Properties

Label 49.24.a.h.1.23
Level $49$
Weight $24$
Character 49.1
Self dual yes
Analytic conductor $164.250$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,24,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,6030,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.249978299\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.23
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5395.50 q^{2} -146944. q^{3} +2.07228e7 q^{4} +2.11846e8 q^{5} -7.92838e8 q^{6} +6.65494e10 q^{8} -7.25506e10 q^{9} +1.14302e12 q^{10} -2.64619e11 q^{11} -3.04510e12 q^{12} -4.96373e11 q^{13} -3.11296e13 q^{15} +1.85232e14 q^{16} -1.76570e14 q^{17} -3.91447e14 q^{18} +5.35699e14 q^{19} +4.39006e15 q^{20} -1.42775e15 q^{22} +6.88068e15 q^{23} -9.77905e15 q^{24} +3.29579e16 q^{25} -2.67818e15 q^{26} +2.44947e16 q^{27} +7.98920e16 q^{29} -1.67960e17 q^{30} -1.52936e17 q^{31} +4.41161e17 q^{32} +3.88843e16 q^{33} -9.52685e17 q^{34} -1.50345e18 q^{36} +1.47867e18 q^{37} +2.89036e18 q^{38} +7.29391e16 q^{39} +1.40982e19 q^{40} +2.17208e17 q^{41} +1.06138e18 q^{43} -5.48366e18 q^{44} -1.53696e19 q^{45} +3.71247e19 q^{46} +1.36734e19 q^{47} -2.72187e19 q^{48} +1.77825e20 q^{50} +2.59460e19 q^{51} -1.02863e19 q^{52} +2.49939e19 q^{53} +1.32161e20 q^{54} -5.60586e19 q^{55} -7.87178e19 q^{57} +4.31058e20 q^{58} -2.24890e20 q^{59} -6.45094e20 q^{60} +1.36965e20 q^{61} -8.25165e20 q^{62} +8.26451e20 q^{64} -1.05155e20 q^{65} +2.09800e20 q^{66} +4.53939e20 q^{67} -3.65904e21 q^{68} -1.01108e21 q^{69} -3.25278e21 q^{71} -4.82820e21 q^{72} -2.95436e20 q^{73} +7.97819e21 q^{74} -4.84298e21 q^{75} +1.11012e22 q^{76} +3.93543e20 q^{78} +7.94365e21 q^{79} +3.92407e22 q^{80} +3.23079e21 q^{81} +1.17194e21 q^{82} -7.92446e21 q^{83} -3.74057e22 q^{85} +5.72668e21 q^{86} -1.17397e22 q^{87} -1.76102e22 q^{88} -1.82377e22 q^{89} -8.29266e22 q^{90} +1.42587e23 q^{92} +2.24730e22 q^{93} +7.37749e22 q^{94} +1.13486e23 q^{95} -6.48261e22 q^{96} -3.45535e20 q^{97} +1.91983e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6030 q^{2} + 99000906 q^{4} + 31751706690 q^{8} + 975236583640 q^{9} + 3514223137536 q^{11} + 96662500006976 q^{15} + 850136746459362 q^{16} - 774764811988990 q^{18} + 81\!\cdots\!60 q^{22} + 34\!\cdots\!60 q^{23}+ \cdots + 70\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5395.50 1.86289 0.931445 0.363883i \(-0.118549\pi\)
0.931445 + 0.363883i \(0.118549\pi\)
\(3\) −146944. −0.478915 −0.239457 0.970907i \(-0.576970\pi\)
−0.239457 + 0.970907i \(0.576970\pi\)
\(4\) 2.07228e7 2.47036
\(5\) 2.11846e8 1.94029 0.970143 0.242533i \(-0.0779781\pi\)
0.970143 + 0.242533i \(0.0779781\pi\)
\(6\) −7.92838e8 −0.892165
\(7\) 0 0
\(8\) 6.65494e10 2.73911
\(9\) −7.25506e10 −0.770641
\(10\) 1.14302e12 3.61454
\(11\) −2.64619e11 −0.279644 −0.139822 0.990177i \(-0.544653\pi\)
−0.139822 + 0.990177i \(0.544653\pi\)
\(12\) −3.04510e12 −1.18309
\(13\) −4.96373e11 −0.0768173 −0.0384087 0.999262i \(-0.512229\pi\)
−0.0384087 + 0.999262i \(0.512229\pi\)
\(14\) 0 0
\(15\) −3.11296e13 −0.929232
\(16\) 1.85232e14 2.63230
\(17\) −1.76570e14 −1.24955 −0.624776 0.780804i \(-0.714810\pi\)
−0.624776 + 0.780804i \(0.714810\pi\)
\(18\) −3.91447e14 −1.43562
\(19\) 5.35699e14 1.05500 0.527502 0.849554i \(-0.323129\pi\)
0.527502 + 0.849554i \(0.323129\pi\)
\(20\) 4.39006e15 4.79320
\(21\) 0 0
\(22\) −1.42775e15 −0.520946
\(23\) 6.88068e15 1.50578 0.752889 0.658147i \(-0.228660\pi\)
0.752889 + 0.658147i \(0.228660\pi\)
\(24\) −9.77905e15 −1.31180
\(25\) 3.29579e16 2.76471
\(26\) −2.67818e15 −0.143102
\(27\) 2.44947e16 0.847986
\(28\) 0 0
\(29\) 7.98920e16 1.21598 0.607990 0.793945i \(-0.291976\pi\)
0.607990 + 0.793945i \(0.291976\pi\)
\(30\) −1.67960e17 −1.73106
\(31\) −1.52936e17 −1.08106 −0.540529 0.841325i \(-0.681776\pi\)
−0.540529 + 0.841325i \(0.681776\pi\)
\(32\) 4.41161e17 2.16458
\(33\) 3.88843e16 0.133926
\(34\) −9.52685e17 −2.32778
\(35\) 0 0
\(36\) −1.50345e18 −1.90376
\(37\) 1.47867e18 1.36632 0.683161 0.730268i \(-0.260605\pi\)
0.683161 + 0.730268i \(0.260605\pi\)
\(38\) 2.89036e18 1.96536
\(39\) 7.29391e16 0.0367890
\(40\) 1.40982e19 5.31466
\(41\) 2.17208e17 0.0616397 0.0308199 0.999525i \(-0.490188\pi\)
0.0308199 + 0.999525i \(0.490188\pi\)
\(42\) 0 0
\(43\) 1.06138e18 0.174174 0.0870871 0.996201i \(-0.472244\pi\)
0.0870871 + 0.996201i \(0.472244\pi\)
\(44\) −5.48366e18 −0.690820
\(45\) −1.53696e19 −1.49526
\(46\) 3.71247e19 2.80510
\(47\) 1.36734e19 0.806773 0.403386 0.915030i \(-0.367833\pi\)
0.403386 + 0.915030i \(0.367833\pi\)
\(48\) −2.72187e19 −1.26065
\(49\) 0 0
\(50\) 1.77825e20 5.15035
\(51\) 2.59460e19 0.598429
\(52\) −1.02863e19 −0.189766
\(53\) 2.49939e19 0.370391 0.185196 0.982702i \(-0.440708\pi\)
0.185196 + 0.982702i \(0.440708\pi\)
\(54\) 1.32161e20 1.57970
\(55\) −5.60586e19 −0.542589
\(56\) 0 0
\(57\) −7.87178e19 −0.505257
\(58\) 4.31058e20 2.26524
\(59\) −2.24890e20 −0.970895 −0.485448 0.874266i \(-0.661343\pi\)
−0.485448 + 0.874266i \(0.661343\pi\)
\(60\) −6.45094e20 −2.29553
\(61\) 1.36965e20 0.403012 0.201506 0.979487i \(-0.435417\pi\)
