000i 0.115942i
\(691\) −67.8823 −0.0982377 −0.0491189 0.998793i \(-0.515641\pi\)
−0.0491189 + 0.998793i \(0.515641\pi\)
\(692\) 366.281 366.281i 0.529308 0.529308i
\(693\) 0 0
\(694\) 240.000i 0.345821i
\(695\) −440.000 + 440.000i −0.633094 + 0.633094i
\(696\) −48.0833 −0.0690851
\(697\) 513.000 513.000i 0.736011 0.736011i
\(698\) −482.247 482.247i −0.690898 0.690898i
\(699\) 452.548i 0.647423i
\(700\) 0 0
\(701\) 351.000 0.500713 0.250357 0.968154i \(-0.419452\pi\)
0.250357 + 0.968154i \(0.419452\pi\)
\(702\) 51.0000 51.0000i 0.0726496 0.0726496i
\(703\) −305.470 305.470i −0.434524 0.434524i
\(704\) 40.0000i 0.0568182i
\(705\) −251.023 251.023i −0.356061 0.356061i
\(706\) −244.659 −0.346542
\(707\) 0 0
\(708\) −78.0000 78.0000i −0.110169 0.110169i
\(709\) 127.000i 0.179126i −0.995981 0.0895628i \(-0.971453\pi\)
0.995981 0.0895628i \(-0.0285470\pi\)
\(710\) −735.391 −1.03576
\(711\) −920.000 −1.29395
\(712\) 226.274 226.274i 0.317801 0.317801i
\(713\) 463.862 + 463.862i 0.650578 + 0.650578i
\(714\) 0 0
\(715\) 75.0000i 0.104895i
\(716\) −32.0000 −0.0446927
\(717\) 280.721 280.721i 0.391522 0.391522i
\(718\) −360.000 360.000i −0.501393 0.501393i
\(719\) 1018.23i 1.41618i 0.706122 + 0.708090i \(0.250443\pi\)
−0.706122 + 0.708090i \(0.749557\pi\)
\(720\) −113.137 + 113.137i −0.157135 + 0.157135i
\(721\) 0 0
\(722\) 199.000 199.000i 0.275623 0.275623i
\(723\) −176.000 176.000i −0.243430 0.243430i
\(724\) 415.779i 0.574280i
\(725\) 425.000 0.586207
\(726\) −135.765 −0.187003
\(727\) −56.5685 + 56.5685i −0.0778109 + 0.0778109i −0.744941 0.667130i \(-0.767522\pi\)
0.667130 + 0.744941i \(0.267522\pi\)
\(728\) 0 0
\(729\) 287.000i 0.393690i
\(730\) −280.000 280.000i −0.383562 0.383562i
\(731\) 420.021 0.574585
\(732\) −64.0000 + 64.0000i −0.0874317 + 0.0874317i
\(733\) 30.4056 + 30.4056i 0.0414810 + 0.0414810i 0.727543 0.686062i \(-0.240662\pi\)
−0.686062 + 0.727543i \(0.740662\pi\)
\(734\) 272.943i 0.371857i
\(735\) 0 0
\(736\) −64.0000 −0.0869565
\(737\) 375.000 375.000i 0.508820 0.508820i
\(738\) −214.960 214.960i −0.291274 0.291274i
\(739\) 619.000i 0.837618i −0.908074 0.418809i \(-0.862448\pi\)
0.908074 0.418809i \(-0.137552\pi\)
\(740\) 339.411i 0.458664i
\(741\) −38.1838 −0.0515300
\(742\) 0 0
\(743\) −331.000 331.000i −0.445491 0.445491i 0.448361 0.893852i \(-0.352008\pi\)
−0.893852 + 0.448361i \(0.852008\pi\)
\(744\) 164.000i 0.220430i
\(745\) 820.244 820.244i 1.10100 1.10100i
\(746\) −16.0000 −0.0214477
\(747\) 588.313 588.313i 0.787567 0.787567i
\(748\) −190.919 190.919i −0.255239 0.255239i
\(749\) 0 0
\(750\) −125.000 + 125.000i −0.166667 + 0.166667i
\(751\) 197.000 0.262317 0.131158 0.991361i \(-0.458130\pi\)
0.131158 + 0.991361i \(0.458130\pi\)
\(752\) 200.818 200.818i 0.267046 0.267046i
\(753\) 320.000 + 320.000i 0.424967 + 0.424967i
