Properties

Label 490.2.e.e
Level $490$
Weight $2$
Character orbit 490.e
Analytic conductor $3.913$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.91266969904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + ( 2 - 2 \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} -2 q^{6} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + ( 2 - 2 \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} -2 q^{6} + q^{8} -\zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{10} + ( 4 - 4 \zeta_{6} ) q^{11} + 2 \zeta_{6} q^{12} -2 q^{13} + 2 q^{15} -\zeta_{6} q^{16} + ( 8 - 8 \zeta_{6} ) q^{17} + ( -1 + \zeta_{6} ) q^{18} -6 \zeta_{6} q^{19} - q^{20} -4 q^{22} + 4 \zeta_{6} q^{23} + ( 2 - 2 \zeta_{6} ) q^{24} + ( -1 + \zeta_{6} ) q^{25} + 2 \zeta_{6} q^{26} + 4 q^{27} -6 q^{29} -2 \zeta_{6} q^{30} + ( 4 - 4 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -8 \zeta_{6} q^{33} -8 q^{34} + q^{36} + 10 \zeta_{6} q^{37} + ( -6 + 6 \zeta_{6} ) q^{38} + ( -4 + 4 \zeta_{6} ) q^{39} + \zeta_{6} q^{40} -4 q^{41} + 4 q^{43} + 4 \zeta_{6} q^{44} + ( 1 - \zeta_{6} ) q^{45} + ( 4 - 4 \zeta_{6} ) q^{46} + 4 \zeta_{6} q^{47} -2 q^{48} + q^{50} -16 \zeta_{6} q^{51} + ( 2 - 2 \zeta_{6} ) q^{52} + ( -10 + 10 \zeta_{6} ) q^{53} -4 \zeta_{6} q^{54} + 4 q^{55} -12 q^{57} + 6 \zeta_{6} q^{58} + ( -14 + 14 \zeta_{6} ) q^{59} + ( -2 + 2 \zeta_{6} ) q^{60} -10 \zeta_{6} q^{61} -4 q^{62} + q^{64} -2 \zeta_{6} q^{65} + ( -8 + 8 \zeta_{6} ) q^{66} + ( 4 - 4 \zeta_{6} ) q^{67} + 8 \zeta_{6} q^{68} + 8 q^{69} + 12 q^{71} -\zeta_{6} q^{72} + ( 4 - 4 \zeta_{6} ) q^{73} + ( 10 - 10 \zeta_{6} ) q^{74} + 2 \zeta_{6} q^{75} + 6 q^{76} + 4 q^{78} -4 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} + ( 11 - 11 \zeta_{6} ) q^{81} + 4 \zeta_{6} q^{82} + 2 q^{83} + 8 q^{85} -4 \zeta_{6} q^{86} + ( -12 + 12 \zeta_{6} ) q^{87} + ( 4 - 4 \zeta_{6} ) q^{88} + 8 \zeta_{6} q^{89} - q^{90} -4 q^{92} -8 \zeta_{6} q^{93} + ( 4 - 4 \zeta_{6} ) q^{94} + ( 6 - 6 \zeta_{6} ) q^{95} + 2 \zeta_{6} q^{96} -4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + 2q^{3} - q^{4} + q^{5} - 4q^{6} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} + 2q^{3} - q^{4} + q^{5} - 4q^{6} + 2q^{8} - q^{9} + q^{10} + 4q^{11} + 2q^{12} - 4q^{13} + 4q^{15} - q^{16} + 8q^{17} - q^{18} - 6q^{19} - 2q^{20} - 8q^{22} + 4q^{23} + 2q^{24} - q^{25} + 2q^{26} + 8q^{27} - 12q^{29} - 2q^{30} + 4q^{31} - q^{32} - 8q^{33} - 16q^{34} + 2q^{36} + 10q^{37} - 