0.201506 + 0.979487i \(0.435417\pi\)
\(62\) −8.25165e20 −2.01389
\(63\) 0 0
\(64\) 8.26451e20 1.40006
\(65\) −1.05155e20 −0.149048
\(66\) 2.09800e20 0.249488
\(67\) 4.53939e20 0.454085 0.227043 0.973885i \(-0.427094\pi\)
0.227043 + 0.973885i \(0.427094\pi\)
\(68\) −3.65904e21 −3.08684
\(69\) −1.01108e21 −0.721140
\(70\) 0 0
\(71\) −3.25278e21 −1.67026 −0.835130 0.550053i \(-0.814608\pi\)
−0.835130 + 0.550053i \(0.814608\pi\)
\(72\) −4.82820e21 −2.11087
\(73\) −2.95436e20 −0.110218 −0.0551088 0.998480i \(-0.517551\pi\)
−0.0551088 + 0.998480i \(0.517551\pi\)
\(74\) 7.97819e21 2.54531
\(75\) −4.84298e21 −1.32406
\(76\) 1.11012e22 2.60623
\(77\) 0 0
\(78\) 3.93543e20 0.0685337
\(79\) 7.94365e21 1.19484 0.597418 0.801930i \(-0.296193\pi\)
0.597418 + 0.801930i \(0.296193\pi\)
\(80\) 3.92407e22 5.10742
\(81\) 3.23079e21 0.364528
\(82\) 1.17194e21 0.114828
\(83\) −7.92446e21 −0.675417 −0.337708 0.941251i \(-0.609652\pi\)
−0.337708 + 0.941251i \(0.609652\pi\)
\(84\) 0 0
\(85\) −3.74057e22 −2.42449
\(86\) 5.72668e21 0.324467
\(87\) −1.17397e22 −0.582351
\(88\) −1.76102e22 −0.765975
\(89\) −1.82377e22 −0.696603 −0.348301 0.937383i \(-0.613241\pi\)
−0.348301 + 0.937383i \(0.613241\pi\)
\(90\) −8.29266e22 −2.78551
\(91\) 0 0
\(92\) 1.42587e23 3.71981
\(93\) 2.24730e22 0.517735
\(94\) 7.37749e22 1.50293
\(95\) 1.13486e23 2.04701
\(96\) −6.48261e22 −1.03665
\(97\) −3.45535e20 −0.00490475 −0.00245238 0.999997i \(-0.500781\pi\)
−0.00245238 + 0.999997i \(0.500781\pi\)
\(98\) 0 0
\(99\) 1.91983e22 0.215505
\(100\) 6.82982e23 6.82982
\(101\) −6.11282e22 −0.545187 −0.272594 0.962129i \(-0.587881\pi\)
−0.272594 + 0.962129i \(0.587881\pi\)
\(102\) 1.39992e23 1.11481
\(103\) 9.31986e22 0.663409 0.331705 0.943383i \(-0.392376\pi\)
0.331705 + 0.943383i \(0.392376\pi\)
\(104\) −3.30333e22 −0.210411
\(105\) 0 0
\(106\) 1.34854e23 0.689998
\(107\) 6.74390e22 0.309740 0.154870 0.987935i \(-0.450504\pi\)
0.154870 + 0.987935i \(0.450504\pi\)
\(108\) 5.07600e23 2.09483
\(109\) −3.37000e23 −1.25091 −0.625454 0.780261i \(-0.715086\pi\)
−0.625454 + 0.780261i \(0.715086\pi\)
\(110\) −3.02464e23 −1.01078
\(111\) −2.17283e23 −0.654352
\(112\) 0 0
\(113\) 1.69780e23 0.416376 0.208188 0.978089i \(-0.433243\pi\)
0.208188 + 0.978089i \(0.433243\pi\)
\(114\) −4.24722e23 −0.941238
\(115\) 1.45765e24 2.92164
\(116\) 1.65559e24 3.00390
\(117\) 3.60121e22 0.0591986
\(118\) −1.21340e24 −1.80867
\(119\) 0 0
\(120\) −2.07166e24 −2.54527
\(121\) −8.25407e23 −0.921799
\(122\) 7.38997e23 0.750766
\(123\) −3.19174e22 −0.0295202
\(124\) −3.16926e24 −2.67060
\(125\) 4.45661e24 3.42405
\(126\) 0 0
\(127\) 6.51558e23 0.417071 0.208536 0.978015i \(-0.433130\pi\)
0.208536 + 0.978015i \(0.433130\pi\)
\(128\) 7.58390e23 0.443586
\(129\) −1.55964e23 −0.0834146
\(130\) −5.67363e23 −0.277659
\(131\) 1.23011e24 0.551219 0.275609 0.961270i \(-0.411120\pi\)
0.275609 + 0.961270i \(0.411120\pi\)
\(132\) 8.05792e23 0.330844
\(133\) 0 0
\(134\) 2.44923e24 0.845910
\(135\) 5.18911e24 1.64534
\(136\) −1.17506e25 −3.42266
\(137\) 1.77817e24 0.476087 0.238044 0.971254i \(-0.423494\pi\)
0.238044 + 0.971254i \(0.423494\pi\)
\(138\) −5.45526e24 −1.34340
\(139\) −7.90621e24 −1.79183 −0.895917 0.444221i \(-0.853481\pi\)
−0.895917 + 0.444221i \(0.853481\pi\)
\(140\) 0 0
\(141\) −2.00923e24 −0.386375
\(142\) −1.75504e25 −3.11151
\(143\) 1.31350e23 0.0214815
\(144\) −1.34387e25 −2.02856
\(145\) 1.69248e25 2.35935
\(146\) −1.59403e24 −0.205323
\(147\) 0 0
\(148\) 3.06423e25 3.37530
\(149\) −2.75691e24 −0.281048 −0.140524 0.990077i \(-0.544879\pi\)
−0.140524 + 0.990077i \(0.544879\pi\)
\(150\) −2.61303e25 −2.46658
\(151\) −7.60291e24 −0.664883 −0.332441 0.943124i \(-0.607872\pi\)
−0.332441 + 0.943124i \(0.607872\pi\)
\(152\) 3.56504e25 2.88977
\(153\) 1.28103e25 0.962956
\(154\) 0 0
\(155\) −3.23988e25 −2.09756
\(156\) 1.51151e24 0.0908818
\(157\) −1.41120e25 −0.788392 −0.394196 0.919026i \(-0.628977\pi\)
−0.394196 + 0.919026i \(0.628977\pi\)
\(158\) 4.28600e25 2.22585
\(159\) −3.67270e24 −0.177386
\(160\) 9.34584e25 4.19990
\(161\) 0 0
\(162\) 1.74317e25 0.679075
\(163\) 3.53909e25 1.28450 0.642250 0.766495i \(-0.278001\pi\)
0.642250 + 0.766495i \(0.278001\pi\)
\(164\) 4.50116e24 0.152272
\(165\) 8.23749e24 0.259854
\(166\) −4.27565e25 −1.25823
\(167\) 3.38504e25 0.929661 0.464830 0.885400i \(-0.346115\pi\)
0.464830 + 0.885400i \(0.346115\pi\)
\(168\) 0 0
\(169\) −4.15075e25 −0.994099
\(170\) −2.01823e26 −4.51656
\(171\) −3.88652e25 −0.813029
\(172\) 2.19948e25 0.430272
\(173\) −3.37655e24 −0.0617934 −0.0308967 0.999523i \(-0.509836\pi\)
−0.0308967 + 0.999523i \(0.509836\pi\)
\(174\) −6.33415e25 −1.08486
\(175\) 0 0
\(176\) −4.90158e25 −0.736107
\(177\) 3.30463e25 0.464976
\(178\) −9.84016e25 −1.29769
\(179\) −6.91526e25 −0.855064 −0.427532 0.904000i \(-0.640617\pi\)
−0.427532 + 0.904000i \(0.640617\pi\)
\(180\) −3.18501e26 −3.69383
\(181\) 2.87048e25 0.312357 0.156178 0.987729i \(-0.450083\pi\)
0.156178 + 0.987729i \(0.450083\pi\)
\(182\) 0 0
\(183\) −2.01263e25 −0.193008
