Properties

Label 49.7.b.a.48.2
Level $49$
Weight $7$
Character 49.48
Analytic conductor $11.273$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,7,Mod(48,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.48"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 49.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2726500974\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 7 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 48.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 49.48
Dual form 49.7.b.a.48.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.0000 q^{2} +12.1244i q^{3} +80.0000 q^{4} +181.865i q^{5} -145.492i q^{6} -192.000 q^{8} +582.000 q^{9} -2182.38i q^{10} +1479.00 q^{11} +969.948i q^{12} +484.974i q^{13} -2205.00 q^{15} -2816.00 q^{16} +3018.96i q^{17} -6984.00 q^{18} +6874.51i q^{19} +14549.2i q^{20} -17748.0 q^{22} -5913.00 q^{23} -2327.88i q^{24} -17450.0 q^{25} -5819.69i q^{26} +15895.0i q^{27} +3978.00 q^{29} +26460.0 q^{30} +12815.4i q^{31} +46080.0 q^{32} +17931.9i q^{33} -36227.6i q^{34} +46560.0 q^{36} -61577.0 q^{37} -82494.1i q^{38} -5880.00 q^{39} -34918.1i q^{40} -110574. i q^{41} -17414.0 q^{43} +118320. q^{44} +105846. i q^{45} +70956.0 q^{46} -30662.5i q^{47} -34142.2i q^{48} +209400. q^{50} -36603.0 q^{51} +38797.9i q^{52} -60513.0 q^{53} -190740. i q^{54} +268979. i q^{55} -83349.0 q^{57} -47736.0 q^{58} +215729. i q^{59} -176400. q^{60} +162745. i q^{61} -153785. i q^{62} -372736. q^{64} -88200.0 q^{65} -215183. i q^{66} -268777. q^{67} +241517. i q^{68} -71691.3i q^{69} +101922. q^{71} -111744. q^{72} -317646. i q^{73} +738924. q^{74} -211570. i q^{75} +549961. i q^{76} +70560.0 q^{78} +362231. q^{79} -512133. i q^{80} +231561. q^{81} +1.32689e6i q^{82} +216783. i q^{83} -549045. q^{85} +208968. q^{86} +48230.7i q^{87} -283968. q^{88} -1.33456e6i q^{89} -1.27015e6i q^{90} -473040. q^{92} -155379. q^{93} +367950. i q^{94} -1.25024e6 q^{95} +558690. i q^{96} +1.51409e6i q^{97} +860778. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 24 q^{2} + 160 q^{4} - 384 q^{8} + 1164 q^{9} + 2958 q^{11} - 4410 q^{15} - 5632 q^{16} - 13968 q^{18} - 35496 q^{22} - 11826 q^{23} - 34900 q^{25} + 7956 q^{29} + 52920 q^{30} + 92160 q^{32} + 93120 q^{36}+ \cdots + 1721556 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.0000 −1.50000 −0.750000 0.661438i \(-0.769947\pi\)
−0.750000 + 0.661438i \(0.769947\pi\)
\(3\) 12.1244i 0.449050i 0.974468 + 0.224525i \(0.0720831\pi\)
−0.974468 + 0.224525i \(0.927917\pi\)
\(4\) 80.0000 1.25000
\(5\) 181.865i 1.45492i 0.686149 + 0.727461i \(0.259300\pi\)
−0.686149 + 0.727461i \(0.740700\pi\)
\(6\) − 145.492i − 0.673575i
\(7\) 0 0
\(8\) −192.000 −0.375000
\(9\) 582.000 0.798354
\(10\) − 2182.38i − 2.18238i
\(11\) 1479.00 1.11119 0.555597 0.831452i \(-0.312490\pi\)
0.555597 + 0.831452i \(0.312490\pi\)
\(12\) 969.948i 0.561313i
\(13\) 484.974i 0.220744i 0.993890 + 0.110372i \(0.0352042\pi\)
−0.993890 + 0.110372i \(0.964796\pi\)
\(14\) 0 0
\(15\) −2205.00 −0.653333
\(16\) −2816.00 −0.687500
\(17\) 3018.96i 0.614485i 0.951631 + 0.307242i \(0.0994063\pi\)
−0.951631 + 0.307242i \(0.900594\pi\)
\(18\) −6984.00 −1.19753
\(19\) 6874.51i 1.00226i 0.865372 + 0.501131i \(0.167082\pi\)
−0.865372 + 0.501131i \(0.832918\pi\)
\(20\) 14549.2i 1.81865i
\(21\) 0 0
\(22\) −17748.0 −1.66679
\(23\) −5913.00 −0.485987 −0.242993 0.970028i \(-0.578129\pi\)
−0.242993 + 0.970028i \(0.578129\pi\)
\(24\) − 2327.88i − 0.168394i
\(25\) −17450.0 −1.11680
\(26\) − 5819.69i − 0.331116i
\(27\) 15895.0i 0.807551i
\(28\) 0 0
\(29\) 3978.00 0.163106 0.0815532 0.996669i \(-0.474012\pi\)
0.0815532 + 0.996669i \(0.474012\pi\)
\(30\) 26460.0 0.980000
\(31\) 12815.4i 0.430178i 0.976594 + 0.215089i \(0.0690042\pi\)
−0.976594 + 0.215089i \(0.930996\pi\)
\(32\) 46080.0 1.40625
\(33\) 17931.9i 0.498982i
\(34\) − 36227.6i − 0.921727i
\(35\) 0 0
\(36\) 46560.0 0.997942
\(37\) −61577.0 −1.21566 −0.607832 0.794066i \(-0.707960\pi\)
−0.607832 + 0.794066i \(0.707960\pi\)
\(38\) − 82494.1i − 1.50339i
\(39\) −5880.00 −0.0991251
\(40\) − 34918.1i − 0.545596i
\(41\) − 110574.i − 1.60436i −0.597082 0.802180i \(-0.703673\pi\)
0.597082 0.802180i \(-0.296327\pi\)
\(42\) 0 0
\(43\) −17414.0 −0.219025 −0.109512 0.993985i \(-0.534929\pi\)
−0.109512 + 0.993985i \(0.534929\pi\)
\(44\) 118320. 1.38899
\(45\) 105846.i 1.16154i
\(46\) 70956.0 0.728980
\(47\) − 30662.5i − 0.295334i −0.989037 0.147667i \(-0.952824\pi\)
0.989037 0.147667i \(-0.0471764\pi\)
\(48\) − 34142.2i − 0.308722i
\(49\) 0 0
\(50\) 209400. 1.67520
\(51\) −36603.0 −0.275935
\(52\) 38797.9i 0.275930i
\(53\) −60513.0 −0.406463 −0.203232 0.979131i \(-0.565144\pi\)
−0.203232 + 0.979131i \(0.565144\pi\)
\(54\) − 190740.i − 1.21133i
\(55\) 268979.i 1.61670i
\(56\) 0 0
\(57\) −83349.0 −0.450066
\(58\) −47736.0 −0.244659
\(59\) 215729.i 1.05039i 0.850981 + 0.525196i \(0.176008\pi\)
−0.850981 + 0.525196i \(0.823992\pi\)
\(60\) −176400. −0.816667
\(61\) 162745.i 0.716999i 0.933530 + 0.358500i \(0.116712\pi\)
−0.933530 + 0.358500i \(0.883288\pi\)
\(62\) − 153785.i − 0.645268i
\(63\) 0 0
\(64\) −372736. −1.42188
\(65\) −88200.0 −0.321165
\(66\) − 215183.i − 0.748473i
\(67\) −268777. −0.893650 −0.446825 0.894621i \(-0.647445\pi\)
−0.446825 + 0.894621i \(0.647445\pi\)
