Properties

Label 49.24.a.h.1.9
Level $49$
Weight $24$
Character 49.1
Self dual yes
Analytic conductor $164.250$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,24,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,6030,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.249978299\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-867.700 q^{2} -393094. q^{3} -7.63570e6 q^{4} +1.46240e8 q^{5} +3.41087e8 q^{6} +1.39043e10 q^{8} +6.03794e10 q^{9} -1.26893e11 q^{10} -1.21063e12 q^{11} +3.00155e12 q^{12} +9.16798e12 q^{13} -5.74862e13 q^{15} +5.19882e13 q^{16} +5.25523e13 q^{17} -5.23912e13 q^{18} +8.24698e14 q^{19} -1.11665e15 q^{20} +1.05046e15 q^{22} +2.00869e15 q^{23} -5.46569e15 q^{24} +9.46533e15 q^{25} -7.95505e15 q^{26} +1.32723e16 q^{27} +1.28495e16 q^{29} +4.98808e16 q^{30} +2.57650e17 q^{31} -1.61748e17 q^{32} +4.75890e17 q^{33} -4.55996e16 q^{34} -4.61039e17 q^{36} +5.69048e16 q^{37} -7.15591e17 q^{38} -3.60387e18 q^{39} +2.03337e18 q^{40} +4.76879e17 q^{41} -7.55870e17 q^{43} +9.24399e18 q^{44} +8.82991e18 q^{45} -1.74294e18 q^{46} +2.74664e19 q^{47} -2.04362e19 q^{48} -8.21307e18 q^{50} -2.06580e19 q^{51} -7.00039e19 q^{52} -9.15779e19 q^{53} -1.15164e19 q^{54} -1.77043e20 q^{55} -3.24184e20 q^{57} -1.11495e19 q^{58} -7.57316e19 q^{59} +4.38947e20 q^{60} -5.95345e20 q^{61} -2.23563e20 q^{62} -2.95760e20 q^{64} +1.34073e21 q^{65} -4.12930e20 q^{66} -1.28180e21 q^{67} -4.01274e20 q^{68} -7.89602e20 q^{69} -6.22375e20 q^{71} +8.39534e20 q^{72} +1.49176e21 q^{73} -4.93763e19 q^{74} -3.72076e21 q^{75} -6.29715e21 q^{76} +3.12708e21 q^{78} +1.10354e22 q^{79} +7.60277e21 q^{80} -1.09016e22 q^{81} -4.13788e20 q^{82} +1.30716e22 q^{83} +7.68527e21 q^{85} +6.55868e20 q^{86} -5.05107e21 q^{87} -1.68329e22 q^{88} -2.41898e21 q^{89} -7.66172e21 q^{90} -1.53377e22 q^{92} -1.01281e23 q^{93} -2.38326e22 q^{94} +1.20604e23 q^{95} +6.35820e22 q^{96} -1.34288e22 q^{97} -7.30970e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6030 q^{2} + 99000906 q^{4} + 31751706690 q^{8} + 975236583640 q^{9} + 3514223137536 q^{11} + 96662500006976 q^{15} + 850136746459362 q^{16} - 774764811988990 q^{18} + 81\!\cdots\!60 q^{22} + 34\!\cdots\!60 q^{23}+ \cdots + 70\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −867.700 −0.299588 −0.149794 0.988717i \(-0.547861\pi\)
−0.149794 + 0.988717i \(0.547861\pi\)
\(3\) −393094. −1.28115 −0.640577 0.767894i \(-0.721305\pi\)
−0.640577 + 0.767894i \(0.721305\pi\)
\(4\) −7.63570e6 −0.910247
\(5\) 1.46240e8 1.33941 0.669703 0.742629i \(-0.266421\pi\)
0.669703 + 0.742629i \(0.266421\pi\)
\(6\) 3.41087e8 0.383819
\(7\) 0 0
\(8\) 1.39043e10 0.572287
\(9\) 6.03794e10 0.641357
\(10\) −1.26893e11 −0.401270
\(11\) −1.21063e12 −1.27937 −0.639683 0.768639i \(-0.720934\pi\)
−0.639683 + 0.768639i \(0.720934\pi\)
\(12\) 3.00155e12 1.16617
\(13\) 9.16798e12 1.41881 0.709406 0.704800i \(-0.248963\pi\)
0.709406 + 0.704800i \(0.248963\pi\)
\(14\) 0 0
\(15\) −5.74862e13 −1.71599
\(16\) 5.19882e13 0.738796
\(17\) 5.25523e13 0.371902 0.185951 0.982559i \(-0.440463\pi\)
0.185951 + 0.982559i \(0.440463\pi\)
\(18\) −5.23912e13 −0.192143
\(19\) 8.24698e14 1.62416 0.812080 0.583546i \(-0.198335\pi\)
0.812080 + 0.583546i \(0.198335\pi\)
\(20\) −1.11665e15 −1.21919
\(21\) 0 0
\(22\) 1.05046e15 0.383283
\(23\) 2.00869e15 0.439584 0.219792 0.975547i \(-0.429462\pi\)
0.219792 + 0.975547i \(0.429462\pi\)
\(24\) −5.46569e15 −0.733189
\(25\) 9.46533e15 0.794009
\(26\) −7.95505e15 −0.425059
\(27\) 1.32723e16 0.459477
\(28\) 0 0
\(29\) 1.28495e16 0.195574 0.0977868 0.995207i \(-0.468824\pi\)
0.0977868 + 0.995207i \(0.468824\pi\)
\(30\) 4.98808e16 0.514089
\(31\) 2.57650e17 1.82126 0.910629 0.413226i \(-0.135598\pi\)
0.910629 + 0.413226i \(0.135598\pi\)
\(32\) −1.61748e17 −0.793622
\(33\) 4.75890e17 1.63907
\(34\) −4.55996e16 −0.111418
\(35\) 0 0
\(36\) −4.61039e17 −0.583794
\(37\) 5.69048e16 0.0525810 0.0262905 0.999654i \(-0.491631\pi\)
0.0262905 + 0.999654i \(0.491631\pi\)
\(38\) −7.15591e17 −0.486579
\(39\) −3.60387e18 −1.81772
\(40\) 2.03337e18 0.766525
\(41\) 4.76879e17 0.135330 0.0676649 0.997708i \(-0.478445\pi\)
0.0676649 + 0.997708i \(0.478445\pi\)
\(42\) 0 0
\(43\) −7.55870e17 −0.124039 −0.0620197 0.998075i \(-0.519754\pi\)
−0.0620197 + 0.998075i \(0.519754\pi\)
\(44\) 9.24399e18 1.16454
\(45\) 8.82991e18 0.859038
\(46\) −1.74294e18 −0.131694
\(47\) 2.74664e19 1.62060 0.810301 0.586014i \(-0.199304\pi\)
0.810301 + 0.586014i \(0.199304\pi\)
\(48\) −2.04362e19 −0.946512
\(49\) 0 0
\(50\) −8.21307e18 −0.237876
\(51\) −2.06580e19 −0.476465
\(52\) −7.00039e19 −1.29147
\(53\) −9.15779e19 −1.35712 −0.678560 0.734545i \(-0.737396\pi\)
−0.678560 + 0.734545i \(0.737396\pi\)
\(54\) −1.15164e19 −0.137654
\(55\) −1.77043e20 −1.71359
\(56\) 0 0
\(57\) −3.24184e20 −2.08080
\(58\) −1.11495e19 −0.0585916
\(59\) −7.57316e19 −0.326948 −0.163474 0.986548i \(-0.552270\pi\)
−0.163474 + 0.986548i \(0.552270\pi\)
\(60\) 4.38947e20 1.56197
\(61\) −5.95345e20 −1.75177 −0.875883 0.482524i \(-0.839720\pi\)
−0.875883 + 0.482524i \(0.839720\pi\)
\(62\) −2.23563e20 −0.545627
\(63\) 0 0
\(64\) −2.95760e20 −0.501037
\(65\) 1.34073e21 1.90037
\(66\) −4.12930e20 −0.491045