\(184\) 4.57905e26 4.12449
\(185\) 3.13252e26 2.65106
\(186\) 1.21253e26 0.964483
\(187\) 4.67238e25 0.349430
\(188\) 2.83352e26 1.99302
\(189\) 0 0
\(190\) 6.12313e26 3.81335
\(191\) 9.47741e25 0.555656 0.277828 0.960631i \(-0.410386\pi\)
0.277828 + 0.960631i \(0.410386\pi\)
\(192\) −1.21442e26 −0.670511
\(193\) −6.88246e25 −0.357960 −0.178980 0.983853i \(-0.557280\pi\)
−0.178980 + 0.983853i \(0.557280\pi\)
\(194\) −1.86434e24 −0.00913701
\(195\) 1.54519e25 0.0713811
\(196\) 0 0
\(197\) 1.86705e26 0.766998 0.383499 0.923541i \(-0.374719\pi\)
0.383499 + 0.923541i \(0.374719\pi\)
\(198\) 1.03584e26 0.401462
\(199\) −2.66630e26 −0.975212 −0.487606 0.873064i \(-0.662130\pi\)
−0.487606 + 0.873064i \(0.662130\pi\)
\(200\) 2.19333e27 7.57285
\(201\) −6.67038e25 −0.217468
\(202\) −3.29817e26 −1.01562
\(203\) 0 0
\(204\) 5.37674e26 1.47833
\(205\) 4.60146e25 0.119599
\(206\) 5.02854e26 1.23586
\(207\) −4.99197e26 −1.16041
\(208\) −9.19439e25 −0.202206
\(209\) −1.41756e26 −0.295025
\(210\) 0 0
\(211\) 6.42110e26 1.19774 0.598868 0.800848i \(-0.295617\pi\)
0.598868 + 0.800848i \(0.295617\pi\)
\(212\) 5.17944e26 0.914998
\(213\) 4.77978e26 0.799912
\(214\) 3.63867e26 0.577012
\(215\) 2.24850e26 0.337948
\(216\) 1.63011e27 2.32273
\(217\) 0 0
\(218\) −1.81828e27 −2.33030
\(219\) 4.34127e25 0.0527849
\(220\) −1.16169e27 −1.34039
\(221\) 8.76446e25 0.0959873
\(222\) −1.17235e27 −1.21898
\(223\) −1.14904e27 −1.13457 −0.567283 0.823523i \(-0.692006\pi\)
−0.567283 + 0.823523i \(0.692006\pi\)
\(224\) 0 0
\(225\) −2.39112e27 −2.13060
\(226\) 9.16051e26 0.775662
\(227\) −1.07153e27 −0.862399 −0.431199 0.902257i \(-0.641909\pi\)
−0.431199 + 0.902257i \(0.641909\pi\)
\(228\) −1.63126e27 −1.24816
\(229\) −1.07256e27 −0.780396 −0.390198 0.920731i \(-0.627593\pi\)
−0.390198 + 0.920731i \(0.627593\pi\)
\(230\) 7.86473e27 5.44269
\(231\) 0 0
\(232\) 5.31677e27 3.33070
\(233\) −1.90580e27 −1.13627 −0.568137 0.822934i \(-0.692336\pi\)
−0.568137 + 0.822934i \(0.692336\pi\)
\(234\) 1.94303e26 0.110280
\(235\) 2.89666e27 1.56537
\(236\) −4.66037e27 −2.39846
\(237\) −1.16727e27 −0.572225
\(238\) 0 0
\(239\) −9.46975e25 −0.0421466 −0.0210733 0.999778i \(-0.506708\pi\)
−0.0210733 + 0.999778i \(0.506708\pi\)
\(240\) −5.76619e27 −2.44602
\(241\) −4.69958e27 −1.90048 −0.950240 0.311520i \(-0.899162\pi\)
−0.950240 + 0.311520i \(0.899162\pi\)
\(242\) −4.45349e27 −1.71721
\(243\) −2.78075e27 −1.02256
\(244\) 2.83831e27 0.995582
\(245\) 0 0
\(246\) −1.72210e26 −0.0549928
\(247\) −2.65906e26 −0.0810426
\(248\) −1.01778e28 −2.96114
\(249\) 1.16445e27 0.323467
\(250\) 2.40457e28 6.37862
\(251\) −5.00804e27 −1.26888 −0.634440 0.772972i \(-0.718769\pi\)
−0.634440 + 0.772972i \(0.718769\pi\)
\(252\) 0 0
\(253\) −1.82076e27 −0.421082
\(254\) 3.51548e27 0.776957
\(255\) 5.49656e27 1.16112
\(256\) −2.84088e27 −0.573711
\(257\) 2.05974e27 0.397724 0.198862 0.980028i \(-0.436275\pi\)
0.198862 + 0.980028i \(0.436275\pi\)
\(258\) −8.41503e26 −0.155392
\(259\) 0 0
\(260\) −2.17910e27 −0.368201
\(261\) −5.79621e27 −0.937084
\(262\) 6.63706e27 1.02686
\(263\) −1.96389e27 −0.290821 −0.145411 0.989371i \(-0.546450\pi\)
−0.145411 + 0.989371i \(0.546450\pi\)
\(264\) 2.58772e27 0.366837
\(265\) 5.29486e27 0.718665
\(266\) 0 0
\(267\) 2.67993e27 0.333613
\(268\) 9.40691e27 1.12175
\(269\) −3.50401e27 −0.400326 −0.200163 0.979763i \(-0.564147\pi\)
−0.200163 + 0.979763i \(0.564147\pi\)
\(270\) 2.79979e28 3.06508
\(271\) 3.15659e27 0.331186 0.165593 0.986194i \(-0.447046\pi\)
0.165593 + 0.986194i \(0.447046\pi\)
\(272\) −3.27064e28 −3.28920
\(273\) 0 0
\(274\) 9.59411e27 0.886897
\(275\) −8.72130e27 −0.773135
\(276\) −2.09524e28 −1.78147
\(277\) 6.74973e26 0.0550515 0.0275257 0.999621i \(-0.491237\pi\)
0.0275257 + 0.999621i \(0.491237\pi\)
\(278\) −4.26580e28 −3.33799
\(279\) 1.10956e28 0.833108
\(280\) 0 0
\(281\) 1.13816e28 0.787189 0.393594 0.919284i \(-0.371231\pi\)
0.393594 + 0.919284i \(0.371231\pi\)
\(282\) −1.08408e28 −0.719774
\(283\) 2.71342e28 1.72971 0.864855 0.502021i \(-0.167410\pi\)
0.864855 + 0.502021i \(0.167410\pi\)
\(284\) −6.74069e28 −4.12613
\(285\) −1.66761e28 −0.980343
\(286\) 7.08698e26 0.0400176
\(287\) 0 0
\(288\) −3.20065e28 −1.66811
\(289\) 1.12094e28 0.561382
\(290\) 9.13180e28 4.39521
\(291\) 5.07744e25 0.00234896
\(292\) −6.12228e27 −0.272277
\(293\) 1.63073e28 0.697277 0.348638 0.937257i \(-0.386644\pi\)
0.348638 + 0.937257i \(0.386644\pi\)
\(294\) 0 0
\(295\) −4.76422e28 −1.88382
\(296\) 9.84049e28 3.74250
\(297\) −6.48176e27 −0.237134
\(298\) −1.48749e28 −0.523562
\(299\) −3.41538e27 −0.115670
\(300\) −1.00360e29 −3.27090
\(301\) 0 0
\(302\) −4.10215e28 −1.23860
\(303\) 8.98244e27 0.261098
\(304\) 9.92284e28 2.77709
\(305\) 2.90156e28 0.781958
\(306\) 6.91178e28 1.79388
\(307\) −7.01334e27 −0.175321 −0.0876604 0.996150i \(-0.527939\pi\)
−0.0876604 + 0.996150i \(0.527939\pi\)
\(308\) 0 0
\(309\) −1.36950e28 −0.317717
\(310\) −1.74808e29 −3.90753
\(311\) −5.39255e28 −1.16158 −0.580791 0.814053i \(-0.697256\pi\)
−0.580791 + 0.814053i \(0.697256\pi\)