\(754\) 72.1249i 0.0956564i
\(755\) −10.6066 10.6066i −0.0140485 0.0140485i
\(756\) 0 0
\(757\) 264.000 264.000i 0.348745 0.348745i −0.510897 0.859642i \(-0.670687\pi\)
0.859642 + 0.510897i \(0.170687\pi\)
\(758\) 202.000 + 202.000i 0.266491 + 0.266491i
\(759\) 56.5685i 0.0745304i
\(760\) 180.000 0.236842
\(761\) −339.411 −0.446007 −0.223003 0.974818i \(-0.571586\pi\)
−0.223003 + 0.974818i \(0.571586\pi\)
\(762\) −26.8701 + 26.8701i −0.0352625 + 0.0352625i
\(763\) 0 0
\(764\) 682.000i 0.892670i
\(765\) 1080.00i 1.41176i
\(766\) 565.685 0.738493
\(767\) 117.000 117.000i 0.152542 0.152542i
\(768\) 11.3137 + 11.3137i 0.0147314 + 0.0147314i
\(769\) 742.462i 0.965490i −0.875761 0.482745i \(-0.839640\pi\)
0.875761 0.482745i \(-0.160360\pi\)
\(770\) 0 0
\(771\) 40.0000 0.0518807
\(772\) −144.000 + 144.000i −0.186528 + 0.186528i
\(773\) 716.299 + 716.299i 0.926648 + 0.926648i 0.997488 0.0708394i \(-0.0225678\pi\)
−0.0708394 + 0.997488i \(0.522568\pi\)
\(774\) 176.000i 0.227390i
\(775\) 1449.57i 1.87041i
\(776\) 325.269 0.419161
\(777\) 0 0
\(778\) −319.000 319.000i −0.410026 0.410026i
\(779\) 342.000i 0.439024i
\(780\) 21.2132 + 21.2132i 0.0271964 + 0.0271964i
\(781\) −520.000 −0.665813
\(782\) 305.470 305.470i 0.390627 0.390627i
\(783\) −204.354 204.354i −0.260988 0.260988i
\(784\) 0 0
\(785\) −1280.00 −1.63057
\(786\) 112.000 0.142494
\(787\) 893.076 893.076i 1.13479 1.13479i 0.145414 0.989371i \(-0.453549\pi\)
0.989371 0.145414i \(-0.0464515\pi\)
\(788\) 338.000 + 338.000i 0.428934 + 0.428934i
\(789\) 346.482i 0.439141i
\(790\) 813.173i 1.02933i
\(791\) 0 0
\(792\) −80.0000 + 80.0000i −0.101010 + 0.101010i
\(793\) −96.0000 96.0000i −0.121059 0.121059i
\(794\) 7.07107i 0.00890563i
\(795\) 165.000 165.000i 0.207547 0.207547i
\(796\) 427.092 0.536548
\(797\) 120.915 120.915i 0.151713 0.151713i −0.627170 0.778883i \(-0.715787\pi\)
0.778883 + 0.627170i \(0.215787\pi\)
\(798\) 0 0
\(799\) 1917.00i 2.39925i
\(800\) −100.000 100.000i −0.125000 0.125000i
\(801\) 905.097 1.12996
\(802\) −151.000 + 151.000i −0.188279 + 0.188279i
\(803\) −197.990 197.990i −0.246563 0.246563i
\(804\) 212.132i 0.263846i
\(805\) 0 0
\(806\) 246.000 0.305211
\(807\) 216.000 216.000i 0.267658 0.267658i
\(808\) 195.161 + 195.161i 0.241536 + 0.241536i
\(809\) 447.000i 0.552534i −0.961081 0.276267i \(-0.910903\pi\)
0.961081 0.276267i \(-0.0890974\pi\)
\(810\) −388.909 −0.480134
\(811\) 305.470 0.376659 0.188329 0.982106i \(-0.439693\pi\)
0.188329 + 0.982106i \(0.439693\pi\)
\(812\) 0 0
\(813\) −328.000 328.000i −0.403444 0.403444i
\(814\) 240.000i 0.294840i
\(815\) 961.665i 1.17996i
\(816\) −108.000 −0.132353
\(817\) −140.007 + 140.007i −0.171367 + 0.171367i
\(818\) −117.380 117.380i −0.143496 0.143496i
\(819\) 0 0
\(820\) 190.000 190.000i 0.231707 0.231707i
