Properties

Label 490.3.f.m
Level $490$
Weight $3$
Character orbit 490.f
Analytic conductor $13.352$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,3,Mod(197,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 490.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,0,-8,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3515329537\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{2} + 1) q^{2} + \zeta_{8} q^{3} - 2 \zeta_{8}^{2} q^{4} + 5 \zeta_{8} q^{5} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{6} + ( - 2 \zeta_{8}^{2} - 2) q^{8} - 8 \zeta_{8}^{2} q^{9} + ( - 5 \zeta_{8}^{3} + 5 \zeta_{8}) q^{10} + \cdots - 40 \zeta_{8}^{2} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} + 20 q^{11} - 16 q^{16} - 32 q^{18} + 20 q^{22} + 32 q^{23} + 20 q^{30} - 16 q^{32} - 64 q^{36} - 96 q^{37} + 44 q^{43} + 64 q^{46} + 100 q^{50} + 108 q^{51} - 132 q^{53} - 36 q^{57}+ \cdots - 180 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
197.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
1.00000 + 1.00000i −0.707107 + 0.707107i 2.00000i −3.53553 + 3.53553i −1.41421 0 −2.00000 + 2.00000i 8.00000i −7.07107
197.2 1.00000 + 1.00000i 0.707107 0.707107i 2.00000i 3.53553 3.53553i 1.41421 0 −2.00000 + 2.00000i 8.00000i 7.07107
393.1 1.00000 1.00000i −0.707107 0.707107i 2.00000i −3.53553 3.53553i −1.41421 0 −2.00000 2.00000i 8.00000i −7.07107
393.2 1.00000 1.00000i 0.707107 + 0.707107i 2.00000i 3.53553 + 3.53553i 1.41421 0 −2.00000 2.00000i 8.00000i 7.07107
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.b odd 2 1 inner
35.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.3.f.m 4
5.c odd 4 1 inner 490.3.f.m 4
7.b odd 2 1 inner 490.3.f.m 4
35.f even 4 1 inner 490.3.f.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
490.3.f.m 4 1.a even 1 1 trivial
490.3.f.m 4 5.c odd 4 1 inner
490.3.f.m 4 7.b odd 2 1 inner
490.3.f.m 4 35.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(490, [\chi])\):

\( T_{3}^{4} + 1 \) Copy content Toggle raw display
\( T_{11} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 625 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T - 5)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 81 \) Copy content Toggle raw display
$17$ \( T^{4} + 531441 \) Copy content Toggle raw display
$19$ \( (T^{2} + 162)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 16 T + 128)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 289)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 3362)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 48 T + 1152)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 722)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 22 T + 242)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 25411681 \) Copy content Toggle raw display
$53$ \( (T^{2} + 66 T + 2178)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 3042)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 2048)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 150 T + 11250)^{2} \) Copy content Toggle raw display
$71$ \( (T + 104)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 9834496 \) Copy content Toggle raw display
$79$ \( (T^{2} + 13225)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 116985856 \) Copy content Toggle raw display
$89$ \( (T^{2} + 12800)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 174900625 \) Copy content Toggle raw display
show more
show less