\(68\) 241517.i 0.768106i
\(69\) − 71691.3i − 0.218232i
\(70\) 0 0
\(71\) 101922. 0.284769 0.142385 0.989811i \(-0.454523\pi\)
0.142385 + 0.989811i \(0.454523\pi\)
\(72\) −111744. −0.299383
\(73\) − 317646.i − 0.816535i −0.912862 0.408267i \(-0.866133\pi\)
0.912862 0.408267i \(-0.133867\pi\)
\(74\) 738924. 1.82350
\(75\) − 211570.i − 0.501499i
\(76\) 549961.i 1.25283i
\(77\) 0 0
\(78\) 70560.0 0.148688
\(79\) 362231. 0.734690 0.367345 0.930085i \(-0.380267\pi\)
0.367345 + 0.930085i \(0.380267\pi\)
\(80\) − 512133.i − 1.00026i
\(81\) 231561. 0.435723
\(82\) 1.32689e6i 2.40654i
\(83\) 216783.i 0.379133i 0.981868 + 0.189567i \(0.0607083\pi\)
−0.981868 + 0.189567i \(0.939292\pi\)
\(84\) 0 0
\(85\) −549045. −0.894028
\(86\) 208968. 0.328537
\(87\) 48230.7i 0.0732429i
\(88\) −283968. −0.416698
\(89\) − 1.33456e6i − 1.89308i −0.322583 0.946541i \(-0.604551\pi\)
0.322583 0.946541i \(-0.395449\pi\)
\(90\) − 1.27015e6i − 1.74231i
\(91\) 0 0
\(92\) −473040. −0.607483
\(93\) −155379. −0.193172
\(94\) 367950.i 0.443001i
\(95\) −1.25024e6 −1.45821
\(96\) 558690.i 0.631477i
\(97\) 1.51409e6i 1.65896i 0.558535 + 0.829481i \(0.311364\pi\)
−0.558535 + 0.829481i \(0.688636\pi\)
\(98\) 0 0
\(99\) 860778. 0.887127
\(100\) −1.39600e6 −1.39600
\(101\) 1.32467e6i 1.28571i 0.765987 + 0.642856i \(0.222251\pi\)
−0.765987 + 0.642856i \(0.777749\pi\)
\(102\) 439236. 0.413902
\(103\) 64004.5i 0.0585732i 0.999571 + 0.0292866i \(0.00932354\pi\)
−0.999571 + 0.0292866i \(0.990676\pi\)
\(104\) − 93115.1i − 0.0827789i
\(105\) 0 0
\(106\) 726156. 0.609695
\(107\) 660543. 0.539200 0.269600 0.962972i \(-0.413109\pi\)
0.269600 + 0.962972i \(0.413109\pi\)
\(108\) 1.27160e6i 1.00944i
\(109\) −73169.0 −0.0564999 −0.0282499 0.999601i \(-0.508993\pi\)
−0.0282499 + 0.999601i \(0.508993\pi\)
\(110\) − 3.22775e6i − 2.42505i
\(111\) − 746581.i − 0.545894i
\(112\) 0 0
\(113\) 1.60351e6 1.11131 0.555655 0.831413i \(-0.312468\pi\)
0.555655 + 0.831413i \(0.312468\pi\)
\(114\) 1.00019e6 0.675098
\(115\) − 1.07537e6i − 0.707073i
\(116\) 318240. 0.203883
\(117\) 282255.i 0.176232i
\(118\) − 2.58874e6i − 1.57559i
\(119\) 0 0
\(120\) 423360. 0.245000
\(121\) 415880. 0.234753
\(122\) − 1.95294e6i − 1.07550i
\(123\) 1.34064e6 0.720438
\(124\) 1.02524e6i 0.537723i
\(125\) − 331904.i − 0.169935i
\(126\) 0 0
\(127\) −3.22997e6 −1.57684 −0.788418 0.615139i \(-0.789100\pi\)
−0.788418 + 0.615139i \(0.789100\pi\)
\(128\) 1.52371e6 0.726562
\(129\) − 211134.i − 0.0983531i
\(130\) 1.05840e6 0.481748
\(131\) 1.99546e6i 0.887625i 0.896120 + 0.443813i \(0.146374\pi\)
−0.896120 + 0.443813i \(0.853626\pi\)
\(132\) 1.43455e6i 0.623728i
\(133\) 0 0
\(134\) 3.22532e6 1.34048
\(135\) −2.89076e6 −1.17492
\(136\) − 579641.i − 0.230432i
\(137\) 1.42158e6 0.552854 0.276427 0.961035i \(-0.410850\pi\)
0.276427 + 0.961035i \(0.410850\pi\)
\(138\) 860296.i 0.327349i
\(139\) − 2.43603e6i − 0.907063i −0.891240 0.453531i \(-0.850164\pi\)
0.891240 0.453531i \(-0.149836\pi\)
\(140\) 0 0
\(141\) 371763. 0.132620
\(142\) −1.22306e6 −0.427154
\(143\) 717277.i 0.245289i
\(144\) −1.63891e6 −0.548868
\(145\) 723460.i 0.237307i
\(146\) 3.81175e6i 1.22480i
\(147\) 0 0
\(148\) −4.92616e6 −1.51958
\(149\) 3.14375e6 0.950363 0.475181 0.879888i \(-0.342382\pi\)
0.475181 + 0.879888i \(0.342382\pi\)
\(150\) 2.53884e6i 0.752249i
\(151\) −2.28220e6 −0.662862 −0.331431 0.943479i \(-0.607531\pi\)
−0.331431 + 0.943479i \(0.607531\pi\)
\(152\) − 1.31991e6i − 0.375848i
\(153\) 1.75704e6i 0.490576i
\(154\) 0 0
\(155\) −2.33068e6 −0.625876
\(156\) −470400. −0.123906
\(157\) 148511.i 0.0383761i 0.999816 + 0.0191880i \(0.00610811\pi\)
−0.999816 + 0.0191880i \(0.993892\pi\)
\(158\) −4.34677e6 −1.10204
\(159\) − 733681.i − 0.182522i
\(160\) 8.38035e6i 2.04599i
\(161\) 0 0
\(162\) −2.77873e6 −0.653584
\(163\) −7.09747e6 −1.63886 −0.819428 0.573182i \(-0.805709\pi\)
−0.819428 + 0.573182i \(0.805709\pi\)
\(164\) − 8.84593e6i − 2.00545i
\(165\) −3.26120e6 −0.725980
\(166\) − 2.60140e6i − 0.568700i
\(167\) − 645986.i − 0.138699i −0.997592 0.0693495i \(-0.977908\pi\)
0.997592 0.0693495i \(-0.0220924\pi\)
\(168\) 0 0
\(169\) 4.59161e6 0.951272
\(170\) 6.58854e6 1.34104
\(171\) 4.00096e6i 0.800159i
\(172\) −1.39312e6 −0.273781
\(173\) 3.13583e6i 0.605640i 0.953048 + 0.302820i \(0.0979281\pi\)
−0.953048 + 0.302820i \(0.902072\pi\)
\(174\) − 578768.i − 0.109864i
\(175\) 0 0
\(176\) −4.16486e6 −0.763946
\(177\) −2.61557e6 −0.471679
\(178\) 1.60148e7i 2.83962i
\(179\) 1.01628e7 1.77196 0.885980 0.463724i \(-0.153487\pi\)
0.885980 + 0.463724i \(0.153487\pi\)
\(180\) 8.46765e6i 1.45193i
\(181\) − 8.72517e6i − 1.47143i −0.677294 0.735713i \(-0.736847\pi\)
0.677294 0.735713i \(-0.263153\pi\)
\(182\) 0 0
\(183\) −1.97318e6 −0.321969
\(184\) 1.13530e6 0.182245
\(185\) − 1.11987e7i − 1.76870i
\(186\) 1.86455e6 0.289758
\(187\) 4.46505e6i 0.682812i
\(188\) − 2.45300e6i − 0.369168i
\(189\) 0 0
\(190\) 1.50028e7 2.18732
\(191\) 4.23844e6 0.608283 0.304142 0.952627i \(-0.401630\pi\)
0.304142 + 0.952627i \(0.401630\pi\)
\(192\) − 4.51918e6i − 0.638493i
\(193\) 6.14821e6 0.855217 0.427609 0.903964i \(-0.359356\pi\)
0.427609 + 0.903964i \(0.359356\pi\)
\(194\) − 1.81691e7i − 2.48844i
\(195\) − 1.06937e6i − 0.144219i
\(196\) 0 0
\(197\) 790554. 0.103403 0.0517015 0.998663i \(-0.483536\pi\)