\(67\) −1.28180e21 −1.28221 −0.641107 0.767452i \(-0.721524\pi\)
−0.641107 + 0.767452i \(0.721524\pi\)
\(68\) −4.01274e20 −0.338523
\(69\) −7.89602e20 −0.563175
\(70\) 0 0
\(71\) −6.22375e20 −0.319581 −0.159791 0.987151i \(-0.551082\pi\)
−0.159791 + 0.987151i \(0.551082\pi\)
\(72\) 8.39534e20 0.367041
\(73\) 1.49176e21 0.556526 0.278263 0.960505i \(-0.410241\pi\)
0.278263 + 0.960505i \(0.410241\pi\)
\(74\) −4.93763e19 −0.0157526
\(75\) −3.72076e21 −1.01725
\(76\) −6.29715e21 −1.47839
\(77\) 0 0
\(78\) 3.12708e21 0.544567
\(79\) 1.10354e22 1.65989 0.829943 0.557848i \(-0.188373\pi\)
0.829943 + 0.557848i \(0.188373\pi\)
\(80\) 7.60277e21 0.989548
\(81\) −1.09016e22 −1.23002
\(82\) −4.13788e20 −0.0405432
\(83\) 1.30716e22 1.11411 0.557057 0.830474i \(-0.311931\pi\)
0.557057 + 0.830474i \(0.311931\pi\)
\(84\) 0 0
\(85\) 7.68527e21 0.498128
\(86\) 6.55868e20 0.0371608
\(87\) −5.05107e21 −0.250560
\(88\) −1.68329e22 −0.732165
\(89\) −2.41898e21 −0.0923948 −0.0461974 0.998932i \(-0.514710\pi\)
−0.0461974 + 0.998932i \(0.514710\pi\)
\(90\) −7.66172e21 −0.257358
\(91\) 0 0
\(92\) −1.53377e22 −0.400130
\(93\) −1.01281e23 −2.33331
\(94\) −2.38326e22 −0.485513
\(95\) 1.20604e23 2.17541
\(96\) 6.35820e22 1.01675
\(97\) −1.34288e22 −0.190617 −0.0953083 0.995448i \(-0.530384\pi\)
−0.0953083 + 0.995448i \(0.530384\pi\)
\(98\) 0 0
\(99\) −7.30970e22 −0.820531
\(100\) −7.22744e22 −0.722744
\(101\) 1.37860e23 1.22954 0.614768 0.788708i \(-0.289249\pi\)
0.614768 + 0.788708i \(0.289249\pi\)
\(102\) 1.79249e22 0.142743
\(103\) −6.85655e22 −0.488065 −0.244032 0.969767i \(-0.578470\pi\)
−0.244032 + 0.969767i \(0.578470\pi\)
\(104\) 1.27474e23 0.811968
\(105\) 0 0
\(106\) 7.94622e22 0.406577
\(107\) −3.19316e23 −1.46658 −0.733291 0.679914i \(-0.762017\pi\)
−0.733291 + 0.679914i \(0.762017\pi\)
\(108\) −1.01343e23 −0.418237
\(109\) −1.90338e23 −0.706512 −0.353256 0.935527i \(-0.614926\pi\)
−0.353256 + 0.935527i \(0.614926\pi\)
\(110\) 1.53620e23 0.513371
\(111\) −2.23689e22 −0.0673644
\(112\) 0 0
\(113\) 6.33182e23 1.55284 0.776419 0.630217i \(-0.217034\pi\)
0.776419 + 0.630217i \(0.217034\pi\)
\(114\) 2.81294e23 0.623383
\(115\) 2.93751e23 0.588782
\(116\) −9.81152e22 −0.178020
\(117\) 5.53557e23 0.909966
\(118\) 6.57123e22 0.0979498
\(119\) 0 0
\(120\) −7.99305e23 −0.982038
\(121\) 5.70189e23 0.636777
\(122\) 5.16581e23 0.524808
\(123\) −1.87458e23 −0.173378
\(124\) −1.96734e24 −1.65779
\(125\) −3.59108e23 −0.275905
\(126\) 0 0
\(127\) 8.64318e23 0.553262 0.276631 0.960976i \(-0.410782\pi\)
0.276631 + 0.960976i \(0.410782\pi\)
\(128\) 1.61347e24 0.943727
\(129\) 2.97128e23 0.158914
\(130\) −1.16335e24 −0.569327
\(131\) −1.22003e24 −0.546702 −0.273351 0.961914i \(-0.588132\pi\)
−0.273351 + 0.961914i \(0.588132\pi\)
\(132\) −3.63376e24 −1.49195
\(133\) 0 0
\(134\) 1.11222e24 0.384136
\(135\) 1.94095e24 0.615426
\(136\) 7.30703e23 0.212835
\(137\) 5.66613e24 1.51705 0.758526 0.651643i \(-0.225920\pi\)
0.758526 + 0.651643i \(0.225920\pi\)
\(138\) 6.85138e23 0.168721
\(139\) −2.68692e24 −0.608955 −0.304478 0.952520i \(-0.598482\pi\)
−0.304478 + 0.952520i \(0.598482\pi\)
\(140\) 0 0
\(141\) −1.07969e25 −2.07624
\(142\) 5.40035e23 0.0957427
\(143\) −1.10990e25 −1.81518
\(144\) 3.13902e24 0.473833
\(145\) 1.87912e24 0.261953
\(146\) −1.29440e24 −0.166729
\(147\) 0 0
\(148\) −4.34508e23 −0.0478617
\(149\) −1.36100e25 −1.38744 −0.693721 0.720244i \(-0.744030\pi\)
−0.693721 + 0.720244i \(0.744030\pi\)
\(150\) 3.22850e24 0.304756
\(151\) −2.80397e23 −0.0245210 −0.0122605 0.999925i \(-0.503903\pi\)
−0.0122605 + 0.999925i \(0.503903\pi\)
\(152\) 1.14669e25 0.929486
\(153\) 3.17308e24 0.238522
\(154\) 0 0
\(155\) 3.76789e25 2.43940
\(156\) 2.75181e25 1.65457
\(157\) 2.62673e25 1.46747 0.733736 0.679434i \(-0.237775\pi\)
0.733736 + 0.679434i \(0.237775\pi\)
\(158\) −9.57546e24 −0.497282
\(159\) 3.59987e25 1.73868
\(160\) −2.36541e25 −1.06298
\(161\) 0 0
\(162\) 9.45930e24 0.368499
\(163\) −3.07548e25 −1.11623 −0.558117 0.829762i \(-0.688476\pi\)
−0.558117 + 0.829762i \(0.688476\pi\)
\(164\) −3.64130e24 −0.123184
\(165\) 6.95943e25 2.19537
\(166\) −1.13422e25 −0.333775
\(167\) 3.67525e25 1.00936 0.504681 0.863306i \(-0.331610\pi\)
0.504681 + 0.863306i \(0.331610\pi\)
\(168\) 0 0
\(169\) 4.22979e25 1.01303
\(170\) −6.66851e24 −0.149233
\(171\) 4.97948e25 1.04167
\(172\) 5.77160e24 0.112907
\(173\) 3.92730e25 0.718728 0.359364 0.933198i \(-0.382994\pi\)
0.359364 + 0.933198i \(0.382994\pi\)
\(174\) 4.38281e24 0.0750649
\(175\) 0 0
\(176\) −6.29383e25 −0.945191
\(177\) 2.97696e25 0.418871
\(178\) 2.09895e24 0.0276804
\(179\) 1.23200e26 1.52335 0.761675 0.647959i \(-0.224377\pi\)
0.761675 + 0.647959i \(0.224377\pi\)
\(180\) −6.74226e25 −0.781937
\(181\) −1.48781e26 −1.61899 −0.809497 0.587124i \(-0.800260\pi\)
−0.809497 + 0.587124i \(0.800260\pi\)
\(182\) 0 0
\(183\) 2.34027e26 2.24428
\(184\) 2.79294e25 0.251568
\(185\) 8.32178e24 0.0704273
\(186\) 8.78813e25 0.699033
\(187\) −6.36212e25 −0.475799
\(188\) −2.09725e26 −1.47515
\(189\) 0 0
\(190\) −1.04648e26 −0.651727
\(191\) 4.80899e25 0.281949 0.140975 0.990013i \(-0.454976\pi\)
0.140975 + 0.990013i \(0.454976\pi\)
\(192\) 1.16261e26 0.641905