\(312\) 4.85405e27 0.100769
\(313\) −6.12699e28 −1.22599 −0.612995 0.790087i \(-0.710035\pi\)
−0.612995 + 0.790087i \(0.710035\pi\)
\(314\) −7.61413e28 −1.46869
\(315\) 0 0
\(316\) 1.64615e29 2.95167
\(317\) 1.14376e29 1.97767 0.988837 0.149003i \(-0.0476064\pi\)
0.988837 + 0.149003i \(0.0476064\pi\)
\(318\) −1.98161e28 −0.330450
\(319\) −2.11410e28 −0.340041
\(320\) 1.75081e29 2.71652
\(321\) −9.90977e27 −0.148339
\(322\) 0 0
\(323\) −9.45884e28 −1.31828
\(324\) 6.69511e28 0.900513
\(325\) −1.63594e28 −0.212378
\(326\) 1.90952e29 2.39288
\(327\) 4.95202e28 0.599078
\(328\) 1.44550e28 0.168838
\(329\) 0 0
\(330\) 4.44454e28 0.484079
\(331\) 4.26019e27 0.0448133 0.0224066 0.999749i \(-0.492867\pi\)
0.0224066 + 0.999749i \(0.492867\pi\)
\(332\) −1.64217e29 −1.66852
\(333\) −1.07279e29 −1.05294
\(334\) 1.82640e29 1.73185
\(335\) 9.61653e28 0.881056
\(336\) 0 0
\(337\) −9.42207e28 −0.806125 −0.403063 0.915172i \(-0.632054\pi\)
−0.403063 + 0.915172i \(0.632054\pi\)
\(338\) −2.23954e29 −1.85190
\(339\) −2.49483e28 −0.199408
\(340\) −7.75153e29 −5.98935
\(341\) 4.04697e28 0.302311
\(342\) −2.09697e29 −1.51458
\(343\) 0 0
\(344\) 7.06343e28 0.477082
\(345\) −2.14193e29 −1.39922
\(346\) −1.82182e28 −0.115114
\(347\) 1.30731e28 0.0799079 0.0399540 0.999202i \(-0.487279\pi\)
0.0399540 + 0.999202i \(0.487279\pi\)
\(348\) −2.43280e29 −1.43861
\(349\) 3.15582e29 1.80559 0.902795 0.430071i \(-0.141511\pi\)
0.902795 + 0.430071i \(0.141511\pi\)
\(350\) 0 0
\(351\) −1.21585e28 −0.0651400
\(352\) −1.16740e29 −0.605310
\(353\) 2.27397e29 1.14124 0.570618 0.821216i \(-0.306704\pi\)
0.570618 + 0.821216i \(0.306704\pi\)
\(354\) 1.78302e29 0.866199
\(355\) −6.89090e29 −3.24078
\(356\) −3.77937e29 −1.72086
\(357\) 0 0
\(358\) −3.73113e29 −1.59289
\(359\) −1.99310e29 −0.824029 −0.412014 0.911177i \(-0.635175\pi\)
−0.412014 + 0.911177i \(0.635175\pi\)
\(360\) −1.02284e30 −4.09569
\(361\) 2.91434e28 0.113033
\(362\) 1.54877e29 0.581886
\(363\) 1.21289e29 0.441463
\(364\) 0 0
\(365\) −6.25871e28 −0.213854
\(366\) −1.08591e29 −0.359553
\(367\) 4.03566e29 1.29495 0.647477 0.762085i \(-0.275824\pi\)
0.647477 + 0.762085i \(0.275824\pi\)
\(368\) 1.27452e30 3.96366
\(369\) −1.57585e28 −0.0475021
\(370\) 1.69015e30 4.93862
\(371\) 0 0
\(372\) 4.65705e29 1.27899
\(373\) −7.16275e29 −1.90734 −0.953670 0.300853i \(-0.902729\pi\)
−0.953670 + 0.300853i \(0.902729\pi\)
\(374\) 2.52099e29 0.650949
\(375\) −6.54874e29 −1.63983
\(376\) 9.09957e29 2.20984
\(377\) −3.96562e28 −0.0934084
\(378\) 0 0
\(379\) −1.68238e29 −0.372883 −0.186442 0.982466i \(-0.559696\pi\)
−0.186442 + 0.982466i \(0.559696\pi\)
\(380\) 2.35175e30 5.05684
\(381\) −9.57427e28 −0.199742
\(382\) 5.11354e29 1.03513
\(383\) −3.80955e28 −0.0748321 −0.0374160 0.999300i \(-0.511913\pi\)
−0.0374160 + 0.999300i \(0.511913\pi\)
\(384\) −1.11441e29 −0.212440
\(385\) 0 0
\(386\) −3.71343e29 −0.666840
\(387\) −7.70038e28 −0.134226
\(388\) −7.16047e27 −0.0121165
\(389\) 8.00421e29 1.31492 0.657458 0.753491i \(-0.271632\pi\)
0.657458 + 0.753491i \(0.271632\pi\)
\(390\) 8.33707e28 0.132975
\(391\) −1.21492e30 −1.88155
\(392\) 0 0
\(393\) −1.80758e29 −0.263987
\(394\) 1.00737e30 1.42883
\(395\) 1.68283e30 2.31832
\(396\) 3.97843e29 0.532374
\(397\) −7.06194e29 −0.917980 −0.458990 0.888441i \(-0.651789\pi\)
−0.458990 + 0.888441i \(0.651789\pi\)
\(398\) −1.43860e30 −1.81671
\(399\) 0 0
\(400\) 6.10485e30 7.27755
\(401\) −5.71555e28 −0.0662061 −0.0331030 0.999452i \(-0.510539\pi\)
−0.0331030 + 0.999452i \(0.510539\pi\)
\(402\) −3.59900e29 −0.405119
\(403\) 7.59130e28 0.0830440
\(404\) −1.26675e30 −1.34681
\(405\) 6.84430e29 0.707288
\(406\) 0 0
\(407\) −3.91286e29 −0.382083
\(408\) 1.72669e30 1.63916
\(409\) −1.18982e30 −1.09815 −0.549077 0.835772i \(-0.685021\pi\)
−0.549077 + 0.835772i \(0.685021\pi\)
\(410\) 2.48272e29 0.222799
\(411\) −2.61292e29 −0.228005
\(412\) 1.93134e30 1.63886
\(413\) 0 0
\(414\) −2.69342e30 −2.16172
\(415\) −1.67877e30 −1.31050
\(416\) −2.18980e29 −0.166277
\(417\) 1.16177e30 0.858136
\(418\) −7.64845e29 −0.549600
\(419\) 1.90556e30 1.33217 0.666087 0.745874i \(-0.267968\pi\)
0.666087 + 0.745874i \(0.267968\pi\)
\(420\) 0 0
\(421\) −2.33460e30 −1.54514 −0.772571 0.634928i \(-0.781030\pi\)
−0.772571 + 0.634928i \(0.781030\pi\)
\(422\) 3.46450e30 2.23125
\(423\) −9.92013e29 −0.621732
\(424\) 1.66333e30 1.01454
\(425\) −5.81939e30 −3.45465
\(426\) 2.57893e30 1.49015
\(427\) 0 0
\(428\) 1.39753e30 0.765168
\(429\) −1.93011e28 −0.0102878
\(430\) 1.21318e30 0.629560
\(431\) −9.97451e29 −0.503968 −0.251984 0.967731i \(-0.581083\pi\)
−0.251984 + 0.967731i \(0.581083\pi\)
\(432\) 4.53719e30 2.23215
\(433\) −3.45904e29 −0.165708 −0.0828542 0.996562i \(-0.526404\pi\)
−0.0828542 + 0.996562i \(0.526404\pi\)
\(434\) 0 0
\(435\) −2.48701e30 −1.12993
\(436\) −6.98360e30 −3.09019
\(437\) 3.68597e30 1.58860
\(438\) 2.34233e29 0.0983323
\(439\) 2.61648e30 1.06998 0.534990 0.844858i \(-0.320315\pi\)
0.534990 + 0.844858i \(0.320315\pi\)
\(440\) −3.73067e30 −1.48621
\(441\) 0 0
\(442\) 4.72887e29 0.178814