0.0517015 + 0.998663i \(0.483536\pi\)
\(198\) −1.03293e7 −1.33069
\(199\) − 8.12583e6i − 1.03112i −0.856854 0.515559i \(-0.827584\pi\)
0.856854 0.515559i \(-0.172416\pi\)
\(200\) 3.35040e6 0.418800
\(201\) − 3.25875e6i − 0.401294i
\(202\) − 1.58960e7i − 1.92857i
\(203\) 0 0
\(204\) −2.92824e6 −0.344918
\(205\) 2.01096e7 2.33422
\(206\) − 768054.i − 0.0878597i
\(207\) −3.44137e6 −0.387989
\(208\) − 1.36569e6i − 0.151761i
\(209\) 1.01674e7i 1.11371i
\(210\) 0 0
\(211\) 1.16724e7 1.24254 0.621271 0.783595i \(-0.286616\pi\)
0.621271 + 0.783595i \(0.286616\pi\)
\(212\) −4.84104e6 −0.508079
\(213\) 1.23574e6i 0.127876i
\(214\) −7.92652e6 −0.808800
\(215\) − 3.16700e6i − 0.318664i
\(216\) − 3.05185e6i − 0.302832i
\(217\) 0 0
\(218\) 878028. 0.0847498
\(219\) 3.85125e6 0.366665
\(220\) 2.15183e7i 2.02088i
\(221\) −1.46412e6 −0.135644
\(222\) 8.95898e6i 0.818841i
\(223\) − 2.89821e6i − 0.261345i −0.991426 0.130673i \(-0.958286\pi\)
0.991426 0.130673i \(-0.0417137\pi\)
\(224\) 0 0
\(225\) −1.01559e7 −0.891602
\(226\) −1.92421e7 −1.66697
\(227\) 1.67710e7i 1.43378i 0.697188 + 0.716888i \(0.254434\pi\)
−0.697188 + 0.716888i \(0.745566\pi\)
\(228\) −6.66792e6 −0.562582
\(229\) − 1.74779e7i − 1.45540i −0.685895 0.727701i \(-0.740589\pi\)
0.685895 0.727701i \(-0.259411\pi\)
\(230\) 1.29044e7i 1.06061i
\(231\) 0 0
\(232\) −763776. −0.0611649
\(233\) −1.02044e7 −0.806711 −0.403355 0.915043i \(-0.632156\pi\)
−0.403355 + 0.915043i \(0.632156\pi\)
\(234\) − 3.38706e6i − 0.264348i
\(235\) 5.57644e6 0.429689
\(236\) 1.72583e7i 1.31299i
\(237\) 4.39182e6i 0.329913i
\(238\) 0 0
\(239\) 1.43114e6 0.104831 0.0524153 0.998625i \(-0.483308\pi\)
0.0524153 + 0.998625i \(0.483308\pi\)
\(240\) 6.20928e6 0.449167
\(241\) − 1.55039e7i − 1.10762i −0.832643 0.553810i \(-0.813173\pi\)
0.832643 0.553810i \(-0.186827\pi\)
\(242\) −4.99056e6 −0.352130
\(243\) 1.43950e7i 1.00321i
\(244\) 1.30196e7i 0.896249i
\(245\) 0 0
\(246\) −1.60877e7 −1.08066
\(247\) −3.33396e6 −0.221243
\(248\) − 2.46057e6i − 0.161317i
\(249\) −2.62836e6 −0.170250
\(250\) 3.98285e6i 0.254902i
\(251\) 3.44089e6i 0.217595i 0.994064 + 0.108798i \(0.0347001\pi\)
−0.994064 + 0.108798i \(0.965300\pi\)
\(252\) 0 0
\(253\) −8.74533e6 −0.540026
\(254\) 3.87596e7 2.36526
\(255\) − 6.65682e6i − 0.401464i
\(256\) 5.57056e6 0.332031
\(257\) − 2.32527e7i − 1.36985i −0.728613 0.684926i \(-0.759834\pi\)
0.728613 0.684926i \(-0.240166\pi\)
\(258\) 2.53360e6i 0.147530i
\(259\) 0 0
\(260\) −7.05600e6 −0.401457
\(261\) 2.31520e6 0.130217
\(262\) − 2.39456e7i − 1.33144i
\(263\) −2.82618e7 −1.55358 −0.776789 0.629761i \(-0.783153\pi\)
−0.776789 + 0.629761i \(0.783153\pi\)
\(264\) − 3.44293e6i − 0.187118i
\(265\) − 1.10052e7i − 0.591372i
\(266\) 0 0
\(267\) 1.61807e7 0.850089
\(268\) −2.15022e7 −1.11706
\(269\) − 1.58102e7i − 0.812235i −0.913821 0.406118i \(-0.866882\pi\)
0.913821 0.406118i \(-0.133118\pi\)
\(270\) 3.46891e7 1.76239
\(271\) 3.65028e7i 1.83408i 0.398793 + 0.917041i \(0.369429\pi\)
−0.398793 + 0.917041i \(0.630571\pi\)
\(272\) − 8.50140e6i − 0.422458i
\(273\) 0 0
\(274\) −1.70590e7 −0.829281
\(275\) −2.58086e7 −1.24098
\(276\) − 5.73531e6i − 0.272791i
\(277\) 3.14807e7 1.48117 0.740585 0.671962i \(-0.234548\pi\)
0.740585 + 0.671962i \(0.234548\pi\)
\(278\) 2.92323e7i 1.36059i
\(279\) 7.45859e6i 0.343435i
\(280\) 0 0
\(281\) 6.62368e6 0.298525 0.149262 0.988798i \(-0.452310\pi\)
0.149262 + 0.988798i \(0.452310\pi\)
\(282\) −4.46116e6 −0.198930
\(283\) 4.02480e7i 1.77576i 0.460071 + 0.887882i \(0.347824\pi\)
−0.460071 + 0.887882i \(0.652176\pi\)
\(284\) 8.15376e6 0.355961
\(285\) − 1.51583e7i − 0.654811i
\(286\) − 8.60732e6i − 0.367934i
\(287\) 0 0
\(288\) 2.68186e7 1.12269
\(289\) 1.50234e7 0.622408
\(290\) − 8.68152e6i − 0.355961i
\(291\) −1.83574e7 −0.744957
\(292\) − 2.54117e7i − 1.02067i
\(293\) 1.26797e7i 0.504086i 0.967716 + 0.252043i \(0.0811024\pi\)
−0.967716 + 0.252043i \(0.918898\pi\)
\(294\) 0 0
\(295\) −3.92336e7 −1.52824
\(296\) 1.18228e7 0.455874
\(297\) 2.35087e7i 0.897347i
\(298\) −3.77250e7 −1.42554
\(299\) − 2.86765e6i − 0.107279i
\(300\) − 1.69256e7i − 0.626874i
\(301\) 0 0
\(302\) 2.73864e7 0.994293
\(303\) −1.60608e7 −0.577349
\(304\) − 1.93586e7i − 0.689055i
\(305\) −2.95977e7 −1.04318
\(306\) − 2.10844e7i − 0.735865i
\(307\) 1.77258e6i 0.0612620i 0.999531 + 0.0306310i \(0.00975167\pi\)
−0.999531 + 0.0306310i \(0.990248\pi\)
\(308\) 0 0
\(309\) −776013. −0.0263023
\(310\) 2.79682e7 0.938814
\(311\) 3.65265e7i 1.21430i 0.794586 + 0.607152i \(0.207688\pi\)
−0.794586 + 0.607152i \(0.792312\pi\)
\(312\) 1.12896e6 0.0371719
\(313\) 1.16049e7i 0.378451i 0.981934 + 0.189226i \(0.0605977\pi\)
−0.981934 + 0.189226i \(0.939402\pi\)
\(314\) − 1.78213e6i − 0.0575641i
\(315\) 0 0
\(316\) 2.89785e7 0.918363
\(317\) 2.11641e7 0.664388 0.332194 0.943211i \(-0.392211\pi\)
0.332194 + 0.943211i \(0.392211\pi\)
\(318\) 8.80417e6i 0.273783i
\(319\) 5.88346e6 0.181243
\(320\) − 6.77878e7i − 2.06872i
\(321\) 8.00866e6i 0.242128i
\(322\) 0 0
\(323\) −2.07539e7 −0.615874
\(324\) 1.85249e7 0.544654
\(325\) − 8.46280e6i − 0.246527i
\(326\) 8.51697e7 2.45828
\(327\) − 887127.i − 0.0253713i
\(328\) 2.12302e7i 0.601635i
\(329\) 0 0
\(330\) 3.91343e7 1.08897
\(331\) −5.92199e7 −1.63299 −0.816496 0.577352i \(-0.804086\pi\)
−0.816496 + 0.577352i \(0.804086\pi\)