\(193\) −2.43566e25 −0.126680 −0.0633399 0.997992i \(-0.520175\pi\)
−0.0633399 + 0.997992i \(0.520175\pi\)
\(194\) 1.16521e25 0.0571065
\(195\) −5.27032e26 −2.43466
\(196\) 0 0
\(197\) −2.46808e26 −1.01390 −0.506952 0.861974i \(-0.669228\pi\)
−0.506952 + 0.861974i \(0.669228\pi\)
\(198\) 6.34263e25 0.245821
\(199\) 2.64390e26 0.967018 0.483509 0.875339i \(-0.339362\pi\)
0.483509 + 0.875339i \(0.339362\pi\)
\(200\) 1.31609e26 0.454401
\(201\) 5.03868e26 1.64271
\(202\) −1.19621e26 −0.368355
\(203\) 0 0
\(204\) 1.57738e26 0.433700
\(205\) 6.97389e25 0.181262
\(206\) 5.94943e25 0.146218
\(207\) 1.21283e26 0.281931
\(208\) 4.76626e26 1.04821
\(209\) −9.98403e26 −2.07789
\(210\) 0 0
\(211\) 9.33614e26 1.74148 0.870741 0.491741i \(-0.163639\pi\)
0.870741 + 0.491741i \(0.163639\pi\)
\(212\) 6.99262e26 1.23531
\(213\) 2.44652e26 0.409433
\(214\) 2.77070e26 0.439371
\(215\) −1.10539e26 −0.166139
\(216\) 1.84542e26 0.262953
\(217\) 0 0
\(218\) 1.65156e26 0.211663
\(219\) −5.86400e26 −0.712996
\(220\) 1.35185e27 1.55979
\(221\) 4.81798e26 0.527660
\(222\) 1.94095e25 0.0201816
\(223\) 7.37824e26 0.728529 0.364264 0.931296i \(-0.381320\pi\)
0.364264 + 0.931296i \(0.381320\pi\)
\(224\) 0 0
\(225\) 5.71511e26 0.509244
\(226\) −5.49412e26 −0.465212
\(227\) 1.43157e26 0.115217 0.0576083 0.998339i \(-0.481653\pi\)
0.0576083 + 0.998339i \(0.481653\pi\)
\(228\) 2.47537e27 1.89404
\(229\) −4.53788e26 −0.330176 −0.165088 0.986279i \(-0.552791\pi\)
−0.165088 + 0.986279i \(0.552791\pi\)
\(230\) −2.54888e26 −0.176392
\(231\) 0 0
\(232\) 1.78664e26 0.111924
\(233\) −7.65394e26 −0.456344 −0.228172 0.973621i \(-0.573275\pi\)
−0.228172 + 0.973621i \(0.573275\pi\)
\(234\) −4.80322e26 −0.272615
\(235\) 4.01670e27 2.17064
\(236\) 5.78264e26 0.297604
\(237\) −4.33796e27 −2.12657
\(238\) 0 0
\(239\) 4.15067e27 1.84732 0.923661 0.383210i \(-0.125182\pi\)
0.923661 + 0.383210i \(0.125182\pi\)
\(240\) −2.98860e27 −1.26776
\(241\) −1.72088e27 −0.695911 −0.347955 0.937511i \(-0.613124\pi\)
−0.347955 + 0.937511i \(0.613124\pi\)
\(242\) −4.94753e26 −0.190771
\(243\) 3.03584e27 1.11637
\(244\) 4.54588e27 1.59454
\(245\) 0 0
\(246\) 1.62657e26 0.0519421
\(247\) 7.56081e27 2.30438
\(248\) 3.58245e27 1.04228
\(249\) −5.13835e27 −1.42735
\(250\) 3.11598e26 0.0826580
\(251\) −8.84045e26 −0.223989 −0.111995 0.993709i \(-0.535724\pi\)
−0.111995 + 0.993709i \(0.535724\pi\)
\(252\) 0 0
\(253\) −2.43177e27 −0.562389
\(254\) −7.49969e26 −0.165751
\(255\) −3.02103e27 −0.638180
\(256\) 1.08100e27 0.218307
\(257\) −1.59535e27 −0.308052 −0.154026 0.988067i \(-0.549224\pi\)
−0.154026 + 0.988067i \(0.549224\pi\)
\(258\) −2.57818e26 −0.0476087
\(259\) 0 0
\(260\) −1.02374e28 −1.72980
\(261\) 7.75847e26 0.125433
\(262\) 1.05862e27 0.163785
\(263\) −4.74872e27 −0.703211 −0.351606 0.936148i \(-0.614364\pi\)
−0.351606 + 0.936148i \(0.614364\pi\)
\(264\) 6.61692e27 0.938017
\(265\) −1.33924e28 −1.81773
\(266\) 0 0
\(267\) 9.50887e26 0.118372
\(268\) 9.78745e27 1.16713
\(269\) −5.15524e27 −0.588976 −0.294488 0.955655i \(-0.595149\pi\)
−0.294488 + 0.955655i \(0.595149\pi\)
\(270\) −1.68416e27 −0.184374
\(271\) −7.03660e27 −0.738271 −0.369135 0.929376i \(-0.620346\pi\)
−0.369135 + 0.929376i \(0.620346\pi\)
\(272\) 2.73210e27 0.274760
\(273\) 0 0
\(274\) −4.91651e27 −0.454491
\(275\) −1.14590e28 −1.01583
\(276\) 6.02917e27 0.512629
\(277\) −1.48551e28 −1.21160 −0.605800 0.795617i \(-0.707147\pi\)
−0.605800 + 0.795617i \(0.707147\pi\)
\(278\) 2.33144e27 0.182436
\(279\) 1.55568e28 1.16808
\(280\) 0 0
\(281\) 8.52564e27 0.589664 0.294832 0.955549i \(-0.404736\pi\)
0.294832 + 0.955549i \(0.404736\pi\)
\(282\) 9.36844e27 0.622017
\(283\) −1.77120e28 −1.12908 −0.564538 0.825407i \(-0.690946\pi\)
−0.564538 + 0.825407i \(0.690946\pi\)
\(284\) 4.75227e27 0.290898
\(285\) −4.74088e28 −2.78704
\(286\) 9.63061e27 0.543806
\(287\) 0 0
\(288\) −9.76624e27 −0.508995
\(289\) −1.72058e28 −0.861689
\(290\) −1.63051e27 −0.0784779
\(291\) 5.27876e27 0.244209
\(292\) −1.13906e28 −0.506576
\(293\) 2.69579e28 1.15268 0.576339 0.817211i \(-0.304481\pi\)
0.576339 + 0.817211i \(0.304481\pi\)
\(294\) 0 0
\(295\) −1.10750e28 −0.437916
\(296\) 7.91221e26 0.0300914
\(297\) −1.60678e28 −0.587839
\(298\) 1.18094e28 0.415661
\(299\) 1.84156e28 0.623687
\(300\) 2.84106e28 0.925947
\(301\) 0 0
\(302\) 2.43301e26 0.00734622
\(303\) −5.41918e28 −1.57523
\(304\) 4.28746e28 1.19992
\(305\) −8.70636e28 −2.34633
\(306\) −2.75328e27 −0.0714585
\(307\) 6.16268e28 1.54056 0.770280 0.637706i \(-0.220117\pi\)
0.770280 + 0.637706i \(0.220117\pi\)
\(308\) 0 0
\(309\) 2.69526e28 0.625286
\(310\) −3.26940e28 −0.730816
\(311\) −4.28264e28 −0.922503 −0.461251 0.887270i \(-0.652599\pi\)
−0.461251 + 0.887270i \(0.652599\pi\)
\(312\) −5.01093e28 −1.04026
\(313\) 6.87033e28 1.37473 0.687366 0.726311i \(-0.258767\pi\)
0.687366 + 0.726311i \(0.258767\pi\)
\(314\) −2.27922e28 −0.439638
\(315\) 0 0
\(316\) −8.42634e28 −1.51091
\(317\) −3.91432e27 −0.0676823 −0.0338411 0.999427i \(-0.510774\pi\)
−0.0338411 + 0.999427i \(0.510774\pi\)
\(318\) −3.12361e28 −0.520888
\(319\) −1.55560e28 −0.250210
\(320\) −4.32520e28 −0.671091
\(321\) 1.25521e29 1.87892
\(322\) 0 0