\(821\) 447.000 0.544458 0.272229 0.962232i \(-0.412239\pi\)
0.272229 + 0.962232i \(0.412239\pi\)
\(822\) 124.451 124.451i 0.151400 0.151400i
\(823\) −867.000 867.000i −1.05346 1.05346i −0.998488 0.0549752i \(-0.982492\pi\)
−0.0549752 0.998488i \(-0.517508\pi\)
\(824\) 138.593i 0.168195i
\(825\) −88.3883 + 88.3883i −0.107137 + 0.107137i
\(826\) 0 0
\(827\) 912.000 912.000i 1.10278 1.10278i 0.108707 0.994074i \(-0.465329\pi\)
0.994074 0.108707i \(-0.0346711\pi\)
\(828\) −128.000 128.000i −0.154589 0.154589i
\(829\) 660.438i 0.796668i −0.917240 0.398334i \(-0.869589\pi\)
0.917240 0.398334i \(-0.130411\pi\)
\(830\) 520.000 + 520.000i 0.626506 + 0.626506i
\(831\) 226.274 0.272291
\(832\) −16.9706 + 16.9706i −0.0203973 + 0.0203973i
\(833\) 0 0
\(834\) 176.000i 0.211031i
\(835\) −525.000 −0.628743
\(836\) 127.279 0.152248
\(837\) 697.000 697.000i 0.832736 0.832736i
\(838\) 496.389 + 496.389i 0.592350 + 0.592350i
\(839\) 1255.82i 1.49681i −0.663243 0.748404i \(-0.730821\pi\)
0.663243 0.748404i \(-0.269179\pi\)
\(840\) 0 0
\(841\) 552.000 0.656361
\(842\) 425.000 425.000i 0.504751 0.504751i
\(843\) −33.2340 33.2340i −0.0394235 0.0394235i
\(844\) 358.000i 0.424171i
\(845\) 565.685 565.685i 0.669450 0.669450i
\(846\) 803.273 0.949496
\(847\) 0 0
\(848\) 132.000 + 132.000i 0.155660 + 0.155660i
\(849\) 319.000i 0.375736i
\(850\) 954.594 1.12305
\(851\) −384.000 −0.451234
\(852\) −147.078 + 147.078i −0.172627 + 0.172627i
\(853\) −79.1960 79.1960i −0.0928440 0.0928440i 0.659159 0.752003i \(-0.270912\pi\)
−0.752003 + 0.659159i \(0.770912\pi\)
\(854\) 0 0
\(855\) 360.000 + 360.000i 0.421053 + 0.421053i
\(856\) 300.000 0.350467
\(857\) 707.107 707.107i 0.825095 0.825095i −0.161738 0.986834i \(-0.551710\pi\)
0.986834 + 0.161738i \(0.0517100\pi\)
\(858\) 15.0000 + 15.0000i 0.0174825 + 0.0174825i
\(859\) 780.646i 0.908785i −0.890802 0.454392i \(-0.849856\pi\)
0.890802 0.454392i \(-0.150144\pi\)
\(860\) 155.563 0.180888
\(861\) 0 0
\(862\) 171.000 171.000i 0.198376 0.198376i
\(863\) −3.00000 3.00000i −0.00347625 0.00347625i 0.705367 0.708843i \(-0.250782\pi\)
−0.708843 + 0.705367i \(0.750782\pi\)
\(864\) 96.1665i 0.111304i
\(865\) 1295.00i 1.49711i
\(866\) −381.838 −0.440921
\(867\) 311.127 311.127i 0.358855 0.358855i
\(868\) 0 0
\(869\) 575.000i 0.661680i
\(870\) 85.0000 85.0000i 0.0977011 0.0977011i
\(871\) 318.198 0.365325
\(872\) 238.000 238.000i 0.272936 0.272936i
\(873\) 650.538 + 650.538i 0.745176 + 0.745176i
\(874\) 203.647i 0.233005i
\(875\) 0 0
\(876\) −112.000 −0.127854
\(877\) −233.000 + 233.000i −0.265678 + 0.265678i −0.827356 0.561678i \(-0.810156\pi\)
0.561678 + 0.827356i \(0.310156\pi\)
\(878\) 147.078 + 147.078i 0.167515 + 0.167515i
\(879\) 29.0000i 0.0329920i
\(880\) −70.7107 70.7107i −0.0803530 0.0803530i
\(881\) 644.881 0.731988 0.365994 0.930617i \(-0.380729\pi\)
