Properties

Label 490.2.e
Level $490$
Weight $2$
Character orbit 490.e
Rep. character $\chi_{490}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $10$
Sturm bound $168$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 10 \)
Sturm bound: \(168\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(490, [\chi])\).

Total New Old
Modular forms 200 24 176
Cusp forms 136 24 112
Eisenstein series 64 0 64

Trace form

\( 24 q - 12 q^{4} - 2 q^{5} - 4 q^{6} - 14 q^{9} - 2 q^{10} - 6 q^{11} + 16 q^{15} - 12 q^{16} - 4 q^{17} + 8 q^{18} - 6 q^{19} + 4 q^{20} - 8 q^{22} + 12 q^{23} + 2 q^{24} - 12 q^{25} + 10 q^{26} - 24 q^{27}+ \cdots - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(490, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
490.2.e.a 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 70.2.e.b \(-1\) \(-2\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
490.2.e.b 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 490.2.a.f \(-1\) \(-2\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
490.2.e.c 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 70.2.a.a \(-1\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}-\zeta_{6}q^{5}+q^{8}+\cdots\)
490.2.e.d 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 70.2.a.a \(-1\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{4}+\zeta_{6}q^{5}+q^{8}+\cdots\)
490.2.e.e 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 490.2.a.f \(-1\) \(2\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
490.2.e.f 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 70.2.e.a \(-1\) \(3\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(3-3\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
490.2.e.g 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 70.2.e.d \(1\) \(-2\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
490.2.e.h 490.e 7.c $2$ $3.913$ \(\Q(\sqrt{-3}) \) None 70.2.e.c \(1\) \(1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
490.2.e.i 490.e 7.c $4$ $3.913$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 490.2.a.l \(2\) \(-4\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{2}+(\beta _{1}+2\beta _{2}+\beta _{3})q^{3}+\cdots\)
490.2.e.j 490.e 7.c $4$ $3.913$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 490.2.a.l \(2\) \(4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(2+\beta _{1}+2\beta _{2})q^{3}+(-1+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(490, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(490, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)