\(323\) 4.33398e28 0.604029
\(324\) 8.32412e28 1.11962
\(325\) 8.67779e28 1.12655
\(326\) 2.66859e28 0.334410
\(327\) 7.48205e28 0.905152
\(328\) 6.63066e27 0.0774476
\(329\) 0 0
\(330\) −6.03870e28 −0.657708
\(331\) 4.74765e28 0.499410 0.249705 0.968322i \(-0.419666\pi\)
0.249705 + 0.968322i \(0.419666\pi\)
\(332\) −9.98106e28 −1.01412
\(333\) 3.43588e27 0.0337232
\(334\) −3.18901e28 −0.302393
\(335\) −1.87451e29 −1.71740
\(336\) 0 0
\(337\) −1.40868e29 −1.20523 −0.602613 0.798034i \(-0.705874\pi\)
−0.602613 + 0.798034i \(0.705874\pi\)
\(338\) −3.67019e28 −0.303491
\(339\) −2.48900e29 −1.98943
\(340\) −5.86824e28 −0.453420
\(341\) −3.11919e29 −2.33005
\(342\) −4.32070e28 −0.312071
\(343\) 0 0
\(344\) −1.05098e28 −0.0709862
\(345\) −1.15472e29 −0.754321
\(346\) −3.40772e28 −0.215322
\(347\) −6.22822e28 −0.380693 −0.190346 0.981717i \(-0.560961\pi\)
−0.190346 + 0.981717i \(0.560961\pi\)
\(348\) 3.85685e28 0.228072
\(349\) 1.06957e29 0.611952 0.305976 0.952039i \(-0.401017\pi\)
0.305976 + 0.952039i \(0.401017\pi\)
\(350\) 0 0
\(351\) 1.21680e29 0.651911
\(352\) 1.95816e29 1.01533
\(353\) 1.40554e29 0.705399 0.352699 0.935737i \(-0.385264\pi\)
0.352699 + 0.935737i \(0.385264\pi\)
\(354\) −2.58311e28 −0.125489
\(355\) −9.10164e28 −0.428049
\(356\) 1.84706e28 0.0841021
\(357\) 0 0
\(358\) −1.06900e29 −0.456378
\(359\) 4.59325e29 1.89904 0.949519 0.313711i \(-0.101572\pi\)
0.949519 + 0.313711i \(0.101572\pi\)
\(360\) 1.22774e29 0.491617
\(361\) 4.22298e29 1.63789
\(362\) 1.29098e29 0.485031
\(363\) −2.24138e29 −0.815809
\(364\) 0 0
\(365\) 2.18155e29 0.745414
\(366\) −2.03065e29 −0.672361
\(367\) 4.24622e29 1.36252 0.681260 0.732041i \(-0.261432\pi\)
0.681260 + 0.732041i \(0.261432\pi\)
\(368\) 1.04428e29 0.324763
\(369\) 2.87937e28 0.0867948
\(370\) −7.22081e27 −0.0210992
\(371\) 0 0
\(372\) 7.73350e29 2.12389
\(373\) 2.57231e29 0.684970 0.342485 0.939523i \(-0.388731\pi\)
0.342485 + 0.939523i \(0.388731\pi\)
\(374\) 5.52042e28 0.142544
\(375\) 1.41163e29 0.353478
\(376\) 3.81901e29 0.927450
\(377\) 1.17804e29 0.277482
\(378\) 0 0
\(379\) −4.48606e29 −0.994292 −0.497146 0.867667i \(-0.665619\pi\)
−0.497146 + 0.867667i \(0.665619\pi\)
\(380\) −9.20898e29 −1.98016
\(381\) −3.39758e29 −0.708814
\(382\) −4.17277e28 −0.0844686
\(383\) 5.93935e29 1.16668 0.583342 0.812227i \(-0.301745\pi\)
0.583342 + 0.812227i \(0.301745\pi\)
\(384\) −6.34245e29 −1.20906
\(385\) 0 0
\(386\) 2.11342e28 0.0379518
\(387\) −4.56390e28 −0.0795536
\(388\) 1.02538e29 0.173508
\(389\) −3.88484e29 −0.638194 −0.319097 0.947722i \(-0.603380\pi\)
−0.319097 + 0.947722i \(0.603380\pi\)
\(390\) 4.57306e29 0.729396
\(391\) 1.05561e29 0.163482
\(392\) 0 0
\(393\) 4.79586e29 0.700409
\(394\) 2.14155e29 0.303754
\(395\) 1.61383e30 2.22326
\(396\) 5.58147e29 0.746885
\(397\) 1.10976e30 1.44257 0.721287 0.692637i \(-0.243551\pi\)
0.721287 + 0.692637i \(0.243551\pi\)
\(398\) −2.29411e29 −0.289707
\(399\) 0 0
\(400\) 4.92085e29 0.586611
\(401\) −1.44141e30 −1.66966 −0.834828 0.550511i \(-0.814433\pi\)
−0.834828 + 0.550511i \(0.814433\pi\)
\(402\) −4.37206e29 −0.492138
\(403\) 2.36213e30 2.58402
\(404\) −1.05266e30 −1.11918
\(405\) −1.59425e30 −1.64749
\(406\) 0 0
\(407\) −6.88905e28 −0.0672703
\(408\) −2.87235e29 −0.272675
\(409\) 1.68194e29 0.155236 0.0776178 0.996983i \(-0.475269\pi\)
0.0776178 + 0.996983i \(0.475269\pi\)
\(410\) −6.05125e28 −0.0543038
\(411\) −2.22732e30 −1.94358
\(412\) 5.23546e29 0.444259
\(413\) 0 0
\(414\) −1.05238e29 −0.0844631
\(415\) 1.91159e30 1.49225
\(416\) −1.48290e30 −1.12600
\(417\) 1.05621e30 0.780166
\(418\) 8.66314e29 0.622513
\(419\) −2.41718e30 −1.68985 −0.844925 0.534884i \(-0.820355\pi\)
−0.844925 + 0.534884i \(0.820355\pi\)
\(420\) 0 0
\(421\) −1.21472e30 −0.803959 −0.401979 0.915649i \(-0.631678\pi\)
−0.401979 + 0.915649i \(0.631678\pi\)
\(422\) −8.10097e29 −0.521728
\(423\) 1.65840e30 1.03938
\(424\) −1.27333e30 −0.776663
\(425\) 4.97425e29 0.295294
\(426\) −2.12284e29 −0.122661
\(427\) 0 0
\(428\) 2.43820e30 1.33495
\(429\) 4.36295e30 2.32553
\(430\) 9.59145e28 0.0497733
\(431\) −1.38543e30 −0.699998 −0.349999 0.936750i \(-0.613818\pi\)
−0.349999 + 0.936750i \(0.613818\pi\)
\(432\) 6.90003e29 0.339460
\(433\) 4.36873e29 0.209288 0.104644 0.994510i \(-0.466630\pi\)
0.104644 + 0.994510i \(0.466630\pi\)
\(434\) 0 0
\(435\) −7.38670e29 −0.335602
\(436\) 1.45336e30 0.643101
\(437\) 1.65656e30 0.713955
\(438\) 5.08820e29 0.213605
\(439\) −1.09246e30 −0.446749 −0.223374 0.974733i \(-0.571707\pi\)
−0.223374 + 0.974733i \(0.571707\pi\)
\(440\) −2.46165e30 −0.980666
\(441\) 0 0
\(442\) −4.18056e29 −0.158081
\(443\) −5.42391e29 −0.199834 −0.0999171 0.994996i \(-0.531858\pi\)
−0.0999171 + 0.994996i \(0.531858\pi\)
\(444\) 1.70802e29 0.0613182
\(445\) −3.53753e29 −0.123754
\(446\) −6.40210e29 −0.218259
\(447\) 5.34999e30 1.77753
\(448\) 0 0
\(449\) 1.44285e30 0.455395 0.227697 0.973732i \(-0.426880\pi\)
0.227697 + 0.973732i \(0.426880\pi\)
\(450\) −4.95900e29 −0.152563
\(451\) −5.77323e29 −0.173136
\(452\) −4.83479e30 −1.41347
\(453\) 1.10222e29 0.0314153
\(454\) −1.24217e29 −0.0345175
\(455\) 0 0
\(456\) −4.50755e30 −1.19082
\(457\) −1.19186e30 −0.307035 −0.153518 0.988146i \(-0.549060\pi\)