\(332\) 1.73427e7i 0.473917i
\(333\) −3.58378e7 −0.970530
\(334\) 7.75183e6i 0.208049i
\(335\) − 4.88812e7i − 1.30019i
\(336\) 0 0
\(337\) 3.67798e7 0.960992 0.480496 0.876997i \(-0.340457\pi\)
0.480496 + 0.876997i \(0.340457\pi\)
\(338\) −5.50993e7 −1.42691
\(339\) 1.94415e7i 0.499034i
\(340\) −4.39236e7 −1.11754
\(341\) 1.89540e7i 0.478012i
\(342\) − 4.80116e7i − 1.20024i
\(343\) 0 0
\(344\) 3.34349e6 0.0821343
\(345\) 1.30382e7 0.317511
\(346\) − 3.76300e7i − 0.908460i
\(347\) 3.39775e7 0.813210 0.406605 0.913604i \(-0.366713\pi\)
0.406605 + 0.913604i \(0.366713\pi\)
\(348\) 3.85845e6i 0.0915537i
\(349\) 5.48045e7i 1.28926i 0.764495 + 0.644629i \(0.222988\pi\)
−0.764495 + 0.644629i \(0.777012\pi\)
\(350\) 0 0
\(351\) −7.70868e6 −0.178262
\(352\) 6.81523e7 1.56262
\(353\) 4.76003e6i 0.108215i 0.998535 + 0.0541073i \(0.0172313\pi\)
−0.998535 + 0.0541073i \(0.982769\pi\)
\(354\) 3.13869e7 0.707519
\(355\) 1.85361e7i 0.414317i
\(356\) − 1.06765e8i − 2.36635i
\(357\) 0 0
\(358\) −1.21953e8 −2.65794
\(359\) −5.31169e6 −0.114802 −0.0574010 0.998351i \(-0.518281\pi\)
−0.0574010 + 0.998351i \(0.518281\pi\)
\(360\) − 2.03224e7i − 0.435579i
\(361\) −213002. −0.00452754
\(362\) 1.04702e8i 2.20714i
\(363\) 5.04228e6i 0.105416i
\(364\) 0 0
\(365\) 5.77688e7 1.18800
\(366\) 2.36782e7 0.482953
\(367\) − 7.98359e7i − 1.61510i −0.589798 0.807551i \(-0.700793\pi\)
0.589798 0.807551i \(-0.299207\pi\)
\(368\) 1.66510e7 0.334116
\(369\) − 6.43541e7i − 1.28085i
\(370\) 1.34385e8i 2.65304i
\(371\) 0 0
\(372\) −1.24303e7 −0.241465
\(373\) 4.22601e7 0.814336 0.407168 0.913353i \(-0.366516\pi\)
0.407168 + 0.913353i \(0.366516\pi\)
\(374\) − 5.35806e7i − 1.02422i
\(375\) 4.02413e6 0.0763093
\(376\) 5.88720e6i 0.110750i
\(377\) 1.92923e6i 0.0360047i
\(378\) 0 0
\(379\) 1.28840e7 0.236664 0.118332 0.992974i \(-0.462245\pi\)
0.118332 + 0.992974i \(0.462245\pi\)
\(380\) −1.00019e8 −1.82277
\(381\) − 3.91613e7i − 0.708079i
\(382\) −5.08613e7 −0.912425
\(383\) − 2.67570e7i − 0.476257i −0.971234 0.238128i \(-0.923466\pi\)
0.971234 0.238128i \(-0.0765339\pi\)
\(384\) 1.84740e7i 0.326263i
\(385\) 0 0
\(386\) −7.37785e7 −1.28283
\(387\) −1.01349e7 −0.174859
\(388\) 1.21127e8i 2.07370i
\(389\) −1.07557e7 −0.182722 −0.0913610 0.995818i \(-0.529122\pi\)
−0.0913610 + 0.995818i \(0.529122\pi\)
\(390\) 1.28324e7i 0.216329i
\(391\) − 1.78511e7i − 0.298632i
\(392\) 0 0
\(393\) −2.41937e7 −0.398588
\(394\) −9.48665e6 −0.155104
\(395\) 6.58773e7i 1.06892i
\(396\) 6.88622e7 1.10891
\(397\) 9.52333e6i 0.152201i 0.997100 + 0.0761005i \(0.0242470\pi\)
−0.997100 + 0.0761005i \(0.975753\pi\)
\(398\) 9.75099e7i 1.54668i
\(399\) 0 0
\(400\) 4.91392e7 0.767800
\(401\) 7.67884e7 1.19086 0.595432 0.803405i \(-0.296981\pi\)
0.595432 + 0.803405i \(0.296981\pi\)
\(402\) 3.91050e7i 0.601941i
\(403\) −6.21516e6 −0.0949592
\(404\) 1.05974e8i 1.60714i
\(405\) 4.21129e7i 0.633943i
\(406\) 0 0
\(407\) −9.10724e7 −1.35084
\(408\) 7.02778e6 0.103475
\(409\) − 3.00588e7i − 0.439341i −0.975574 0.219670i \(-0.929502\pi\)
0.975574 0.219670i \(-0.0704982\pi\)
\(410\) −2.41315e8 −3.50133
\(411\) 1.72358e7i 0.248259i
\(412\) 5.12036e6i 0.0732165i
\(413\) 0 0
\(414\) 4.12964e7 0.581984
\(415\) −3.94254e7 −0.551610
\(416\) 2.23476e7i 0.310421i
\(417\) 2.95352e7 0.407317
\(418\) − 1.22009e8i − 1.67056i
\(419\) − 4.76385e7i − 0.647614i −0.946123 0.323807i \(-0.895037\pi\)
0.946123 0.323807i \(-0.104963\pi\)
\(420\) 0 0
\(421\) −2.79191e7 −0.374158 −0.187079 0.982345i \(-0.559902\pi\)
−0.187079 + 0.982345i \(0.559902\pi\)
\(422\) −1.40068e8 −1.86381
\(423\) − 1.78456e7i − 0.235781i
\(424\) 1.16185e7 0.152424
\(425\) − 5.26809e7i − 0.686257i
\(426\) − 1.48289e7i − 0.191813i
\(427\) 0 0
\(428\) 5.28434e7 0.674000
\(429\) −8.69652e6 −0.110147
\(430\) 3.80040e7i 0.477996i
\(431\) 3.31444e6 0.0413979 0.0206989 0.999786i \(-0.493411\pi\)
0.0206989 + 0.999786i \(0.493411\pi\)
\(432\) − 4.47604e7i − 0.555191i
\(433\) − 4.59746e7i − 0.566310i −0.959074 0.283155i \(-0.908619\pi\)
0.959074 0.283155i \(-0.0913811\pi\)
\(434\) 0 0
\(435\) −8.77149e6 −0.106563
\(436\) −5.85352e6 −0.0706249
\(437\) − 4.06490e7i − 0.487086i
\(438\) −4.62150e7 −0.549998
\(439\) 5.44399e7i 0.643463i 0.946831 + 0.321732i \(0.104265\pi\)
−0.946831 + 0.321732i \(0.895735\pi\)
\(440\) − 5.16439e7i − 0.606263i
\(441\) 0 0
\(442\) 1.75694e7 0.203466
\(443\) 1.05887e8 1.21796 0.608978 0.793187i \(-0.291580\pi\)
0.608978 + 0.793187i \(0.291580\pi\)
\(444\) − 5.97265e7i − 0.682367i
\(445\) 2.42711e8 2.75429
\(446\) 3.47785e7i 0.392018i
\(447\) 3.81160e7i 0.426761i
\(448\) 0 0
\(449\) 1.14053e8 1.26000 0.629998 0.776597i \(-0.283056\pi\)
0.629998 + 0.776597i \(0.283056\pi\)
\(450\) 1.21871e8 1.33740
\(451\) − 1.63539e8i − 1.78276i
\(452\) 1.28280e8 1.38914
\(453\) − 2.76702e7i − 0.297658i
\(454\) − 2.01252e8i − 2.15066i
\(455\) 0 0
\(456\) 1.60030e7 0.168775
\(457\) 9.84729e7 1.03174 0.515868 0.856668i \(-0.327470\pi\)
0.515868 + 0.856668i \(0.327470\pi\)
\(458\) 2.09735e8i 2.18310i
\(459\) −4.79865e7 −0.496228
\(460\) − 8.60296e7i − 0.883841i
\(461\) − 3.58333e7i − 0.365750i −0.983136 0.182875i \(-0.941460\pi\)
0.983136 0.182875i \(-0.0585403\pi\)
\(462\) 0 0
\(463\) 1.81000e8 1.82362 0.911810 0.410612i \(-0.134685\pi\)
0.911810 + 0.410612i \(0.134685\pi\)