0.365994 + 0.930617i \(0.380729\pi\)
\(882\) 0 0
\(883\) −1152.00 1152.00i −1.30464 1.30464i −0.925225 0.379418i \(-0.876124\pi\)
−0.379418 0.925225i \(-0.623876\pi\)
\(884\) 162.000i 0.183258i
\(885\) 275.772 0.311606
\(886\) 666.000 0.751693
\(887\) −339.411 + 339.411i −0.382651 + 0.382651i −0.872056 0.489406i \(-0.837214\pi\)
0.489406 + 0.872056i \(0.337214\pi\)
\(888\) 67.8823 + 67.8823i 0.0764440 + 0.0764440i
\(889\) 0 0
\(890\) 800.000i 0.898876i
\(891\) −275.000 −0.308642
\(892\) 80.6102 80.6102i 0.0903701 0.0903701i
\(893\) −639.000 639.000i −0.715566 0.715566i
\(894\) 328.098i 0.366999i
\(895\) 56.5685 56.5685i 0.0632051 0.0632051i
\(896\) 0 0
\(897\) −24.0000 + 24.0000i −0.0267559 + 0.0267559i
\(898\) −305.000 305.000i −0.339644 0.339644i
\(899\) 985.707i 1.09645i
\(900\) 400.000i 0.444444i
\(901\) −1260.06 −1.39852
\(902\) 134.350 134.350i 0.148947 0.148947i
\(903\) 0 0
\(904\) 64.0000i 0.0707965i
\(905\) −735.000 735.000i −0.812155 0.812155i
\(906\) −4.24264 −0.00468283
\(907\) −936.000 + 936.000i −1.03197 + 1.03197i −0.0325019 + 0.999472i \(0.510347\pi\)
−0.999472 + 0.0325019i \(0.989653\pi\)
\(908\) −258.801 258.801i −0.285023 0.285023i
\(909\) 780.646i 0.858796i
\(910\) 0 0
\(911\) 152.000 0.166850 0.0834248 0.996514i \(-0.473414\pi\)
0.0834248 + 0.996514i \(0.473414\pi\)
\(912\) 36.0000 36.0000i 0.0394737 0.0394737i
\(913\) 367.696 + 367.696i 0.402733 + 0.402733i
\(914\) 414.000i 0.452954i
\(915\) 226.274i 0.247294i
\(916\) −466.690 −0.509487
\(917\) 0 0
\(918\) −459.000 459.000i −0.500000 0.500000i
\(919\) 1109.00i 1.20675i 0.797459 + 0.603373i \(0.206177\pi\)
−0.797459 + 0.603373i \(0.793823\pi\)
\(920\) 113.137 113.137i 0.122975 0.122975i
\(921\) 439.000 0.476656
\(922\) −305.470 + 305.470i −0.331313 + 0.331313i
\(923\) −220.617 220.617i −0.239022 0.239022i
\(924\) 0 0
\(925\) −600.000 600.000i −0.648649 0.648649i
\(926\) −624.000 −0.673866
\(927\) −277.186 + 277.186i −0.299014 + 0.299014i
\(928\) 68.0000 + 68.0000i 0.0732759 + 0.0732759i
\(929\) 106.066i 0.114172i −0.998369 0.0570861i \(-0.981819\pi\)
0.998369 0.0570861i \(-0.0181810\pi\)
\(930\) 289.914 + 289.914i 0.311735 + 0.311735i
\(931\) 0 0
\(932\) 640.000 640.000i 0.686695 0.686695i
\(933\) 287.000 + 287.000i 0.307610 + 0.307610i
\(934\) 643.467i 0.688937i
\(935\) 675.000 0.721925
\(936\) −67.8823 −0.0725238
\(937\) 812.466 812.466i 0.867093 0.867093i −0.125057 0.992150i \(-0.539911\pi\)
0.992150 + 0.125057i \(0.0399114\pi\)
\(938\) 0 0
\(939\) 277.000i 0.294995i
\(940\) 710.000i 0.755319i
\(941\) 1323.70 1.40670 0.703350 0.710844i \(-0.251687\pi\)
0.703350 + 0.710844i \(0.251687\pi\)
\(942\) −256.000 + 256.000i −0.271762 + 0.271762i
\(943\) 214.960 + 214.960i 0.227954 + 0.227954i
\(944\) 220.617i 0.233705i
\(945\) 0 0
\(946\) 110.000 0.116279