−0.153518 + 0.988146i \(0.549060\pi\)
\(458\) 3.93752e29 0.0989168
\(459\) 6.97491e29 0.170880
\(460\) −2.24300e30 −0.535937
\(461\) 4.91770e30 1.14604 0.573022 0.819540i \(-0.305771\pi\)
0.573022 + 0.819540i \(0.305771\pi\)
\(462\) 0 0
\(463\) 5.21961e30 1.15733 0.578664 0.815566i \(-0.303574\pi\)
0.578664 + 0.815566i \(0.303574\pi\)
\(464\) 6.68024e29 0.144489
\(465\) −1.48113e31 −3.12525
\(466\) 6.64132e29 0.136715
\(467\) 5.70190e30 1.14519 0.572593 0.819840i \(-0.305938\pi\)
0.572593 + 0.819840i \(0.305938\pi\)
\(468\) −4.22680e30 −0.828293
\(469\) 0 0
\(470\) −3.48529e30 −0.650299
\(471\) −1.03255e31 −1.88006
\(472\) −1.05299e30 −0.187108
\(473\) 9.15077e29 0.158692
\(474\) 3.76405e30 0.637096
\(475\) 7.80604e30 1.28960
\(476\) 0 0
\(477\) −5.52942e30 −0.870399
\(478\) −3.60154e30 −0.553436
\(479\) 7.33707e30 1.10069 0.550344 0.834938i \(-0.314497\pi\)
0.550344 + 0.834938i \(0.314497\pi\)
\(480\) 9.29826e30 1.36184
\(481\) 5.21701e29 0.0746025
\(482\) 1.49320e30 0.208487
\(483\) 0 0
\(484\) −4.35379e30 −0.579624
\(485\) −1.96383e30 −0.255313
\(486\) −2.63420e30 −0.334450
\(487\) −9.68270e30 −1.20064 −0.600321 0.799759i \(-0.704960\pi\)
−0.600321 + 0.799759i \(0.704960\pi\)
\(488\) −8.27786e30 −1.00251
\(489\) 1.20895e31 1.43007
\(490\) 0 0
\(491\) −6.95735e30 −0.785248 −0.392624 0.919699i \(-0.628433\pi\)
−0.392624 + 0.919699i \(0.628433\pi\)
\(492\) 1.43137e30 0.157817
\(493\) 6.75272e29 0.0727343
\(494\) −6.56052e30 −0.690364
\(495\) −1.06897e31 −1.09902
\(496\) 1.33948e31 1.34554
\(497\) 0 0
\(498\) 4.45855e30 0.427618
\(499\) −3.82109e30 −0.358122 −0.179061 0.983838i \(-0.557306\pi\)
−0.179061 + 0.983838i \(0.557306\pi\)
\(500\) 2.74204e30 0.251142
\(501\) −1.44472e31 −1.29315
\(502\) 7.67086e29 0.0671045
\(503\) 5.35790e30 0.458103 0.229051 0.973414i \(-0.426438\pi\)
0.229051 + 0.973414i \(0.426438\pi\)
\(504\) 0 0
\(505\) 2.01607e31 1.64685
\(506\) 2.11005e30 0.168485
\(507\) −1.66270e31 −1.29785
\(508\) −6.59968e30 −0.503605
\(509\) −1.49403e31 −1.11456 −0.557282 0.830323i \(-0.688156\pi\)
−0.557282 + 0.830323i \(0.688156\pi\)
\(510\) 2.62135e30 0.191191
\(511\) 0 0
\(512\) −1.44728e31 −1.00913
\(513\) 1.09457e31 0.746263
\(514\) 1.38428e30 0.0922887
\(515\) −1.00270e31 −0.653717
\(516\) −2.26878e30 −0.144651
\(517\) −3.32516e31 −2.07334
\(518\) 0 0
\(519\) −1.54380e31 −0.920801
\(520\) 1.86419e31 1.08756
\(521\) 1.97941e31 1.12954 0.564769 0.825249i \(-0.308965\pi\)
0.564769 + 0.825249i \(0.308965\pi\)
\(522\) −6.73203e29 −0.0375781
\(523\) 2.13891e31 1.16795 0.583974 0.811773i \(-0.301497\pi\)
0.583974 + 0.811773i \(0.301497\pi\)
\(524\) 9.31578e30 0.497633
\(525\) 0 0
\(526\) 4.12047e30 0.210674
\(527\) 1.35401e31 0.677330
\(528\) 2.47407e31 1.21094
\(529\) −1.68456e31 −0.806766
\(530\) 1.16206e31 0.544572
\(531\) −4.57263e30 −0.209691
\(532\) 0 0
\(533\) 4.37201e30 0.192008
\(534\) −8.25085e29 −0.0354629
\(535\) −4.66968e31 −1.96435
\(536\) −1.78225e31 −0.733795
\(537\) −4.84290e31 −1.95165
\(538\) 4.47320e30 0.176450
\(539\) 0 0
\(540\) −1.48205e31 −0.560190
\(541\) −1.09249e31 −0.404250 −0.202125 0.979360i \(-0.564785\pi\)
−0.202125 + 0.979360i \(0.564785\pi\)
\(542\) 6.10565e30 0.221177
\(543\) 5.84850e31 2.07418
\(544\) −8.50022e30 −0.295150
\(545\) −2.78350e31 −0.946307
\(546\) 0 0
\(547\) −1.76051e31 −0.573831 −0.286916 0.957956i \(-0.592630\pi\)
−0.286916 + 0.957956i \(0.592630\pi\)
\(548\) −4.32649e31 −1.38089
\(549\) −3.59466e31 −1.12351
\(550\) 9.94296e30 0.304330
\(551\) 1.05970e31 0.317643
\(552\) −1.09789e31 −0.322298
\(553\) 0 0
\(554\) 1.28898e31 0.362981
\(555\) −3.27124e30 −0.0902283
\(556\) 2.05166e31 0.554299
\(557\) 2.04064e31 0.540047 0.270024 0.962854i \(-0.412968\pi\)
0.270024 + 0.962854i \(0.412968\pi\)
\(558\) −1.34986e31 −0.349942
\(559\) −6.92980e30 −0.175989
\(560\) 0 0
\(561\) 2.50091e31 0.609572
\(562\) −7.39770e30 −0.176656
\(563\) 4.68033e31 1.09504 0.547520 0.836792i \(-0.315572\pi\)
0.547520 + 0.836792i \(0.315572\pi\)
\(564\) 8.24417e31 1.88989
\(565\) 9.25967e31 2.07988
\(566\) 1.53687e31 0.338258
\(567\) 0 0
\(568\) −8.65369e30 −0.182892
\(569\) −6.83899e30 −0.141645 −0.0708224 0.997489i \(-0.522562\pi\)
−0.0708224 + 0.997489i \(0.522562\pi\)
\(570\) 4.11366e31 0.834963
\(571\) −6.64727e31 −1.32229 −0.661147 0.750257i \(-0.729930\pi\)
−0.661147 + 0.750257i \(0.729930\pi\)
\(572\) 8.47487e31 1.65226
\(573\) −1.89039e31 −0.361220
\(574\) 0 0
\(575\) 1.90129e31 0.349034
\(576\) −1.78578e31 −0.321343
\(577\) −6.48872e31 −1.14456 −0.572278 0.820060i \(-0.693940\pi\)
−0.572278 + 0.820060i \(0.693940\pi\)
\(578\) 1.49295e31 0.258152
\(579\) 9.57442e30 0.162297
\(580\) −1.43484e31 −0.238442
\(581\) 0 0
\(582\) −4.58038e30 −0.0731623
\(583\) 1.10867e32 1.73625
\(584\) 2.07418e31 0.318493
\(585\) 8.09524e31 1.21881
\(586\) −2.33914e31 −0.345329
\(587\) 4.13155e31 0.598101 0.299051 0.954237i \(-0.403330\pi\)
0.299051 + 0.954237i \(0.403330\pi\)
\(588\) 0 0
\(589\) 2.12484e32 2.95801
\(590\) 9.60979e30 0.131195
\(591\) 9.70185e31 1.29897
\(592\) 2.95837e30 0.0388466
\(593\) 1.74273e31 0.224440 0.112220 0.993683i \(-0.464204\pi\)
0.112220 + 0.993683i \(0.464204\pi\)