\(443\) −2.44169e30 −0.899595 −0.449797 0.893131i \(-0.648504\pi\)
−0.449797 + 0.893131i \(0.648504\pi\)
\(444\) −4.50272e30 −1.61648
\(445\) −3.86359e30 −1.35161
\(446\) −6.19966e30 −2.11357
\(447\) 4.05113e29 0.134598
\(448\) 0 0
\(449\) −2.67412e30 −0.844012 −0.422006 0.906593i \(-0.638674\pi\)
−0.422006 + 0.906593i \(0.638674\pi\)
\(450\) −1.29013e31 −3.96907
\(451\) −5.74773e28 −0.0172372
\(452\) 3.51833e30 1.02860
\(453\) 1.11720e30 0.318422
\(454\) −5.78146e30 −1.60655
\(455\) 0 0
\(456\) −5.23863e30 −1.38395
\(457\) 2.43338e30 0.626864 0.313432 0.949611i \(-0.398521\pi\)
0.313432 + 0.949611i \(0.398521\pi\)
\(458\) −5.78702e30 −1.45379
\(459\) −4.32503e30 −1.05960
\(460\) 3.02066e31 7.21749
\(461\) 4.95318e30 1.15431 0.577156 0.816634i \(-0.304162\pi\)
0.577156 + 0.816634i \(0.304162\pi\)
\(462\) 0 0
\(463\) 6.94348e30 1.53956 0.769778 0.638311i \(-0.220367\pi\)
0.769778 + 0.638311i \(0.220367\pi\)
\(464\) 1.47985e31 3.20083
\(465\) 4.76083e30 1.00455
\(466\) −1.02827e31 −2.11675
\(467\) −8.52378e30 −1.71194 −0.855969 0.517028i \(-0.827038\pi\)
−0.855969 + 0.517028i \(0.827038\pi\)
\(468\) 7.46273e29 0.146241
\(469\) 0 0
\(470\) 1.56289e31 2.91611
\(471\) 2.07368e30 0.377573
\(472\) −1.49663e31 −2.65939
\(473\) −2.80862e29 −0.0487068
\(474\) −6.29803e30 −1.06599
\(475\) 1.76555e31 2.91678
\(476\) 0 0
\(477\) −1.81332e30 −0.285439
\(478\) −5.10940e29 −0.0785144
\(479\) 6.00461e30 0.900796 0.450398 0.892828i \(-0.351282\pi\)
0.450398 + 0.892828i \(0.351282\pi\)
\(480\) −1.37332e31 −2.01139
\(481\) −7.33974e29 −0.104957
\(482\) −2.53566e31 −3.54038
\(483\) 0 0
\(484\) −1.71048e31 −2.27717
\(485\) −7.32003e28 −0.00951663
\(486\) −1.50036e31 −1.90492
\(487\) 4.85072e30 0.601483 0.300741 0.953706i \(-0.402766\pi\)
0.300741 + 0.953706i \(0.402766\pi\)
\(488\) 9.11496e30 1.10389
\(489\) −5.20049e30 −0.615166
\(490\) 0 0
\(491\) −9.14997e30 −1.03272 −0.516360 0.856372i \(-0.672713\pi\)
−0.516360 + 0.856372i \(0.672713\pi\)
\(492\) −6.61420e29 −0.0729253
\(493\) −1.41065e31 −1.51943
\(494\) −1.43470e30 −0.150973
\(495\) 4.06708e30 0.418141
\(496\) −2.83285e31 −2.84567
\(497\) 0 0
\(498\) 6.28282e30 0.602583
\(499\) −6.01229e30 −0.563487 −0.281743 0.959490i \(-0.590913\pi\)
−0.281743 + 0.959490i \(0.590913\pi\)
\(500\) 9.23537e31 8.45861
\(501\) −4.97412e30 −0.445228
\(502\) −2.70209e31 −2.36378
\(503\) −1.86292e31 −1.59281 −0.796403 0.604766i \(-0.793267\pi\)
−0.796403 + 0.604766i \(0.793267\pi\)
\(504\) 0 0
\(505\) −1.29498e31 −1.05782
\(506\) −9.82391e30 −0.784429
\(507\) 6.09929e30 0.476089
\(508\) 1.35021e31 1.03031
\(509\) 3.82237e30 0.285153 0.142577 0.989784i \(-0.454461\pi\)
0.142577 + 0.989784i \(0.454461\pi\)
\(510\) 2.96567e31 2.16305
\(511\) 0 0
\(512\) −2.16898e31 −1.51235
\(513\) 1.31218e31 0.894629
\(514\) 1.11133e31 0.740915
\(515\) 1.97438e31 1.28720
\(516\) −3.23201e30 −0.206064
\(517\) −3.61824e30 −0.225609
\(518\) 0 0
\(519\) 4.96164e29 0.0295938
\(520\) −6.99798e30 −0.408258
\(521\) −1.98996e31 −1.13556 −0.567781 0.823180i \(-0.692198\pi\)
−0.567781 + 0.823180i \(0.692198\pi\)
\(522\) −3.12735e31 −1.74568
\(523\) −3.07108e31 −1.67696 −0.838479 0.544933i \(-0.816555\pi\)
−0.838479 + 0.544933i \(0.816555\pi\)
\(524\) 2.54914e31 1.36171
\(525\) 0 0
\(526\) −1.05962e31 −0.541768
\(527\) 2.70039e31 1.35084
\(528\) 7.20260e30 0.352532
\(529\) 2.64633e31 1.26737
\(530\) 2.85684e31 1.33879
\(531\) 1.63159e31 0.748212
\(532\) 0 0
\(533\) −1.07816e29 −0.00473500
\(534\) 1.44596e31 0.621485
\(535\) 1.42867e31 0.600985
\(536\) 3.02094e31 1.24379
\(537\) 1.01616e31 0.409503
\(538\) −1.89059e31 −0.745764
\(539\) 0 0
\(540\) 1.07533e32 4.06456
\(541\) −1.86142e31 −0.688771 −0.344385 0.938828i \(-0.611913\pi\)
−0.344385 + 0.938828i \(0.611913\pi\)
\(542\) 1.70314e31 0.616962
\(543\) −4.21800e30 −0.149592
\(544\) −7.78959e31 −2.70475
\(545\) −7.13922e31 −2.42712
\(546\) 0 0
\(547\) 2.51242e31 0.818914 0.409457 0.912329i \(-0.365718\pi\)
0.409457 + 0.912329i \(0.365718\pi\)
\(548\) 3.68487e31 1.17610
\(549\) −9.93691e30 −0.310577
\(550\) −4.70558e31 −1.44026
\(551\) 4.27981e31 1.28286
\(552\) −6.72865e31 −1.97528
\(553\) 0 0
\(554\) 3.64182e30 0.102555
\(555\) −4.60306e31 −1.26963
\(556\) −1.63839e32 −4.42647
\(557\) 4.65884e31 1.23294 0.616471 0.787377i \(-0.288562\pi\)
0.616471 + 0.787377i \(0.288562\pi\)
\(558\) 5.98661e31 1.55199
\(559\) −5.26840e29 −0.0133796
\(560\) 0 0
\(561\) −6.86580e30 −0.167347
\(562\) 6.14092e31 1.46645
\(563\) 2.57936e31 0.603483 0.301742 0.953390i \(-0.402432\pi\)
0.301742 + 0.953390i \(0.402432\pi\)
\(564\) −4.16369e31 −0.954485
\(565\) 3.59673e31 0.807888
\(566\) 1.46403e32 3.22226
\(567\) 0 0
\(568\) −2.16471e32 −4.57502
\(569\) 2.34945e31 0.486603 0.243301 0.969951i \(-0.421770\pi\)
0.243301 + 0.969951i \(0.421770\pi\)
\(570\) −8.99759e31 −1.82627
\(571\) −9.43382e31 −1.87660 −0.938301 0.345819i \(-0.887601\pi\)
−0.938301 + 0.345819i \(0.887601\pi\)
\(572\) 2.72194e30 0.0530669
\(573\) −1.39265e31 −0.266112
\(574\) 0 0
\(575\) 2.26773e32 4.16304
\(576\) −5.99595e31 −1.07895