\(464\) −1.12020e7 −0.112136
\(465\) − 2.82581e7i − 0.281050i
\(466\) 1.22452e8 1.21007
\(467\) 8.48539e7i 0.833146i 0.909102 + 0.416573i \(0.136769\pi\)
−0.909102 + 0.416573i \(0.863231\pi\)
\(468\) 2.25804e7i 0.220290i
\(469\) 0 0
\(470\) −6.69173e7 −0.644533
\(471\) −1.80060e6 −0.0172328
\(472\) − 4.14199e7i − 0.393897i
\(473\) −2.57553e7 −0.243379
\(474\) − 5.27018e7i − 0.494869i
\(475\) − 1.19960e8i − 1.11933i
\(476\) 0 0
\(477\) −3.52186e7 −0.324501
\(478\) −1.71737e7 −0.157246
\(479\) 1.59224e8i 1.44878i 0.689390 + 0.724390i \(0.257879\pi\)
−0.689390 + 0.724390i \(0.742121\pi\)
\(480\) −1.01606e8 −0.918750
\(481\) − 2.98633e7i − 0.268350i
\(482\) 1.86047e8i 1.66143i
\(483\) 0 0
\(484\) 3.32704e7 0.293442
\(485\) −2.75360e8 −2.41366
\(486\) − 1.72740e8i − 1.50482i
\(487\) −8.06142e7 −0.697951 −0.348975 0.937132i \(-0.613470\pi\)
−0.348975 + 0.937132i \(0.613470\pi\)
\(488\) − 3.12471e7i − 0.268875i
\(489\) − 8.60523e7i − 0.735929i
\(490\) 0 0
\(491\) −1.46544e7 −0.123800 −0.0619002 0.998082i \(-0.519716\pi\)
−0.0619002 + 0.998082i \(0.519716\pi\)
\(492\) 1.07251e8 0.900548
\(493\) 1.20094e7i 0.100226i
\(494\) 4.00075e7 0.331864
\(495\) 1.56546e8i 1.29070i
\(496\) − 3.60883e7i − 0.295748i
\(497\) 0 0
\(498\) 3.15403e7 0.255375
\(499\) −3.12556e7 −0.251551 −0.125776 0.992059i \(-0.540142\pi\)
−0.125776 + 0.992059i \(0.540142\pi\)
\(500\) − 2.65523e7i − 0.212419i
\(501\) 7.83216e6 0.0622828
\(502\) − 4.12907e7i − 0.326393i
\(503\) 1.42620e8i 1.12067i 0.828267 + 0.560334i \(0.189327\pi\)
−0.828267 + 0.560334i \(0.810673\pi\)
\(504\) 0 0
\(505\) −2.40912e8 −1.87061
\(506\) 1.04944e8 0.810039
\(507\) 5.56703e7i 0.427169i
\(508\) −2.58397e8 −1.97105
\(509\) − 1.04526e7i − 0.0792628i −0.999214 0.0396314i \(-0.987382\pi\)
0.999214 0.0396314i \(-0.0126184\pi\)
\(510\) 7.98818e7i 0.602195i
\(511\) 0 0
\(512\) −1.64364e8 −1.22461
\(513\) −1.09271e8 −0.809377
\(514\) 2.79032e8i 2.05478i
\(515\) −1.16402e7 −0.0852194
\(516\) − 1.68907e7i − 0.122941i
\(517\) − 4.53498e7i − 0.328174i
\(518\) 0 0
\(519\) −3.80199e7 −0.271963
\(520\) 1.69344e7 0.120437
\(521\) − 2.72001e6i − 0.0192335i −0.999954 0.00961674i \(-0.996939\pi\)
0.999954 0.00961674i \(-0.00306115\pi\)
\(522\) −2.77824e7 −0.195325
\(523\) − 2.29072e8i − 1.60128i −0.599145 0.800640i \(-0.704493\pi\)
0.599145 0.800640i \(-0.295507\pi\)
\(524\) 1.59637e8i 1.10953i
\(525\) 0 0
\(526\) 3.39142e8 2.33037
\(527\) −3.86894e7 −0.264338
\(528\) − 5.04963e7i − 0.343050i
\(529\) −1.13072e8 −0.763817
\(530\) 1.32063e8i 0.887058i
\(531\) 1.25554e8i 0.838585i
\(532\) 0 0
\(533\) 5.36256e7 0.354153
\(534\) −1.94169e8 −1.27513
\(535\) 1.20130e8i 0.784494i
\(536\) 5.16052e7 0.335119
\(537\) 1.23217e8i 0.795699i
\(538\) 1.89723e8i 1.21835i
\(539\) 0 0
\(540\) −2.31260e8 −1.46866
\(541\) 2.29389e8 1.44871 0.724355 0.689428i \(-0.242138\pi\)
0.724355 + 0.689428i \(0.242138\pi\)
\(542\) − 4.38034e8i − 2.75112i
\(543\) 1.05787e8 0.660744
\(544\) 1.39114e8i 0.864119i
\(545\) − 1.33069e7i − 0.0822030i
\(546\) 0 0
\(547\) 7.87986e7 0.481456 0.240728 0.970593i \(-0.422614\pi\)
0.240728 + 0.970593i \(0.422614\pi\)
\(548\) 1.13727e8 0.691068
\(549\) 9.47177e7i 0.572419i
\(550\) 3.09703e8 1.86147
\(551\) 2.73468e7i 0.163475i
\(552\) 1.37647e7i 0.0818372i
\(553\) 0 0
\(554\) −3.77768e8 −2.22176
\(555\) 1.35777e8 0.794233
\(556\) − 1.94882e8i − 1.13383i
\(557\) −1.07355e8 −0.621236 −0.310618 0.950535i \(-0.600536\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(558\) − 8.95031e7i − 0.515152i
\(559\) − 8.44534e6i − 0.0483484i
\(560\) 0 0
\(561\) −5.41358e7 −0.306617
\(562\) −7.94842e7 −0.447787
\(563\) − 2.29315e8i − 1.28501i −0.766280 0.642507i \(-0.777894\pi\)
0.766280 0.642507i \(-0.222106\pi\)
\(564\) 2.97410e7 0.165775
\(565\) 2.91622e8i 1.61687i
\(566\) − 4.82976e8i − 2.66365i
\(567\) 0 0
\(568\) −1.95690e7 −0.106788
\(569\) −1.47105e8 −0.798526 −0.399263 0.916836i \(-0.630734\pi\)
−0.399263 + 0.916836i \(0.630734\pi\)
\(570\) 1.81900e8i 0.982216i
\(571\) 2.75556e6 0.0148014 0.00740068 0.999973i \(-0.497644\pi\)
0.00740068 + 0.999973i \(0.497644\pi\)
\(572\) 5.73822e7i 0.306612i
\(573\) 5.13883e7i 0.273150i
\(574\) 0 0
\(575\) 1.03182e8 0.542750
\(576\) −2.16932e8 −1.13516
\(577\) 3.19900e6i 0.0166528i 0.999965 + 0.00832639i \(0.00265040\pi\)
−0.999965 + 0.00832639i \(0.997350\pi\)
\(578\) −1.80281e8 −0.933612
\(579\) 7.45430e7i 0.384036i
\(580\) 5.78768e7i 0.296634i
\(581\) 0 0
\(582\) 2.20288e8 1.11744
\(583\) −8.94987e7 −0.451660
\(584\) 6.09880e7i 0.306201i
\(585\) −5.13324e7 −0.256404
\(586\) − 1.52156e8i − 0.756129i
\(587\) − 2.39854e8i − 1.18586i −0.805254 0.592929i \(-0.797971\pi\)
0.805254 0.592929i \(-0.202029\pi\)
\(588\) 0 0
\(589\) −8.80999e7 −0.431151
\(590\) 4.70803e8 2.29236
\(591\) 9.58496e6i 0.0464331i
\(592\) 1.73401e8 0.835769
\(593\) − 1.89913e8i − 0.910734i −0.890304 0.455367i \(-0.849508\pi\)
0.890304 0.455367i \(-0.150492\pi\)
\(594\) − 2.82105e8i − 1.34602i
\(595\) 0 0
\(596\) 2.51500e8 1.18795
\(597\) 9.85204e7 0.463024
\(598\) 3.44118e7i 0.160918i
\(599\) 3.85151e8 1.79205 0.896025 0.444004i \(-0.146442\pi\)
0.896025 + 0.444004i \(0.146442\pi\)
\(600\) 4.06214e7i 0.188062i
\(601\) 2.97376e8i 1.36988i 0.728598 + 0.684941i \(0.240172\pi\)
−0.728598 + 0.684941i \(0.759828\pi\)
\(602\) 0 0
\(603\) −1.56428e8 −0.713449
