Properties

Label 49.24.a
Level $49$
Weight $24$
Character orbit 49.a
Rep. character $\chi_{49}(1,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $8$
Sturm bound $112$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(112\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{24}(\Gamma_0(49))\).

Total New Old
Modular forms 112 81 31
Cusp forms 104 76 28
Eisenstein series 8 5 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(57\)\(40\)\(17\)\(53\)\(38\)\(15\)\(4\)\(2\)\(2\)
\(-\)\(55\)\(41\)\(14\)\(51\)\(38\)\(13\)\(4\)\(3\)\(1\)

Trace form

\( 76 q + 3016 q^{2} - 14812 q^{3} + 308876940 q^{4} - 70357686 q^{5} - 977238878 q^{6} + 60328022868 q^{8} + 2275482394984 q^{9} - 516370708644 q^{10} + 609308381344 q^{11} + 5250626436874 q^{12} - 16892448134702 q^{13}+ \cdots + 19\!\cdots\!48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{24}^{\mathrm{new}}(\Gamma_0(49))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
49.24.a.a 49.a 1.a $1$ $164.250$ \(\Q\) \(\Q(\sqrt{-7}) \) 49.24.a.a \(-5197\) \(0\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q-5197q^{2}+18620201q^{4}-53173588821q^{8}+\cdots\)
49.24.a.b 49.a 1.a $2$ $164.250$ \(\Q(\sqrt{144169}) \) None 1.24.a.a \(1080\) \(-339480\) \(-73069020\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(540-\beta )q^{2}+(-169740-48\beta )q^{3}+\cdots\)
49.24.a.c 49.a 1.a $5$ $164.250$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 7.24.a.a \(-1014\) \(454020\) \(74149194\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-203-\beta _{1})q^{2}+(90801-2^{4}\beta _{1}+\cdots)q^{3}+\cdots\)
49.24.a.d 49.a 1.a $6$ $164.250$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 7.24.a.b \(-2115\) \(-129352\) \(-71437860\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-352-\beta _{1})q^{2}+(-21591+65\beta _{1}+\cdots)q^{3}+\cdots\)
49.24.a.e 49.a 1.a $10$ $164.250$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 49.24.a.e \(6164\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(616+\beta _{1})q^{2}+\beta _{5}q^{3}+(3372918+\cdots)q^{4}+\cdots\)
49.24.a.f 49.a 1.a $14$ $164.250$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 7.24.c.a \(-966\) \(-177148\) \(-74771022\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-69+\beta _{1})q^{2}+(-12653-9\beta _{1}+\cdots)q^{3}+\cdots\)
49.24.a.g 49.a 1.a $14$ $164.250$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 7.24.c.a \(-966\) \(177148\) \(74771022\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(-69+\beta _{1})q^{2}+(12653+9\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
49.24.a.h 49.a 1.a $24$ $164.250$ None 49.24.a.h \(6030\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{24}^{\mathrm{old}}(\Gamma_0(49))\) into lower level spaces

\( S_{24}^{\mathrm{old}}(\Gamma_0(49)) \simeq \) \(S_{24}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)