\(577\) 3.20905e31 0.566050 0.283025 0.959113i \(-0.408662\pi\)
0.283025 + 0.959113i \(0.408662\pi\)
\(578\) 6.04806e31 1.04579
\(579\) 1.01134e31 0.171432
\(580\) 3.50731e32 5.82843
\(581\) 0 0
\(582\) 2.73953e29 0.00437585
\(583\) −6.61385e30 −0.103578
\(584\) −1.96611e31 −0.301898
\(585\) 7.62903e30 0.114862
\(586\) 8.79863e31 1.29895
\(587\) 1.19872e31 0.173531 0.0867657 0.996229i \(-0.472347\pi\)
0.0867657 + 0.996229i \(0.472347\pi\)
\(588\) 0 0
\(589\) −8.19274e31 −1.14052
\(590\) −2.57053e32 −3.50934
\(591\) −2.74352e31 −0.367327
\(592\) 2.73897e32 3.59657
\(593\) −1.02221e32 −1.31647 −0.658236 0.752812i \(-0.728697\pi\)
−0.658236 + 0.752812i \(0.728697\pi\)
\(594\) −3.49724e31 −0.441754
\(595\) 0 0
\(596\) −5.71311e31 −0.694289
\(597\) 3.91798e31 0.467044
\(598\) −1.84277e31 −0.215480
\(599\) −1.71851e31 −0.197126 −0.0985631 0.995131i \(-0.531425\pi\)
−0.0985631 + 0.995131i \(0.531425\pi\)
\(600\) −3.22297e32 −3.62675
\(601\) −6.06884e31 −0.669961 −0.334980 0.942225i \(-0.608730\pi\)
−0.334980 + 0.942225i \(0.608730\pi\)
\(602\) 0 0
\(603\) −3.29335e31 −0.349937
\(604\) −1.57554e32 −1.64250
\(605\) −1.74859e32 −1.78855
\(606\) 4.84648e31 0.486397
\(607\) 1.25731e32 1.23814 0.619072 0.785334i \(-0.287509\pi\)
0.619072 + 0.785334i \(0.287509\pi\)
\(608\) 2.36330e32 2.28364
\(609\) 0 0
\(610\) 1.56554e32 1.45670
\(611\) −6.78710e30 −0.0619741
\(612\) 2.65465e32 2.37884
\(613\) 8.10348e31 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(614\) −3.78405e31 −0.326603
\(615\) −6.76159e30 −0.0572776
\(616\) 0 0
\(617\) −7.03288e31 −0.573923 −0.286962 0.957942i \(-0.592645\pi\)
−0.286962 + 0.957942i \(0.592645\pi\)
\(618\) −7.38915e31 −0.591871
\(619\) 1.91808e32 1.50808 0.754039 0.656830i \(-0.228103\pi\)
0.754039 + 0.656830i \(0.228103\pi\)
\(620\) −6.71396e32 −5.18173
\(621\) 1.68540e32 1.27688
\(622\) −2.90955e32 −2.16390
\(623\) 0 0
\(624\) 1.35106e31 0.0968396
\(625\) 5.51228e32 3.87892
\(626\) −3.30582e32 −2.28388
\(627\) 2.08302e31 0.141292
\(628\) −2.92441e32 −1.94761
\(629\) −2.61090e32 −1.70729
\(630\) 0 0
\(631\) 2.17908e32 1.37384 0.686918 0.726735i \(-0.258963\pi\)
0.686918 + 0.726735i \(0.258963\pi\)
\(632\) 5.28645e32 3.27279
\(633\) −9.43543e31 −0.573613
\(634\) 6.17118e32 3.68419
\(635\) 1.38030e32 0.809238
\(636\) −7.61089e31 −0.438206
\(637\) 0 0
\(638\) −1.14066e32 −0.633459
\(639\) 2.35991e32 1.28717
\(640\) 1.60662e32 0.860684
\(641\) −6.95564e31 −0.365990 −0.182995 0.983114i \(-0.558579\pi\)
−0.182995 + 0.983114i \(0.558579\pi\)
\(642\) −5.34682e31 −0.276339
\(643\) 1.25648e32 0.637866 0.318933 0.947777i \(-0.396676\pi\)
0.318933 + 0.947777i \(0.396676\pi\)
\(644\) 0 0
\(645\) −3.30404e31 −0.161848
\(646\) −5.10352e32 −2.45582
\(647\) 1.15116e32 0.544171 0.272086 0.962273i \(-0.412287\pi\)
0.272086 + 0.962273i \(0.412287\pi\)
\(648\) 2.15007e32 0.998481
\(649\) 5.95103e31 0.271505
\(650\) −8.82673e31 −0.395636
\(651\) 0 0
\(652\) 7.33400e32 3.17317
\(653\) −2.81877e32 −1.19828 −0.599139 0.800645i \(-0.704490\pi\)
−0.599139 + 0.800645i \(0.704490\pi\)
\(654\) 2.67186e32 1.11602
\(655\) 2.60594e32 1.06952
\(656\) 4.02337e31 0.162254
\(657\) 2.14341e31 0.0849382
\(658\) 0 0
\(659\) 4.43093e32 1.69556 0.847779 0.530350i \(-0.177939\pi\)
0.847779 + 0.530350i \(0.177939\pi\)
\(660\) 1.70704e32 0.641932
\(661\) −2.32877e32 −0.860616 −0.430308 0.902682i \(-0.641595\pi\)
−0.430308 + 0.902682i \(0.641595\pi\)
\(662\) 2.29859e31 0.0834822
\(663\) −1.28789e31 −0.0459697
\(664\) −5.27368e32 −1.85004
\(665\) 0 0
\(666\) −5.78822e32 −1.96152
\(667\) 5.49711e32 1.83100
\(668\) 7.01477e32 2.29659
\(669\) 1.68845e32 0.543361
\(670\) 5.18860e32 1.64131
\(671\) −3.62436e31 −0.112700
\(672\) 0 0
\(673\) −4.99094e30 −0.0149972 −0.00749858 0.999972i \(-0.502387\pi\)
−0.00749858 + 0.999972i \(0.502387\pi\)
\(674\) −5.08368e32 −1.50172
\(675\) 8.07294e32 2.34444
\(676\) −8.60154e32 −2.45578
\(677\) −2.66559e32 −0.748209 −0.374105 0.927386i \(-0.622050\pi\)
−0.374105 + 0.927386i \(0.622050\pi\)
\(678\) −1.34608e32 −0.371476
\(679\) 0 0
\(680\) −2.48933e33 −6.64094
\(681\) 1.57456e32 0.413015
\(682\) 2.18354e32 0.563173
\(683\) −2.25043e32 −0.570726 −0.285363 0.958419i \(-0.592114\pi\)
−0.285363 + 0.958419i \(0.592114\pi\)
\(684\) −8.05398e32 −2.00847
\(685\) 3.76698e32 0.923745
\(686\) 0 0
\(687\) 1.57607e32 0.373743
\(688\) 1.96601e32 0.458479
\(689\) −1.24063e31 −0.0284525
\(690\) −1.15568e33 −2.60659
\(691\) 4.47511e32 0.992674 0.496337 0.868130i \(-0.334678\pi\)
0.496337 + 0.868130i \(0.334678\pi\)
\(692\) −6.99716e31 −0.152652
\(693\) 0 0
\(694\) 7.05360e31 0.148860
\(695\) −1.67490e33 −3.47667
\(696\) −7.81269e32 −1.59512
\(697\) −3.83524e31 −0.0770221
\(698\) 1.70272e33 3.36361
\(699\) 2.80046e32 0.544179
\(700\) 0 0
\(701\) −2.46741e32 −0.463963 −0.231982 0.972720i \(-0.574521\pi\)
−0.231982 + 0.972720i \(0.574521\pi\)
\(702\) −6.56012e31 −0.121349
\(703\) 7.92124e32 1.44147
\(704\) −2.18695e32 −0.391519
\(705\) −4.25648e32 −0.749679
\(706\) 1.22692e33 2.12600
\(707\) 0 0
\(708\) 6.84814e32 1.14866