\(594\) 1.39421e31 0.176110
\(595\) 0 0
\(596\) 1.03922e32 1.26291
\(597\) −1.03930e32 −1.23890
\(598\) −1.59792e31 −0.186849
\(599\) 8.60056e31 0.986549 0.493274 0.869874i \(-0.335800\pi\)
0.493274 + 0.869874i \(0.335800\pi\)
\(600\) −5.17346e31 −0.582159
\(601\) −1.22654e32 −1.35402 −0.677012 0.735972i \(-0.736726\pi\)
−0.677012 + 0.735972i \(0.736726\pi\)
\(602\) 0 0
\(603\) −7.73944e31 −0.822357
\(604\) 2.14103e30 0.0223202
\(605\) 8.33847e31 0.852902
\(606\) 4.70222e31 0.471919
\(607\) 4.35936e31 0.429292 0.214646 0.976692i \(-0.431140\pi\)
0.214646 + 0.976692i \(0.431140\pi\)
\(608\) −1.33393e32 −1.28897
\(609\) 0 0
\(610\) 7.55451e31 0.702931
\(611\) 2.51811e32 2.29933
\(612\) −2.42287e31 −0.217114
\(613\) −5.83683e31 −0.513312 −0.256656 0.966503i \(-0.582621\pi\)
−0.256656 + 0.966503i \(0.582621\pi\)
\(614\) −5.34736e31 −0.461533
\(615\) −2.74139e31 −0.232224
\(616\) 0 0
\(617\) −1.23925e32 −1.01130 −0.505649 0.862739i \(-0.668747\pi\)
−0.505649 + 0.862739i \(0.668747\pi\)
\(618\) −2.33868e31 −0.187328
\(619\) 7.79384e31 0.612786 0.306393 0.951905i \(-0.400878\pi\)
0.306393 + 0.951905i \(0.400878\pi\)
\(620\) −2.87705e32 −2.22046
\(621\) 2.66599e31 0.201979
\(622\) 3.71605e31 0.276371
\(623\) 0 0
\(624\) −1.87359e32 −1.34292
\(625\) −1.65352e32 −1.16356
\(626\) −5.96139e31 −0.411853
\(627\) 3.92466e32 2.66210
\(628\) −2.00570e32 −1.33576
\(629\) 2.99048e30 0.0195550
\(630\) 0 0
\(631\) −2.43061e32 −1.53242 −0.766211 0.642589i \(-0.777860\pi\)
−0.766211 + 0.642589i \(0.777860\pi\)
\(632\) 1.53440e32 0.949932
\(633\) −3.66998e32 −2.23111
\(634\) 3.39646e30 0.0202768
\(635\) 1.26398e32 0.741042
\(636\) −2.74875e32 −1.58263
\(637\) 0 0
\(638\) 1.34979e31 0.0749600
\(639\) −3.75786e31 −0.204966
\(640\) 2.35955e32 1.26403
\(641\) −6.12602e30 −0.0322338 −0.0161169 0.999870i \(-0.505130\pi\)
−0.0161169 + 0.999870i \(0.505130\pi\)
\(642\) −1.08914e32 −0.562902
\(643\) 5.36539e31 0.272380 0.136190 0.990683i \(-0.456514\pi\)
0.136190 + 0.990683i \(0.456514\pi\)
\(644\) 0 0
\(645\) 4.34521e31 0.212850
\(646\) −3.76059e31 −0.180960
\(647\) −3.71387e31 −0.175561 −0.0877804 0.996140i \(-0.527977\pi\)
−0.0877804 + 0.996140i \(0.527977\pi\)
\(648\) −1.51579e32 −0.703924
\(649\) 9.16828e31 0.418286
\(650\) −7.52972e31 −0.337501
\(651\) 0 0
\(652\) 2.34834e32 1.01605
\(653\) 1.24607e32 0.529711 0.264856 0.964288i \(-0.414676\pi\)
0.264856 + 0.964288i \(0.414676\pi\)
\(654\) −6.49217e31 −0.271173
\(655\) −1.78418e32 −0.732255
\(656\) 2.47921e31 0.0999812
\(657\) 9.00715e31 0.356932
\(658\) 0 0
\(659\) 5.55107e31 0.212420 0.106210 0.994344i \(-0.466128\pi\)
0.106210 + 0.994344i \(0.466128\pi\)
\(660\) −5.31402e32 −1.99833
\(661\) 3.41863e32 1.26338 0.631692 0.775220i \(-0.282361\pi\)
0.631692 + 0.775220i \(0.282361\pi\)
\(662\) −4.11954e31 −0.149617
\(663\) −1.89392e32 −0.676014
\(664\) 1.81751e32 0.637593
\(665\) 0 0
\(666\) −2.98131e30 −0.0101031
\(667\) 2.58107e31 0.0859711
\(668\) −2.80631e32 −0.918769
\(669\) −2.90034e32 −0.933358
\(670\) 1.62651e32 0.514514
\(671\) 7.20742e32 2.24115
\(672\) 0 0
\(673\) −4.26257e32 −1.28085 −0.640425 0.768021i \(-0.721242\pi\)
−0.640425 + 0.768021i \(0.721242\pi\)
\(674\) 1.22231e32 0.361071
\(675\) 1.25627e32 0.364829
\(676\) −3.22974e32 −0.922105
\(677\) 4.92042e32 1.38112 0.690561 0.723274i \(-0.257364\pi\)
0.690561 + 0.723274i \(0.257364\pi\)
\(678\) 2.15970e32 0.596009
\(679\) 0 0
\(680\) 1.06858e32 0.285073
\(681\) −5.62741e31 −0.147610
\(682\) 2.70652e32 0.698057
\(683\) −2.43788e32 −0.618266 −0.309133 0.951019i \(-0.600039\pi\)
−0.309133 + 0.951019i \(0.600039\pi\)
\(684\) −3.80218e32 −0.948174
\(685\) 8.28618e32 2.03195
\(686\) 0 0
\(687\) 1.78381e32 0.423006
\(688\) −3.92963e31 −0.0916399
\(689\) −8.39584e32 −1.92550
\(690\) 1.00195e32 0.225986
\(691\) −2.35982e31 −0.0523458 −0.0261729 0.999657i \(-0.508332\pi\)
−0.0261729 + 0.999657i \(0.508332\pi\)
\(692\) −2.99877e32 −0.654220
\(693\) 0 0
\(694\) 5.40423e31 0.114051
\(695\) −3.92937e32 −0.815638
\(696\) −7.02316e31 −0.143392
\(697\) 2.50611e31 0.0503295
\(698\) −9.28067e31 −0.183334
\(699\) 3.00871e32 0.584647
\(700\) 0 0
\(701\) 6.25606e32 1.17637 0.588184 0.808727i \(-0.299843\pi\)
0.588184 + 0.808727i \(0.299843\pi\)
\(702\) −1.05582e32 −0.195305
\(703\) 4.69293e31 0.0853999
\(704\) 3.58055e32 0.641009
\(705\) −1.57894e33 −2.78093
\(706\) −1.21959e32 −0.211329
\(707\) 0 0
\(708\) −2.27312e32 −0.381276
\(709\) 9.07599e32 1.49783 0.748915 0.662666i \(-0.230575\pi\)
0.748915 + 0.662666i \(0.230575\pi\)
\(710\) 7.89749e31 0.128238
\(711\) 6.66314e32 1.06458
\(712\) −3.36343e31 −0.0528764
\(713\) 5.17539e32 0.800596
\(714\) 0 0
\(715\) −1.62312e33 −2.43126
\(716\) −9.40716e32 −1.38662
\(717\) −1.63160e33 −2.36671
\(718\) −3.98556e32 −0.568929
\(719\) 8.51650e32 1.19641 0.598203 0.801344i \(-0.295881\pi\)
0.598203 + 0.801344i \(0.295881\pi\)
\(720\) 4.59051e32 0.634654
\(721\) 0 0
\(722\) −3.66428e32 −0.490694
\(723\) 6.76465e32 0.891569
\(724\) 1.13605e33 1.47368
\(725\) 1.21625e32 0.155287
\(726\) 1.94484e32 0.244407
\(727\) −4.13708e32 −0.511738 −0.255869 0.966711i \(-0.582362\pi\)
−0.255869 + 0.966711i \(0.582362\pi\)
\(728\) 0 0
\(729\) −1.67061e32 −0.200221