\(604\) −1.82576e8 −0.828577
\(605\) 7.56342e7i 0.341548i
\(606\) 1.92729e8 0.866024
\(607\) − 2.95316e8i − 1.32045i −0.751069 0.660223i \(-0.770462\pi\)
0.751069 0.660223i \(-0.229538\pi\)
\(608\) 3.16777e8i 1.40943i
\(609\) 0 0
\(610\) 3.55173e8 1.56477
\(611\) 1.48705e7 0.0651932
\(612\) 1.40563e8i 0.613221i
\(613\) −3.37212e8 −1.46394 −0.731968 0.681339i \(-0.761398\pi\)
−0.731968 + 0.681339i \(0.761398\pi\)
\(614\) − 2.12710e7i − 0.0918929i
\(615\) 2.43816e8i 1.04818i
\(616\) 0 0
\(617\) 3.68150e8 1.56736 0.783682 0.621163i \(-0.213339\pi\)
0.783682 + 0.621163i \(0.213339\pi\)
\(618\) 9.31216e6 0.0394534
\(619\) 3.10795e7i 0.131039i 0.997851 + 0.0655197i \(0.0208705\pi\)
−0.997851 + 0.0655197i \(0.979129\pi\)
\(620\) −1.86455e8 −0.782345
\(621\) − 9.39873e7i − 0.392459i
\(622\) − 4.38318e8i − 1.82146i
\(623\) 0 0
\(624\) 1.65581e7 0.0681485
\(625\) −2.12294e8 −0.869558
\(626\) − 1.39259e8i − 0.567677i
\(627\) −1.23273e8 −0.500110
\(628\) 1.18809e7i 0.0479701i
\(629\) − 1.85899e8i − 0.747007i
\(630\) 0 0
\(631\) −3.25406e8 −1.29520 −0.647601 0.761980i \(-0.724228\pi\)
−0.647601 + 0.761980i \(0.724228\pi\)
\(632\) −6.95484e7 −0.275509
\(633\) 1.41520e8i 0.557964i
\(634\) −2.53969e8 −0.996583
\(635\) − 5.87419e8i − 2.29418i
\(636\) − 5.86945e7i − 0.228153i
\(637\) 0 0
\(638\) −7.06015e7 −0.271864
\(639\) 5.93186e7 0.227347
\(640\) 2.77110e8i 1.05709i
\(641\) −5.55637e7 −0.210968 −0.105484 0.994421i \(-0.533639\pi\)
−0.105484 + 0.994421i \(0.533639\pi\)
\(642\) − 9.61039e7i − 0.363192i
\(643\) 9.33357e7i 0.351087i 0.984472 + 0.175544i \(0.0561683\pi\)
−0.984472 + 0.175544i \(0.943832\pi\)
\(644\) 0 0
\(645\) 3.83979e7 0.143096
\(646\) 2.49047e8 0.923812
\(647\) 1.93195e8i 0.713317i 0.934235 + 0.356659i \(0.116084\pi\)
−0.934235 + 0.356659i \(0.883916\pi\)
\(648\) −4.44597e7 −0.163396
\(649\) 3.19063e8i 1.16719i
\(650\) 1.01554e8i 0.369790i
\(651\) 0 0
\(652\) −5.67798e8 −2.04857
\(653\) 3.62447e8 1.30168 0.650842 0.759213i \(-0.274416\pi\)
0.650842 + 0.759213i \(0.274416\pi\)
\(654\) 1.06455e7i 0.0380569i
\(655\) −3.62906e8 −1.29143
\(656\) 3.11377e8i 1.10300i
\(657\) − 1.84870e8i − 0.651884i
\(658\) 0 0
\(659\) 2.39985e8 0.838549 0.419274 0.907860i \(-0.362285\pi\)
0.419274 + 0.907860i \(0.362285\pi\)
\(660\) −2.60896e8 −0.907476
\(661\) 1.93221e7i 0.0669035i 0.999440 + 0.0334518i \(0.0106500\pi\)
−0.999440 + 0.0334518i \(0.989350\pi\)
\(662\) 7.10639e8 2.44949
\(663\) − 1.77515e7i − 0.0609109i
\(664\) − 4.16224e7i − 0.142175i
\(665\) 0 0
\(666\) 4.30054e8 1.45579
\(667\) −2.35219e7 −0.0792675
\(668\) − 5.16789e7i − 0.173374i
\(669\) 3.51389e7 0.117357
\(670\) 5.86575e8i 1.95029i
\(671\) 2.40700e8i 0.796726i
\(672\) 0 0
\(673\) −4.27171e7 −0.140138 −0.0700692 0.997542i \(-0.522322\pi\)
−0.0700692 + 0.997542i \(0.522322\pi\)
\(674\) −4.41358e8 −1.44149
\(675\) − 2.77368e8i − 0.901873i
\(676\) 3.67329e8 1.18909
\(677\) − 2.90750e8i − 0.937032i −0.883455 0.468516i \(-0.844789\pi\)
0.883455 0.468516i \(-0.155211\pi\)
\(678\) − 2.33298e8i − 0.748551i
\(679\) 0 0
\(680\) 1.05417e8 0.335261
\(681\) −2.03338e8 −0.643838
\(682\) − 2.27448e8i − 0.717018i
\(683\) 8.21931e7 0.257972 0.128986 0.991646i \(-0.458828\pi\)
0.128986 + 0.991646i \(0.458828\pi\)
\(684\) 3.20077e8i 1.00020i
\(685\) 2.58537e8i 0.804360i
\(686\) 0 0
\(687\) 2.11908e8 0.653548
\(688\) 4.90378e7 0.150580
\(689\) − 2.93472e7i − 0.0897242i
\(690\) −1.56458e8 −0.476267
\(691\) 3.47176e7i 0.105224i 0.998615 + 0.0526122i \(0.0167547\pi\)
−0.998615 + 0.0526122i \(0.983245\pi\)
\(692\) 2.50866e8i 0.757050i
\(693\) 0 0
\(694\) −4.07730e8 −1.21981
\(695\) 4.43029e8 1.31971
\(696\) − 9.26029e6i − 0.0274661i
\(697\) 3.33819e8 0.985855
\(698\) − 6.57654e8i − 1.93389i
\(699\) − 1.23721e8i − 0.362254i
\(700\) 0 0
\(701\) −3.04543e8 −0.884087 −0.442044 0.896994i \(-0.645746\pi\)
−0.442044 + 0.896994i \(0.645746\pi\)
\(702\) 9.25042e7 0.267393
\(703\) − 4.23312e8i − 1.21841i
\(704\) −5.51277e8 −1.57998
\(705\) 6.76108e7i 0.192952i
\(706\) − 5.71204e7i − 0.162322i
\(707\) 0 0
\(708\) −2.09246e8 −0.589599
\(709\) −2.28892e8 −0.642231 −0.321116 0.947040i \(-0.604058\pi\)
−0.321116 + 0.947040i \(0.604058\pi\)
\(710\) − 2.22433e8i − 0.621476i
\(711\) 2.10818e8 0.586543
\(712\) 2.56236e8i 0.709906i
\(713\) − 7.57777e7i − 0.209061i
\(714\) 0 0
\(715\) −1.30448e8 −0.356877
\(716\) 8.13023e8 2.21495
\(717\) 1.73516e7i 0.0470742i
\(718\) 6.37403e7 0.172203
\(719\) 4.47898e8i 1.20501i 0.798114 + 0.602507i \(0.205831\pi\)
−0.798114 + 0.602507i \(0.794169\pi\)
\(720\) − 2.98061e8i − 0.798561i
\(721\) 0 0
\(722\) 2.55602e6 0.00679131
\(723\) 1.87975e8 0.497377
\(724\) − 6.98014e8i − 1.83928i
\(725\) −6.94161e7 −0.182157
\(726\) − 6.05073e7i − 0.158124i
\(727\) − 3.71752e7i − 0.0967498i −0.998829 0.0483749i \(-0.984596\pi\)
0.998829 0.0483749i \(-0.0154042\pi\)
\(728\) 0 0
\(729\) −5.72219e6 −0.0147700
\(730\) −6.93226e8 −1.78199
\(731\) − 5.25722e7i − 0.134587i
\(732\) −1.57854e8 −0.402461
\(733\) 6.05169e8i 1.53661i 0.640081 + 0.768307i \(0.278901\pi\)
−0.640081 + 0.768307i \(0.721099\pi\)
\(734\) 9.58030e8i 2.42265i
\(735\) 0 0
\(736\) −2.72471e8 −0.683419
\(737\) −3.97521e8 −0.993020
\(738\) 7.72250e8i 1.92127i
\(739\) −2.01787e8 −0.499989 −0.249994 0.968247i \(-0.580429\pi\)
−0.249994 + 0.968247i \(0.580429\pi\)