\(709\) 6.21669e32 1.02595 0.512977 0.858403i \(-0.328543\pi\)
0.512977 + 0.858403i \(0.328543\pi\)
\(710\) −3.71799e33 −6.03722
\(711\) −5.76316e32 −0.920789
\(712\) −1.21371e33 −1.90807
\(713\) −1.05230e33 −1.62783
\(714\) 0 0
\(715\) 2.78259e31 0.0416803
\(716\) −1.43304e33 −2.11231
\(717\) 1.39152e31 0.0201846
\(718\) −1.07538e33 −1.53507
\(719\) −9.12211e32 −1.28148 −0.640742 0.767756i \(-0.721373\pi\)
−0.640742 + 0.767756i \(0.721373\pi\)
\(720\) −2.84693e33 −3.93598
\(721\) 0 0
\(722\) 1.57243e32 0.210569
\(723\) 6.90576e32 0.910168
\(724\) 5.94845e32 0.771632
\(725\) 2.63308e33 3.36184
\(726\) 6.54414e32 0.822397
\(727\) −6.08188e30 −0.00752302 −0.00376151 0.999993i \(-0.501197\pi\)
−0.00376151 + 0.999993i \(0.501197\pi\)
\(728\) 0 0
\(729\) 1.04459e32 0.125193
\(730\) −3.37689e32 −0.398386
\(731\) −1.87408e32 −0.217640
\(732\) −4.17074e32 −0.476799
\(733\) −6.96832e32 −0.784210 −0.392105 0.919921i \(-0.628253\pi\)
−0.392105 + 0.919921i \(0.628253\pi\)
\(734\) 2.17744e33 2.41236
\(735\) 0 0
\(736\) 3.03549e33 3.25937
\(737\) −1.20121e32 −0.126982
\(738\) −8.50252e31 −0.0884911
\(739\) −8.27264e32 −0.847682 −0.423841 0.905737i \(-0.639319\pi\)
−0.423841 + 0.905737i \(0.639319\pi\)
\(740\) 6.49147e33 6.54905
\(741\) 3.90734e31 0.0388125
\(742\) 0 0
\(743\) 5.85434e32 0.563776 0.281888 0.959447i \(-0.409039\pi\)
0.281888 + 0.959447i \(0.409039\pi\)
\(744\) 1.49557e33 1.41813
\(745\) −5.84042e32 −0.545314
\(746\) −3.86466e33 −3.55316
\(747\) 5.74924e32 0.520504
\(748\) 9.68251e32 0.863216
\(749\) 0 0
\(750\) −3.53337e33 −3.05481
\(751\) −1.11186e33 −0.946655 −0.473327 0.880887i \(-0.656947\pi\)
−0.473327 + 0.880887i \(0.656947\pi\)
\(752\) 2.53275e33 2.12367
\(753\) 7.35903e32 0.607685
\(754\) −2.13965e32 −0.174009
\(755\) −1.61065e33 −1.29006
\(756\) 0 0
\(757\) −1.91038e33 −1.48428 −0.742142 0.670242i \(-0.766190\pi\)
−0.742142 + 0.670242i \(0.766190\pi\)
\(758\) −9.07728e32 −0.694640
\(759\) 2.67550e32 0.201662
\(760\) 7.55241e33 5.60698
\(761\) −2.05494e33 −1.50271 −0.751355 0.659899i \(-0.770599\pi\)
−0.751355 + 0.659899i \(0.770599\pi\)
\(762\) −5.16580e32 −0.372096
\(763\) 0 0
\(764\) 1.96399e33 1.37267
\(765\) 2.71381e33 1.86841
\(766\) −2.05544e32 −0.139404
\(767\) 1.11629e32 0.0745816
\(768\) 4.17451e32 0.274759
\(769\) −7.25356e32 −0.470325 −0.235162 0.971956i \(-0.575562\pi\)
−0.235162 + 0.971956i \(0.575562\pi\)
\(770\) 0 0
\(771\) −3.02667e32 −0.190476
\(772\) −1.42624e33 −0.884288
\(773\) 9.82682e32 0.600273 0.300136 0.953896i \(-0.402968\pi\)
0.300136 + 0.953896i \(0.402968\pi\)
\(774\) −4.15474e32 −0.250048
\(775\) −5.04044e33 −2.98882
\(776\) −2.29952e31 −0.0134347
\(777\) 0 0
\(778\) 4.31868e33 2.44954
\(779\) 1.16358e32 0.0650301
\(780\) 3.20207e32 0.176337
\(781\) 8.60748e32 0.467078
\(782\) −6.55512e33 −3.50512
\(783\) 1.95693e33 1.03113
\(784\) 0 0
\(785\) −2.98957e33 −1.52971
\(786\) −9.75278e32 −0.491778
\(787\) 2.95753e33 1.46967 0.734834 0.678247i \(-0.237260\pi\)
0.734834 + 0.678247i \(0.237260\pi\)
\(788\) 3.86906e33 1.89476
\(789\) 2.88583e32 0.139279
\(790\) 9.07972e33 4.31878
\(791\) 0 0
\(792\) 1.27763e33 0.590292
\(793\) −6.79858e31 −0.0309583
\(794\) −3.81027e33 −1.71009
\(795\) −7.78049e32 −0.344179
\(796\) −5.52534e33 −2.40912
\(797\) −2.29301e33 −0.985451 −0.492725 0.870185i \(-0.663999\pi\)
−0.492725 + 0.870185i \(0.663999\pi\)
\(798\) 0 0
\(799\) −2.41431e33 −1.00811
\(800\) 1.45398e34 5.98443
\(801\) 1.32316e33 0.536830
\(802\) −3.08383e32 −0.123335
\(803\) 7.81781e31 0.0308217
\(804\) −1.38229e33 −0.537224
\(805\) 0 0
\(806\) 4.09589e32 0.154702
\(807\) 5.14894e32 0.191722
\(808\) −4.06805e33 −1.49333
\(809\) −5.46911e33 −1.97929 −0.989643 0.143553i \(-0.954147\pi\)
−0.989643 + 0.143553i \(0.954147\pi\)
\(810\) 3.69284e33 1.31760
\(811\) 4.78306e33 1.68254 0.841271 0.540614i \(-0.181808\pi\)
0.841271 + 0.540614i \(0.181808\pi\)
\(812\) 0 0
\(813\) −4.63843e32 −0.158610
\(814\) −2.11118e33 −0.711779
\(815\) 7.49743e33 2.49230
\(816\) 4.80602e33 1.57525
\(817\) 5.68580e32 0.183755
\(818\) −6.41968e33 −2.04574
\(819\) 0 0
\(820\) 9.53554e32 0.295451
\(821\) −9.18752e31 −0.0280706 −0.0140353 0.999902i \(-0.504468\pi\)
−0.0140353 + 0.999902i \(0.504468\pi\)
\(822\) −1.40980e33 −0.424748
\(823\) 4.65953e33 1.38434 0.692172 0.721733i \(-0.256654\pi\)
0.692172 + 0.721733i \(0.256654\pi\)
\(824\) 6.20231e33 1.81715
\(825\) 1.28154e33 0.370266
\(826\) 0 0
\(827\) 5.39653e33 1.51636 0.758179 0.652047i \(-0.226089\pi\)
0.758179 + 0.652047i \(0.226089\pi\)
\(828\) −1.03448e34 −2.86664
\(829\) 2.13449e33 0.583334 0.291667 0.956520i \(-0.405790\pi\)
0.291667 + 0.956520i \(0.405790\pi\)
\(830\) −9.05780e33 −2.44132
\(831\) −9.91834e31 −0.0263650
\(832\) −4.10228e32 −0.107549
\(833\) 0 0
\(834\) 6.26834e33 1.59861
\(835\) 7.17108e33 1.80381
\(836\) −2.93759e33 −0.728818
\(837\) −3.74611e33 −0.916722
\(838\) 1.02814e34 2.48169
\(839\) −2.21991e33 −0.528535 −0.264267 0.964449i \(-0.585130\pi\)
−0.264267 + 0.964449i \(0.585130\pi\)
\(840\) 0 0
\(841\) 2.06602e33 0.478608
\(842\) −1.25963e34 −2.87843