\(730\) −1.89293e32 −0.223317
\(731\) −3.97227e31 −0.0461306
\(732\) −1.78696e33 −2.04285
\(733\) 1.18029e32 0.132829 0.0664143 0.997792i \(-0.478844\pi\)
0.0664143 + 0.997792i \(0.478844\pi\)
\(734\) −3.68445e32 −0.408195
\(735\) 0 0
\(736\) −3.24901e32 −0.348864
\(737\) 1.55178e33 1.64042
\(738\) −2.49843e31 −0.0260027
\(739\) −6.13794e32 −0.628944 −0.314472 0.949267i \(-0.601827\pi\)
−0.314472 + 0.949267i \(0.601827\pi\)
\(740\) −6.35426e31 −0.0641062
\(741\) −2.97211e33 −2.95226
\(742\) 0 0
\(743\) 3.90366e32 0.375924 0.187962 0.982176i \(-0.439812\pi\)
0.187962 + 0.982176i \(0.439812\pi\)
\(744\) −1.40824e33 −1.33533
\(745\) −1.99033e33 −1.85835
\(746\) −2.23199e32 −0.205209
\(747\) 7.89254e32 0.714545
\(748\) 4.85793e32 0.433095
\(749\) 0 0
\(750\) −1.22487e32 −0.105898
\(751\) 9.43338e32 0.803171 0.401586 0.915821i \(-0.368459\pi\)
0.401586 + 0.915821i \(0.368459\pi\)
\(752\) 1.42793e33 1.19729
\(753\) 3.47513e32 0.286965
\(754\) −1.02219e32 −0.0831304
\(755\) −4.10054e31 −0.0328436
\(756\) 0 0
\(757\) 1.33353e33 1.03609 0.518047 0.855352i \(-0.326659\pi\)
0.518047 + 0.855352i \(0.326659\pi\)
\(758\) 3.89255e32 0.297878
\(759\) 9.55914e32 0.720507
\(760\) 1.67692e33 1.24496
\(761\) −9.89262e32 −0.723415 −0.361708 0.932292i \(-0.617806\pi\)
−0.361708 + 0.932292i \(0.617806\pi\)
\(762\) 2.94808e32 0.212352
\(763\) 0 0
\(764\) −3.67201e32 −0.256643
\(765\) 4.64032e32 0.319478
\(766\) −5.15358e32 −0.349525
\(767\) −6.94305e32 −0.463878
\(768\) −4.24936e32 −0.279685
\(769\) 1.31237e33 0.850947 0.425474 0.904971i \(-0.360107\pi\)
0.425474 + 0.904971i \(0.360107\pi\)
\(770\) 0 0
\(771\) 6.27120e32 0.394662
\(772\) 1.85980e32 0.115310
\(773\) 2.81718e32 0.172088 0.0860441 0.996291i \(-0.472577\pi\)
0.0860441 + 0.996291i \(0.472577\pi\)
\(774\) 3.96010e31 0.0238333
\(775\) 2.43874e33 1.44609
\(776\) −1.86717e32 −0.109088
\(777\) 0 0
\(778\) 3.37088e32 0.191195
\(779\) 3.93281e32 0.219797
\(780\) 4.02426e33 2.21614
\(781\) 7.53464e32 0.408861
\(782\) −9.15953e31 −0.0489774
\(783\) 1.70543e32 0.0898615
\(784\) 0 0
\(785\) 3.84135e33 1.96554
\(786\) −4.16137e32 −0.209834
\(787\) 1.73439e33 0.861860 0.430930 0.902385i \(-0.358186\pi\)
0.430930 + 0.902385i \(0.358186\pi\)
\(788\) 1.88455e33 0.922904
\(789\) 1.86669e33 0.900922
\(790\) −1.40032e33 −0.666063
\(791\) 0 0
\(792\) −1.01636e33 −0.469579
\(793\) −5.45811e33 −2.48543
\(794\) −9.62938e32 −0.432178
\(795\) 5.26446e33 2.32880
\(796\) −2.01880e33 −0.880225
\(797\) −2.25195e33 −0.967807 −0.483904 0.875121i \(-0.660782\pi\)
−0.483904 + 0.875121i \(0.660782\pi\)
\(798\) 0 0
\(799\) 1.44342e33 0.602706
\(800\) −1.53100e33 −0.630143
\(801\) −1.46057e32 −0.0592581
\(802\) 1.25071e33 0.500209
\(803\) −1.80596e33 −0.712000
\(804\) −3.84739e33 −1.49528
\(805\) 0 0
\(806\) −2.04962e33 −0.774142
\(807\) 2.02649e33 0.754569
\(808\) 1.91684e33 0.703648
\(809\) 1.35118e33 0.488996 0.244498 0.969650i \(-0.421377\pi\)
0.244498 + 0.969650i \(0.421377\pi\)
\(810\) 1.38333e33 0.493570
\(811\) 2.16124e33 0.760261 0.380130 0.924933i \(-0.375879\pi\)
0.380130 + 0.924933i \(0.375879\pi\)
\(812\) 0 0
\(813\) 2.76604e33 0.945839
\(814\) 5.97763e31 0.0201534
\(815\) −4.49759e33 −1.49509
\(816\) −1.07397e33 −0.352010
\(817\) −6.23365e32 −0.201460
\(818\) −1.45942e32 −0.0465068
\(819\) 0 0
\(820\) −5.32506e32 −0.164993
\(821\) −1.19447e32 −0.0364945 −0.0182473 0.999834i \(-0.505809\pi\)
−0.0182473 + 0.999834i \(0.505809\pi\)
\(822\) 1.93265e33 0.582273
\(823\) −7.15722e32 −0.212641 −0.106320 0.994332i \(-0.533907\pi\)
−0.106320 + 0.994332i \(0.533907\pi\)
\(824\) −9.53355e32 −0.279313
\(825\) 4.50445e33 1.30143
\(826\) 0 0
\(827\) 2.70094e33 0.758931 0.379465 0.925206i \(-0.376108\pi\)
0.379465 + 0.925206i \(0.376108\pi\)
\(828\) −9.26084e32 −0.256626
\(829\) −3.20363e33 −0.875518 −0.437759 0.899092i \(-0.644228\pi\)
−0.437759 + 0.899092i \(0.644228\pi\)
\(830\) −1.65869e33 −0.447061
\(831\) 5.83946e33 1.55225
\(832\) −2.71152e33 −0.710877
\(833\) 0 0
\(834\) −9.16476e32 −0.233728
\(835\) 5.37470e33 1.35195
\(836\) 7.62351e33 1.89140
\(837\) 3.41962e33 0.836825
\(838\) 2.09739e33 0.506259
\(839\) −5.78465e33 −1.37725 −0.688627 0.725115i \(-0.741786\pi\)
−0.688627 + 0.725115i \(0.741786\pi\)
\(840\) 0 0
\(841\) −4.15161e33 −0.961751
\(842\) 1.05402e33 0.240856
\(843\) −3.35138e33 −0.755450
\(844\) −7.12880e33 −1.58518
\(845\) 6.18566e33 1.35686
\(846\) −1.43900e33 −0.311387
\(847\) 0 0
\(848\) −4.76097e33 −1.00264
\(849\) 6.96247e33 1.44652
\(850\) −4.31615e32 −0.0884666
\(851\) 1.14304e32 0.0231138
\(852\) −1.86809e33 −0.372685
\(853\) −8.31369e33 −1.63636 −0.818182 0.574960i \(-0.805018\pi\)
−0.818182 + 0.574960i \(0.805018\pi\)
\(854\) 0 0
\(855\) 7.28201e33 1.39522
\(856\) −4.43986e33 −0.839307
\(857\) 3.59313e33 0.670183 0.335092 0.942186i \(-0.391233\pi\)
0.335092 + 0.942186i \(0.391233\pi\)
\(858\) −3.78573e33 −0.696700
\(859\) −4.98478e33 −0.905158 −0.452579 0.891724i \(-0.649496\pi\)
−0.452579 + 0.891724i \(0.649496\pi\)
\(860\) 8.44041e32 0.151228
\(861\) 0 0
\(862\) 1.20214e33 0.209711
\(863\) 2.60278e33 0.448037 0.224019 0.974585i \(-0.428082\pi\)
0.224019 + 0.974585i \(0.428082\pi\)
\(864\) −2.14677e33 −0.364651