\(740\) − 8.95898e8i − 2.21087i
\(741\) − 4.04221e7i − 0.0993492i
\(742\) 0 0
\(743\) −9.81196e7 −0.239216 −0.119608 0.992821i \(-0.538164\pi\)
−0.119608 + 0.992821i \(0.538164\pi\)
\(744\) 2.98328e7 0.0724394
\(745\) 5.71739e8i 1.38270i
\(746\) −5.07121e8 −1.22150
\(747\) 1.26168e8i 0.302683i
\(748\) 3.57204e8i 0.853515i
\(749\) 0 0
\(750\) −4.82895e7 −0.114464
\(751\) −4.25827e8 −1.00534 −0.502670 0.864478i \(-0.667649\pi\)
−0.502670 + 0.864478i \(0.667649\pi\)
\(752\) 8.63456e7i 0.203042i
\(753\) −4.17186e7 −0.0977113
\(754\) − 2.31507e7i − 0.0540071i
\(755\) − 4.15053e8i − 0.964413i
\(756\) 0 0
\(757\) 3.07427e7 0.0708687 0.0354344 0.999372i \(-0.488719\pi\)
0.0354344 + 0.999372i \(0.488719\pi\)
\(758\) −1.54608e8 −0.354996
\(759\) − 1.06031e8i − 0.242499i
\(760\) 2.40045e8 0.546830
\(761\) 3.71229e8i 0.842340i 0.906982 + 0.421170i \(0.138380\pi\)
−0.906982 + 0.421170i \(0.861620\pi\)
\(762\) 4.69935e8i 1.06212i
\(763\) 0 0
\(764\) 3.39075e8 0.760354
\(765\) −3.19544e8 −0.713751
\(766\) 3.21084e8i 0.714385i
\(767\) −1.04623e8 −0.231868
\(768\) 6.75395e7i 0.149099i
\(769\) 4.59933e8i 1.01138i 0.862714 + 0.505691i \(0.168763\pi\)
−0.862714 + 0.505691i \(0.831237\pi\)
\(770\) 0 0
\(771\) 2.81924e8 0.615132
\(772\) 4.91857e8 1.06902
\(773\) 6.86231e8i 1.48570i 0.669456 + 0.742852i \(0.266527\pi\)
−0.669456 + 0.742852i \(0.733473\pi\)
\(774\) 1.21619e8 0.262289
\(775\) − 2.23629e8i − 0.480423i
\(776\) − 2.90705e8i − 0.622111i
\(777\) 0 0
\(778\) 1.29069e8 0.274083
\(779\) 7.60143e8 1.60799
\(780\) − 8.55495e7i − 0.180274i
\(781\) 1.50743e8 0.316434
\(782\) 2.14214e8i 0.447947i
\(783\) 6.32304e7i 0.131717i
\(784\) 0 0
\(785\) −2.70090e7 −0.0558342
\(786\) 2.90324e8 0.597883
\(787\) 5.62391e8i 1.15376i 0.816830 + 0.576879i \(0.195729\pi\)
−0.816830 + 0.576879i \(0.804271\pi\)
\(788\) 6.32443e7 0.129254
\(789\) − 3.42657e8i − 0.697635i
\(790\) − 7.90527e8i − 1.60338i
\(791\) 0 0
\(792\) −1.65269e8 −0.332672
\(793\) −7.89272e7 −0.158273
\(794\) − 1.14280e8i − 0.228301i
\(795\) 1.33431e8 0.265556
\(796\) − 6.50066e8i − 1.28890i
\(797\) − 9.95198e8i − 1.96578i −0.184200 0.982889i \(-0.558969\pi\)
0.184200 0.982889i \(-0.441031\pi\)
\(798\) 0 0
\(799\) 9.25690e7 0.181478
\(800\) −8.04096e8 −1.57050
\(801\) − 7.76716e8i − 1.51135i
\(802\) −9.21461e8 −1.78630
\(803\) − 4.69798e8i − 0.907329i
\(804\) − 2.60700e8i − 0.501617i
\(805\) 0 0
\(806\) 7.45819e7 0.142439
\(807\) 1.91689e8 0.364734
\(808\) − 2.54337e8i − 0.482142i
\(809\) 7.15167e8 1.35071 0.675355 0.737493i \(-0.263990\pi\)
0.675355 + 0.737493i \(0.263990\pi\)
\(810\) − 5.05355e8i − 0.950915i
\(811\) 3.33892e8i 0.625955i 0.949761 + 0.312977i \(0.101326\pi\)
−0.949761 + 0.312977i \(0.898674\pi\)
\(812\) 0 0
\(813\) −4.42573e8 −0.823595
\(814\) 1.09287e9 2.02626
\(815\) − 1.29078e9i − 2.38441i
\(816\) 1.03074e8 0.189705
\(817\) − 1.19713e8i − 0.219520i
\(818\) 3.60705e8i 0.659011i
\(819\) 0 0
\(820\) 1.60877e9 2.91778
\(821\) −4.83959e8 −0.874540 −0.437270 0.899330i \(-0.644055\pi\)
−0.437270 + 0.899330i \(0.644055\pi\)
\(822\) − 2.06829e8i − 0.372389i
\(823\) 1.57007e8 0.281657 0.140829 0.990034i \(-0.455023\pi\)
0.140829 + 0.990034i \(0.455023\pi\)
\(824\) − 1.22889e7i − 0.0219649i
\(825\) − 3.12912e8i − 0.557263i
\(826\) 0 0
\(827\) 8.84716e8 1.56418 0.782091 0.623164i \(-0.214153\pi\)
0.782091 + 0.623164i \(0.214153\pi\)
\(828\) −2.75309e8 −0.484987
\(829\) 8.14222e7i 0.142916i 0.997444 + 0.0714578i \(0.0227651\pi\)
−0.997444 + 0.0714578i \(0.977235\pi\)
\(830\) 4.73105e8 0.827414
\(831\) 3.81683e8i 0.665120i
\(832\) − 1.80767e8i − 0.313870i
\(833\) 0 0
\(834\) −3.54423e8 −0.610975
\(835\) 1.17482e8 0.201796
\(836\) 8.13392e8i 1.39213i
\(837\) −2.03702e8 −0.347391
\(838\) 5.71662e8i 0.971421i
\(839\) − 4.66806e8i − 0.790407i −0.918594 0.395203i \(-0.870674\pi\)
0.918594 0.395203i \(-0.129326\pi\)
\(840\) 0 0
\(841\) −5.78999e8 −0.973396
\(842\) 3.35029e8 0.561237
\(843\) 8.03079e7i 0.134053i
\(844\) 9.33789e8 1.55318
\(845\) 8.35055e8i 1.38403i
\(846\) 2.14147e8i 0.353672i
\(847\) 0 0
\(848\) 1.70405e8 0.279443
\(849\) −4.87981e8 −0.797407
\(850\) 6.32171e8i 1.02939i
\(851\) 3.64105e8 0.590796
\(852\) 9.88591e7i 0.159845i
\(853\) − 8.80430e8i − 1.41856i −0.704926 0.709280i \(-0.749020\pi\)
0.704926 0.709280i \(-0.250980\pi\)
\(854\) 0 0
\(855\) −7.27637e8 −1.16417
\(856\) −1.26824e8 −0.202200
\(857\) − 1.79898e8i − 0.285815i −0.989736 0.142907i \(-0.954355\pi\)
0.989736 0.142907i \(-0.0456451\pi\)
\(858\) 1.04358e8 0.165221
\(859\) − 9.06857e8i − 1.43074i −0.698748 0.715368i \(-0.746259\pi\)
0.698748 0.715368i \(-0.253741\pi\)
\(860\) − 2.53360e8i − 0.398330i
\(861\) 0 0
\(862\) −3.97733e7 −0.0620968
\(863\) 5.44143e7 0.0846605 0.0423303 0.999104i \(-0.486522\pi\)
0.0423303 + 0.999104i \(0.486522\pi\)
\(864\) 7.32443e8i 1.13562i
\(865\) −5.70299e8 −0.881159
\(866\) 5.51695e8i 0.849465i
\(867\) 1.82149e8i 0.279493i
\(868\) 0 0
\(869\) 5.35740e8 0.816384
\(870\) 1.05258e8 0.159844
\(871\) − 1.30350e8i − 0.197268i
\(872\) 1.40484e7 0.0211875
\(873\) 8.81200e8i 1.32444i
\(874\) 4.87788e8i 0.730628i
\(875\) 0 0
\(876\) 3.08100e8 0.458332
\(877\) −1.26037e8 −0.186853 −0.0934263 0.995626i \(-0.529782\pi\)
−0.0934263 + 0.995626i \(0.529782\pi\)
\(878\) − 6.53279e8i − 0.965195i
\(879\) −1.53733e8 −0.226360
