gp: [N,k,chi] = [49,24,Mod(1,49)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("49.1");
S:= CuspForms(chi, 24);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(49, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 24, names="a")
Newform invariants
sage: traces = [24,6030,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( +1 \)
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(49))\):
\( T_{2}^{12} - 3015 T_{2}^{11} - 70536762 T_{2}^{10} + 199650960360 T_{2}^{9} + \cdots + 39\!\cdots\!64 \)
T2^12 - 3015*T2^11 - 70536762*T2^10 + 199650960360*T2^9 + 1707713355823056*T2^8 - 4231727137611388800*T2^7 - 17205276443733148455936*T2^6 + 32332021103040573216153600*T2^5 + 71537612296504148619541610496*T2^4 - 74076197558847030821898902568960*T2^3 - 109118484040980831697498273071759360*T2^2 + 29409157264069364456279275774767267840*T2 + 39930592589239368437084923091820702859264
\( T_{3}^{24} - 1617336437744 T_{3}^{22} + \cdots + 10\!\cdots\!76 \)
T3^24 - 1617336437744*T3^22 + 1127217673503450604548208*T3^20 - 443876495213167282146780221721865920*T3^18 + 108938034637401935711005941836289981644912229984*T3^16 - 17366916754062065943358089213551960591548168370914268206848*T3^14 + 1821658009257078612667805797653387432693926748997379037705551427849984*T3^12 - 124812990171107147395576491417231853787207150422489608162160779789673666921411584*T3^10 + 5436667775598748738750682528643521580863321663173081389275393062465574136077990346761560320*T3^8 - 142734036991720764019876444412415651678111629931993578649829980957469687931657233556191746817140400128*T3^6 + 2044075095472570962164228441575815470396626723764705870329917163011556416812908709384599579139373056490854776832*T3^4 - 12693091016886699759904336978078668551568423214221388275718449546364057791328408627189550754664894981628387915037204283392*T3^2 + 10682879306146299872327707751251709696123155758691078899948230737954082352378039638806543156289996390602073929906312516731719909376