6q^{38} - 4q^{39} + q^{40} - 8q^{41} + 8q^{43} + 4q^{44} + q^{45} + 4q^{46} + 4q^{47} - 4q^{48} + 2q^{50} - 16q^{51} + 2q^{52} - 10q^{53} - 4q^{54} + 8q^{55} - 24q^{57} + 6q^{58} - 14q^{59} - 2q^{60} - 10q^{61} - 8q^{62} + 2q^{64} - 2q^{65} - 8q^{66} + 4q^{67} + 8q^{68} + 16q^{69} + 24q^{71} - q^{72} + 4q^{73} + 10q^{74} + 2q^{75} + 12q^{76} + 8q^{78} - 4q^{79} + q^{80} + 11q^{81} + 4q^{82} + 4q^{83} + 16q^{85} - 4q^{86} - 12q^{87} + 4q^{88} + 8q^{89} - 2q^{90} - 8q^{92} - 8q^{93} + 4q^{94} + 6q^{95} + 2q^{96} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 1.00000 1.73205i −0.500000 + 0.866025i 0.500000 + 0.866025i −2.00000 0 1.00000 −0.500000 0.866025i 0.500000 0.866025i
471.1 −0.500000 + 0.866025i 1.00000 + 1.73205i −0.500000 0.866025i 0.500000 0.866025i −2.00000 0 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.2.e.e 2
7.b odd 2 1 490.2.e.b 2
7.c even 3 1 490.2.a.f 1
7.c even 3 1 inner 490.2.e.e 2
7.d odd 6 1 490.2.a.i yes 1
7.d odd 6 1 490.2.e.b 2
21.g even 6 1 4410.2.a.i 1
21.h odd 6 1 4410.2.a.s 1
28.f even 6 1 3920.2.a.j 1
28.g odd 6 1 3920.2.a.bg 1
35.i odd 6 1 2450.2.a.d 1
35.j even 6 1 2450.2.a.n 1
35.k even 12 2 2450.2.c.n 2
35.l odd 12 2 2450.2.c.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
490.2.a.f 1 7.c even 3 1
490.2.a.i yes 1 7.d odd 6 1
490.2.e.b 2 7.b odd 2 1
490.2.e.b 2 7.d odd 6 1
490.2.e.e 2 1.a even 1 1 trivial
490.2.e.e 2 7.c even 3 1 inner
2450.2.a.d 1 35.i odd 6 1
2450.2.a.n 1 35.j even 6 1
2450.2.c.b 2 35.l odd 12 2
2450.2.c.n 2 35.k even 12 2
3920.2.a.j 1 28.f even 6 1
3920.2.a.bg 1 28.g odd 6 1
4410.2.a.i 1 21.g even 6 1
4410.2.a.s 1 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(490, [\chi])\):

\( T_{3}^{2} - 2 T_{3} + 4 \)
\( T_{11}^{2} - 4 T_{11} + 16 \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 4 - 2 T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 16 - 4 T + T^{2} \)
$13$ \( ( 2 + T )^{2} \)
$17$ \( 64 - 8 T + T^{2} \)
$19$ \( 36 + 6 T + T^{2} \)
$23$ \( 16 - 4 T + T^{2} \)
$29$ \( ( 6 + T )^{2} \)
$31$ \( 16 - 4 T + T^{2} \)
$37$ \( 100 - 10 T + T^{2} \)
$41$ \( ( 4 + T )^{2} \)
$43$ \( ( -4 + T )^{2} \)
$47$ \( 16 - 4 T + T^{2} \)
$53$ \( 100 + 10 T + T^{2} \)
$59$ \( 196 + 14 T + T^{2} \)
$61$ \( 100 + 10 T + T^{2} \)
$67$ \( 16 - 4 T + T^{2} \)
$71$ \( ( -12 + T )^{2} \)
$73$ \( 16 - 4 T + T^{2} \)
$79$ \( 16 + 4 T + T^{2} \)
$83$ \( ( -2 + T )^{2} \)
$89$ \( 64 - 8 T + T^{2} \)
$97$ \( T^{2} \)
show more
show less