\(880\) − 7.57444e8i − 1.11148i
\(881\) − 1.37857e8i − 0.201605i −0.994906 0.100802i \(-0.967859\pi\)
0.994906 0.100802i \(-0.0321410\pi\)
\(882\) 0 0
\(883\) 7.41288e8 1.07672 0.538362 0.842713i \(-0.319043\pi\)
0.538362 + 0.842713i \(0.319043\pi\)
\(884\) −1.17130e8 −0.169555
\(885\) − 4.75682e8i − 0.686257i
\(886\) −1.27064e9 −1.82693
\(887\) − 3.49873e8i − 0.501348i −0.968072 0.250674i \(-0.919348\pi\)
0.968072 0.250674i \(-0.0806522\pi\)
\(888\) 1.43344e8i 0.204710i
\(889\) 0 0
\(890\) −2.91253e9 −4.13143
\(891\) 3.42479e8 0.484173
\(892\) − 2.31856e8i − 0.326682i
\(893\) 2.10790e8 0.296002
\(894\) − 4.57391e8i − 0.640141i
\(895\) 1.84826e9i 2.57806i
\(896\) 0 0
\(897\) 3.47684e7 0.0481735
\(898\) −1.36864e9 −1.88999
\(899\) 5.09798e7i 0.0701648i
\(900\) −8.12472e8 −1.11450
\(901\) − 1.82687e8i − 0.249765i
\(902\) 1.96247e9i 2.67413i
\(903\) 0 0
\(904\) −3.07873e8 −0.416741
\(905\) 1.58681e9 2.14081
\(906\) 3.32043e8i 0.446487i
\(907\) 7.32341e8 0.981503 0.490751 0.871300i \(-0.336722\pi\)
0.490751 + 0.871300i \(0.336722\pi\)
\(908\) 1.34168e9i 1.79222i
\(909\) 7.70958e8i 1.02645i
\(910\) 0 0
\(911\) −8.09031e8 −1.07007 −0.535033 0.844831i \(-0.679701\pi\)
−0.535033 + 0.844831i \(0.679701\pi\)
\(912\) 2.34711e8 0.309420
\(913\) 3.20623e8i 0.421291i
\(914\) −1.18168e9 −1.54760
\(915\) − 3.58853e8i − 0.468440i
\(916\) − 1.39823e9i − 1.81925i
\(917\) 0 0
\(918\) 5.75838e8 0.744342
\(919\) 1.23948e9 1.59696 0.798479 0.602022i \(-0.205638\pi\)
0.798479 + 0.602022i \(0.205638\pi\)
\(920\) 2.06471e8i 0.265152i
\(921\) −2.14914e7 −0.0275097
\(922\) 4.29999e8i 0.548624i
\(923\) 4.94295e7i 0.0628610i
\(924\) 0 0
\(925\) 1.07452e9 1.35765
\(926\) −2.17199e9 −2.73543
\(927\) 3.72506e7i 0.0467621i
\(928\) 1.83306e8 0.229368
\(929\) − 1.21156e9i − 1.51112i −0.655082 0.755558i \(-0.727366\pi\)
0.655082 0.755558i \(-0.272634\pi\)
\(930\) 3.39097e8i 0.421575i
\(931\) 0 0
\(932\) −8.16348e8 −1.00839
\(933\) −4.42861e8 −0.545283
\(934\) − 1.01825e9i − 1.24972i
\(935\) −8.12038e8 −0.993439
\(936\) − 5.41930e7i − 0.0660869i
\(937\) − 1.26862e8i − 0.154211i −0.997023 0.0771053i \(-0.975432\pi\)
0.997023 0.0771053i \(-0.0245678\pi\)
\(938\) 0 0
\(939\) −1.40702e8 −0.169944
\(940\) 4.46116e8 0.537111
\(941\) 4.23325e8i 0.508048i 0.967198 + 0.254024i \(0.0817543\pi\)
−0.967198 + 0.254024i \(0.918246\pi\)
\(942\) 2.16072e7 0.0258492
\(943\) 6.53825e8i 0.779698i
\(944\) − 6.07492e8i − 0.722145i
\(945\) 0 0
\(946\) 3.09064e8 0.365069
\(947\) −1.59549e9 −1.87865 −0.939324 0.343032i \(-0.888546\pi\)
−0.939324 + 0.343032i \(0.888546\pi\)
\(948\) 3.51345e8i 0.412391i
\(949\) 1.54050e8 0.180245
\(950\) 1.43952e9i 1.67899i
\(951\) 2.56601e8i 0.298344i
\(952\) 0 0
\(953\) −3.42254e8 −0.395430 −0.197715 0.980260i \(-0.563352\pi\)
−0.197715 + 0.980260i \(0.563352\pi\)
\(954\) 4.22623e8 0.486752
\(955\) 7.70825e8i 0.885005i
\(956\) 1.14491e8 0.131038
\(957\) 7.13332e7i 0.0813871i
\(958\) − 1.91069e9i − 2.17317i
\(959\) 0 0
\(960\) 8.21883e8 0.928958
\(961\) 7.23268e8 0.814947
\(962\) 3.58359e8i 0.402525i
\(963\) 3.84436e8 0.430472
\(964\) − 1.24031e9i − 1.38453i
\(965\) 1.11815e9i 1.24428i
\(966\) 0 0
\(967\) −1.56835e9 −1.73445 −0.867227 0.497914i \(-0.834100\pi\)
−0.867227 + 0.497914i \(0.834100\pi\)
\(968\) −7.98490e7 −0.0880325
\(969\) − 2.51628e8i − 0.276559i
\(970\) 3.30432e9 3.62049
\(971\) 6.00734e8i 0.656182i 0.944646 + 0.328091i \(0.106405\pi\)
−0.944646 + 0.328091i \(0.893595\pi\)
\(972\) 1.15160e9i 1.25402i
\(973\) 0 0
\(974\) 9.67371e8 1.04693
\(975\) 1.02606e8 0.110703
\(976\) − 4.58291e8i − 0.492937i
\(977\) −1.17902e8 −0.126426 −0.0632132 0.998000i \(-0.520135\pi\)
−0.0632132 + 0.998000i \(0.520135\pi\)
\(978\) 1.03263e9i 1.10389i
\(979\) − 1.97382e9i − 2.10358i
\(980\) 0 0
\(981\) −4.25844e7 −0.0451069
\(982\) 1.75852e8 0.185701
\(983\) − 1.04078e9i − 1.09572i −0.836570 0.547860i \(-0.815442\pi\)
0.836570 0.547860i \(-0.184558\pi\)
\(984\) −2.57403e8 −0.270164
\(985\) 1.43774e8i 0.150443i
\(986\) − 1.44113e8i − 0.150340i
\(987\) 0 0
\(988\) −2.66717e8 −0.276554
\(989\) 1.02969e8 0.106443
\(990\) − 1.87855e9i − 1.93605i
\(991\) −1.41876e9 −1.45777 −0.728883 0.684639i \(-0.759960\pi\)
−0.728883 + 0.684639i \(0.759960\pi\)
\(992\) 5.90536e8i 0.604938i
\(993\) − 7.18003e8i − 0.733295i
\(994\) 0 0
\(995\) 1.47781e9 1.50020
\(996\) −2.10269e8 −0.212812
\(997\) − 8.14278e8i − 0.821651i −0.911714 0.410826i \(-0.865241\pi\)
0.911714 0.410826i \(-0.134759\pi\)
\(998\) 3.75068e8 0.377327
\(999\) − 9.78768e8i − 0.981710i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.7.b.a.48.2 2
3.2 odd 2 441.7.d.a.244.1 2
7.2 even 3 7.7.d.a.3.1 2
7.3 odd 6 7.7.d.a.5.1 yes 2
7.4 even 3 49.7.d.b.19.1 2
7.5 odd 6 49.7.d.b.31.1 2
7.6 odd 2 inner 49.7.b.a.48.1 2
21.2 odd 6 63.7.m.a.10.1 2
21.17 even 6 63.7.m.a.19.1 2
21.20 even 2 441.7.d.a.244.2 2
28.3 even 6 112.7.s.a.33.1 2
28.23 odd 6 112.7.s.a.17.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.7.d.a.3.1 2 7.2 even 3
7.7.d.a.5.1 yes 2 7.3 odd 6
49.7.b.a.48.1 2 7.6 odd 2 inner
49.7.b.a.48.2 2 1.1 even 1 trivial
49.7.d.b.19.1 2 7.4 even 3
49.7.d.b.31.1 2 7.5 odd 6
63.7.m.a.10.1 2 21.2 odd 6
63.7.m.a.19.1 2 21.17 even 6
112.7.s.a.17.1 2 28.23 odd 6
112.7.s.a.33.1 2 28.3 even 6
441.7.d.a.244.1 2 3.2 odd 2
441.7.d.a.244.2 2 21.20 even 2