Defining parameters
| Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 24 \) |
| Character orbit: | \([\chi]\) | \(=\) | 49.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{24}(\Gamma_0(49))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 112 | 81 | 31 |
| Cusp forms | 104 | 76 | 28 |
| Eisenstein series | 8 | 5 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(57\) | \(40\) | \(17\) | \(53\) | \(38\) | \(15\) | \(4\) | \(2\) | \(2\) | |||
| \(-\) | \(55\) | \(41\) | \(14\) | \(51\) | \(38\) | \(13\) | \(4\) | \(3\) | \(1\) | |||
Trace form
Decomposition of \(S_{24}^{\mathrm{new}}(\Gamma_0(49))\) into newform subspaces
Decomposition of \(S_{24}^{\mathrm{old}}(\Gamma_0(49))\) into lower level spaces
\( S_{24}^{\mathrm{old}}(\Gamma_0(49)) \simeq \) \(S_{24}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{24}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)