\(865\) 5.74331e33 0.962669
\(866\) −3.79075e32 −0.0627002
\(867\) 6.76350e33 1.10396
\(868\) 0 0
\(869\) −1.33598e34 −2.12360
\(870\) 6.40944e32 0.100542
\(871\) −1.17515e34 −1.81922
\(872\) −2.64651e33 −0.404328
\(873\) −8.10820e32 −0.122253
\(874\) −1.43740e33 −0.213892
\(875\) 0 0
\(876\) 4.47758e33 0.649002
\(877\) 7.42633e32 0.106238 0.0531188 0.998588i \(-0.483084\pi\)
0.0531188 + 0.998588i \(0.483084\pi\)
\(878\) 9.47927e32 0.133841
\(879\) −1.05970e34 −1.47676
\(880\) −9.20412e33 −1.26599
\(881\) 1.21269e34 1.64637 0.823185 0.567773i \(-0.192195\pi\)
0.823185 + 0.567773i \(0.192195\pi\)
\(882\) 0 0
\(883\) −1.73682e32 −0.0229724 −0.0114862 0.999934i \(-0.503656\pi\)
−0.0114862 + 0.999934i \(0.503656\pi\)
\(884\) −3.67887e33 −0.480301
\(885\) 4.35352e33 0.561039
\(886\) 4.70633e32 0.0598680
\(887\) −9.95561e33 −1.25010 −0.625052 0.780583i \(-0.714922\pi\)
−0.625052 + 0.780583i \(0.714922\pi\)
\(888\) −3.11024e32 −0.0385518
\(889\) 0 0
\(890\) 3.06952e32 0.0370753
\(891\) 1.31977e34 1.57364
\(892\) −5.63381e33 −0.663141
\(893\) 2.26515e34 2.63212
\(894\) −4.64219e33 −0.532526
\(895\) 1.80168e34 2.04038
\(896\) 0 0
\(897\) −7.23905e33 −0.799040
\(898\) −1.25196e33 −0.136431
\(899\) 3.31069e33 0.356190
\(900\) −4.36389e33 −0.463537
\(901\) −4.81263e33 −0.504716
\(902\) 5.00943e32 0.0518696
\(903\) 0 0
\(904\) 8.80395e33 0.888670
\(905\) −2.17579e34 −2.16849
\(906\) −9.56400e31 −0.00941164
\(907\) −1.21330e34 −1.17892 −0.589459 0.807799i \(-0.700659\pi\)
−0.589459 + 0.807799i \(0.700659\pi\)
\(908\) −1.09310e33 −0.104876
\(909\) 8.32389e33 0.788573
\(910\) 0 0
\(911\) 1.18968e33 0.109893 0.0549464 0.998489i \(-0.482501\pi\)
0.0549464 + 0.998489i \(0.482501\pi\)
\(912\) −1.68537e34 −1.53729
\(913\) −1.58248e34 −1.42536
\(914\) 1.03418e33 0.0919842
\(915\) 3.42241e34 3.00601
\(916\) 3.46499e33 0.300542
\(917\) 0 0
\(918\) −6.05213e32 −0.0511938
\(919\) −2.75671e32 −0.0230283 −0.0115142 0.999934i \(-0.503665\pi\)
−0.0115142 + 0.999934i \(0.503665\pi\)
\(920\) 4.08440e33 0.336952
\(921\) −2.42251e34 −1.97370
\(922\) −4.26709e33 −0.343341
\(923\) −5.70592e33 −0.453426
\(924\) 0 0
\(925\) 5.38622e32 0.0417498
\(926\) −4.52905e33 −0.346722
\(927\) −4.13994e33 −0.313024
\(928\) −2.07838e33 −0.155212
\(929\) −1.53078e34 −1.12910 −0.564550 0.825399i \(-0.690950\pi\)
−0.564550 + 0.825399i \(0.690950\pi\)
\(930\) 1.28518e34 0.936289
\(931\) 0 0
\(932\) 5.84432e33 0.415385
\(933\) 1.68348e34 1.18187
\(934\) −4.94754e33 −0.343084
\(935\) −9.30400e33 −0.637288
\(936\) 7.69682e33 0.520762
\(937\) 1.10128e34 0.736026 0.368013 0.929821i \(-0.380038\pi\)
0.368013 + 0.929821i \(0.380038\pi\)
\(938\) 0 0
\(939\) −2.70068e34 −1.76124
\(940\) −3.06703e34 −1.97582
\(941\) 1.42300e33 0.0905574 0.0452787 0.998974i \(-0.485582\pi\)
0.0452787 + 0.998974i \(0.485582\pi\)
\(942\) 8.95946e33 0.563244
\(943\) 9.57900e32 0.0594889
\(944\) −3.93715e33 −0.241548
\(945\) 0 0
\(946\) −7.94012e32 −0.0475422
\(947\) 4.10907e33 0.243063 0.121531 0.992588i \(-0.461219\pi\)
0.121531 + 0.992588i \(0.461219\pi\)
\(948\) 3.31234e34 1.93570
\(949\) 1.36764e34 0.789606
\(950\) −6.77330e33 −0.386348
\(951\) 1.53869e33 0.0867114
\(952\) 0 0
\(953\) −2.27480e34 −1.25134 −0.625668 0.780089i \(-0.715174\pi\)
−0.625668 + 0.780089i \(0.715174\pi\)
\(954\) 4.79788e33 0.260761
\(955\) 7.03269e33 0.377644
\(956\) −3.16933e34 −1.68152
\(957\) 6.11496e33 0.320558
\(958\) −6.36638e33 −0.329753
\(959\) 0 0
\(960\) 1.70021e34 0.859772
\(961\) 4.63704e34 2.31698
\(962\) −4.52680e32 −0.0223500
\(963\) −1.92801e34 −0.940604
\(964\) 1.31401e34 0.633451
\(965\) −3.56192e33 −0.169676
\(966\) 0 0
\(967\) 1.27203e34 0.591690 0.295845 0.955236i \(-0.404399\pi\)
0.295845 + 0.955236i \(0.404399\pi\)
\(968\) 7.92808e33 0.364419
\(969\) −1.70366e34 −0.773855
\(970\) 1.70401e33 0.0764888
\(971\) 5.54810e33 0.246107 0.123053 0.992400i \(-0.460731\pi\)
0.123053 + 0.992400i \(0.460731\pi\)
\(972\) −2.31808e34 −1.01617
\(973\) 0 0
\(974\) 8.40168e33 0.359698
\(975\) −3.41118e34 −1.44328
\(976\) −3.09509e34 −1.29420
\(977\) 2.75586e34 1.13886 0.569429 0.822041i \(-0.307164\pi\)
0.569429 + 0.822041i \(0.307164\pi\)
\(978\) −1.04901e34 −0.428432
\(979\) 2.92849e33 0.118207
\(980\) 0 0
\(981\) −1.14925e34 −0.453127
\(982\) 6.03689e33 0.235251
\(983\) −2.65220e34 −1.02150 −0.510752 0.859728i \(-0.670633\pi\)
−0.510752 + 0.859728i \(0.670633\pi\)
\(984\) −2.60647e33 −0.0992223
\(985\) −3.60933e34 −1.35803
\(986\) −5.85934e32 −0.0217903
\(987\) 0 0
\(988\) −5.77321e34 −2.09755
\(989\) −1.51831e33 −0.0545258
\(990\) 9.27548e33 0.329255
\(991\) 1.56887e34 0.550479 0.275240 0.961376i \(-0.411243\pi\)
0.275240 + 0.961376i \(0.411243\pi\)
\(992\) −4.16744e34 −1.44539
\(993\) −1.86627e34 −0.639821
\(994\) 0 0
\(995\) 3.86645e34 1.29523
\(996\) 3.92349e34 1.29924
\(997\) 1.65550e34 0.541920 0.270960 0.962591i \(-0.412659\pi\)
0.270960 + 0.962591i \(0.412659\pi\)
\(998\) 3.31556e33 0.107289
\(999\) 7.55258e32 0.0241597
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.24.a.h.1.9 24
7.6 odd 2 inner 49.24.a.h.1.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.24.a.h.1.9 24 1.1 even 1 trivial
49.24.a.h.1.10 yes 24 7.6 odd 2 inner