\(947\) 21.0000 21.0000i 0.0221753 0.0221753i −0.695932 0.718107i \(-0.745009\pi\)
0.718107 + 0.695932i \(0.245009\pi\)
\(948\) −162.635 162.635i −0.171555 0.171555i
\(949\) 168.000i 0.177028i
\(950\) −318.198 + 318.198i −0.334945 + 0.334945i
\(951\) −1.41421 −0.00148708
\(952\) 0 0
\(953\) 753.000 + 753.000i 0.790136 + 0.790136i 0.981516 0.191380i \(-0.0612962\pi\)
−0.191380 + 0.981516i \(0.561296\pi\)
\(954\) 528.000i 0.553459i
\(955\) −1205.62 1205.62i −1.26243 1.26243i
\(956\) −794.000 −0.830544
\(957\) 60.1041 60.1041i 0.0628047 0.0628047i
\(958\) 610.940 + 610.940i 0.637725 + 0.637725i
\(959\) 0 0
\(960\) −40.0000 −0.0416667
\(961\) 2401.00 2.49844
\(962\) −101.823 + 101.823i −0.105846 + 0.105846i
\(963\) 600.000 + 600.000i 0.623053 + 0.623053i
\(964\) 497.803i 0.516393i
\(965\) 509.117i 0.527582i
\(966\) 0 0
\(967\) 877.000 877.000i 0.906929 0.906929i −0.0890945 0.996023i \(-0.528397\pi\)
0.996023 + 0.0890945i \(0.0283973\pi\)
\(968\) 192.000 + 192.000i 0.198347 + 0.198347i
\(969\) 343.654i 0.354648i
\(970\) −575.000 + 575.000i −0.592784 + 0.592784i
\(971\) 892.369 0.919020 0.459510 0.888173i \(-0.348025\pi\)
0.459510 + 0.888173i \(0.348025\pi\)
\(972\) −294.156 + 294.156i −0.302630 + 0.302630i
\(973\) 0 0
\(974\) 16.0000i 0.0164271i
\(975\) −75.0000 −0.0769231
\(976\) 181.019 0.185471
\(977\) −9.00000 + 9.00000i −0.00921187 + 0.00921187i −0.711698 0.702486i \(-0.752073\pi\)
0.702486 + 0.711698i \(0.252073\pi\)
\(978\) 192.333 + 192.333i 0.196660 + 0.196660i
\(979\) 565.685i 0.577820i
\(980\) 0 0
\(981\) 952.000 0.970438
\(982\) 99.0000 99.0000i 0.100815 0.100815i
\(983\) 198.697 + 198.697i 0.202133 + 0.202133i 0.800913 0.598780i \(-0.204348\pi\)
−0.598780 + 0.800913i \(0.704348\pi\)
\(984\) 76.0000i 0.0772358i
\(985\) −1195.01 −1.21321
\(986\) −649.124 −0.658341
\(987\) 0 0
\(988\) 54.0000 + 54.0000i 0.0546559 + 0.0546559i
\(989\) 176.000i 0.177958i
\(990\) 282.843i 0.285700i
\(991\) 302.000 0.304743 0.152371 0.988323i \(-0.451309\pi\)
0.152371 + 0.988323i \(0.451309\pi\)
\(992\) −231.931 + 231.931i −0.233801 + 0.233801i
\(993\) 22.6274 + 22.6274i 0.0227869 + 0.0227869i
\(994\) 0 0
\(995\) −755.000 + 755.000i −0.758794 + 0.758794i
\(996\) 208.000 0.208835
\(997\) 92.6310 92.6310i 0.0929097 0.0929097i −0.659124 0.752034i \(-0.729073\pi\)
0.752034 + 0.659124i \(0.229073\pi\)
\(998\) −195.000 195.000i −0.195391 0.195391i
\(999\) 576.999i 0.577577i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.3.f.m.393.2 yes 4
5.2 odd 4 inner 490.3.f.m.197.2 yes 4
7.6 odd 2 inner 490.3.f.m.393.1 yes 4
35.27 even 4 inner 490.3.f.m.197.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
490.3.f.m.197.1 4 35.27 even 4 inner
490.3.f.m.197.2 yes 4 5.2 odd 4 inner
490.3.f.m.393.1 yes 4 7.6 odd 2 inner
490.3.f.m.393.2 yes 4 1.1 even 1 trivial