\(843\) −1.67245e33 −0.376996
\(844\) 1.33063e34 2.95883
\(845\) −8.79322e33 −1.92884
\(846\) −5.35241e33 −1.15822
\(847\) 0 0
\(848\) 4.62965e33 0.974981
\(849\) −3.98722e33 −0.828384
\(850\) −3.13985e34 −6.43564
\(851\) 1.01743e34 2.05738
\(852\) 9.90506e33 1.97607
\(853\) 8.35177e33 1.64386 0.821930 0.569589i \(-0.192898\pi\)
0.821930 + 0.569589i \(0.192898\pi\)
\(854\) 0 0
\(855\) −8.23346e33 −1.57751
\(856\) 4.48802e33 0.848412
\(857\) 3.22920e33 0.602304 0.301152 0.953576i \(-0.402629\pi\)
0.301152 + 0.953576i \(0.402629\pi\)
\(858\) −1.04139e32 −0.0191650
\(859\) 3.66819e33 0.666086 0.333043 0.942912i \(-0.391925\pi\)
0.333043 + 0.942912i \(0.391925\pi\)
\(860\) 4.65952e33 0.834852
\(861\) 0 0
\(862\) −5.38175e33 −0.938836
\(863\) 3.05514e33 0.525904 0.262952 0.964809i \(-0.415304\pi\)
0.262952 + 0.964809i \(0.415304\pi\)
\(864\) 1.08061e34 1.83553
\(865\) −7.15309e32 −0.119897
\(866\) −1.86633e33 −0.308697
\(867\) −1.64716e33 −0.268854
\(868\) 0 0
\(869\) −2.10204e33 −0.334129
\(870\) −1.34187e34 −2.10493
\(871\) −2.25323e32 −0.0348816
\(872\) −2.24271e34 −3.42637
\(873\) 2.50688e31 0.00377980
\(874\) 1.98877e34 2.95939
\(875\) 0 0
\(876\) 8.99635e32 0.130397
\(877\) 2.88335e33 0.412479 0.206240 0.978502i \(-0.433877\pi\)
0.206240 + 0.978502i \(0.433877\pi\)
\(878\) 1.41172e34 1.99325
\(879\) −2.39627e33 −0.333936
\(880\) −1.03838e34 −1.42826
\(881\) −9.12355e33 −1.23863 −0.619314 0.785143i \(-0.712589\pi\)
−0.619314 + 0.785143i \(0.712589\pi\)
\(882\) 0 0
\(883\) −1.31742e34 −1.74251 −0.871255 0.490831i \(-0.836693\pi\)
−0.871255 + 0.490831i \(0.836693\pi\)
\(884\) 1.81624e33 0.237123
\(885\) 7.00074e33 0.902187
\(886\) −1.31741e34 −1.67584
\(887\) 6.86712e32 0.0862289 0.0431145 0.999070i \(-0.486272\pi\)
0.0431145 + 0.999070i \(0.486272\pi\)
\(888\) −1.44600e34 −1.79234
\(889\) 0 0
\(890\) −2.08460e34 −2.51790
\(891\) −8.54928e32 −0.101938
\(892\) −2.38114e34 −2.80278
\(893\) 7.32482e33 0.851148
\(894\) 2.18579e33 0.250742
\(895\) −1.46497e34 −1.65907
\(896\) 0 0
\(897\) 5.01871e32 0.0553960
\(898\) −1.44282e34 −1.57230
\(899\) −1.22183e34 −1.31455
\(900\) −4.95507e34 −5.26334
\(901\) −4.41317e33 −0.462823
\(902\) −3.10119e32 −0.0321109
\(903\) 0 0
\(904\) 1.12988e34 1.14050
\(905\) 6.08100e33 0.606061
\(906\) 6.02788e33 0.593185
\(907\) 8.45343e33 0.821389 0.410695 0.911773i \(-0.365286\pi\)
0.410695 + 0.911773i \(0.365286\pi\)
\(908\) −2.22052e34 −2.13043
\(909\) 4.43489e33 0.420144
\(910\) 0 0
\(911\) 1.30548e34 1.20590 0.602948 0.797780i \(-0.293992\pi\)
0.602948 + 0.797780i \(0.293992\pi\)
\(912\) −1.45810e34 −1.32999
\(913\) 2.09696e33 0.188876
\(914\) 1.31293e34 1.16778
\(915\) −4.26368e33 −0.374491
\(916\) −2.22266e34 −1.92786
\(917\) 0 0
\(918\) −2.33357e34 −1.97392
\(919\) −3.41817e33 −0.285539 −0.142769 0.989756i \(-0.545601\pi\)
−0.142769 + 0.989756i \(0.545601\pi\)
\(920\) 9.70055e34 8.00270
\(921\) 1.03057e33 0.0839637
\(922\) 2.67249e34 2.15036
\(923\) 1.61459e33 0.128305
\(924\) 0 0
\(925\) 4.87341e34 3.77749
\(926\) 3.74636e34 2.86802
\(927\) −6.76161e33 −0.511250
\(928\) 3.52453e34 2.63208
\(929\) 5.50940e33 0.406372 0.203186 0.979140i \(-0.434870\pi\)
0.203186 + 0.979140i \(0.434870\pi\)
\(930\) 2.56870e34 1.87137
\(931\) 0 0
\(932\) −3.94935e34 −2.80700
\(933\) 7.92404e33 0.556298
\(934\) −4.59901e34 −3.18915
\(935\) 9.89827e33 0.677994
\(936\) 2.39658e33 0.162151
\(937\) −7.13928e33 −0.477144 −0.238572 0.971125i \(-0.576679\pi\)
−0.238572 + 0.971125i \(0.576679\pi\)
\(938\) 0 0
\(939\) 9.00325e33 0.587145
\(940\) 6.00270e34 3.86702
\(941\) 2.95867e34 1.88285 0.941425 0.337222i \(-0.109487\pi\)
0.941425 + 0.337222i \(0.109487\pi\)
\(942\) 1.11885e34 0.703376
\(943\) 1.49454e33 0.0928158
\(944\) −4.16568e34 −2.55569
\(945\) 0 0
\(946\) −1.51539e33 −0.0907353
\(947\) 7.46702e33 0.441695 0.220847 0.975308i \(-0.429118\pi\)
0.220847 + 0.975308i \(0.429118\pi\)
\(948\) −2.41892e34 −1.41360
\(949\) 1.46647e32 0.00846663
\(950\) 9.52604e34 5.43364
\(951\) −1.68069e34 −0.947137
\(952\) 0 0
\(953\) 1.52946e34 0.841335 0.420668 0.907215i \(-0.361796\pi\)
0.420668 + 0.907215i \(0.361796\pi\)
\(954\) −9.78376e33 −0.531740
\(955\) 2.00775e34 1.07813
\(956\) −1.96240e33 −0.104117
\(957\) 3.10654e33 0.162851
\(958\) 3.23979e34 1.67808
\(959\) 0 0
\(960\) −2.57271e34 −1.30098
\(961\) 3.37599e33 0.168687
\(962\) −3.96016e33 −0.195524
\(963\) −4.89273e33 −0.238698
\(964\) −9.73887e34 −4.69486
\(965\) −1.45802e34 −0.694545
\(966\) 0 0
\(967\) 7.77078e33 0.361460 0.180730 0.983533i \(-0.442154\pi\)
0.180730 + 0.983533i \(0.442154\pi\)
\(968\) −5.49303e34 −2.52491
\(969\) 1.38992e34 0.631345
\(970\) −3.94953e32 −0.0177284
\(971\) −1.84473e34 −0.818297 −0.409149 0.912468i \(-0.634174\pi\)
−0.409149 + 0.912468i \(0.634174\pi\)
\(972\) −5.76251e34 −2.52610
\(973\) 0 0
\(974\) 2.61721e34 1.12050
\(975\) 2.40392e33 0.101711
\(976\) 2.53703e34 1.06085
\(977\) −4.44473e34 −1.83678 −0.918391 0.395673i \(-0.870511\pi\)
−0.918391 + 0.395673i \(0.870511\pi\)
\(978\) −2.80592e34 −1.14599
\(979\) 4.82605e33 0.194801
\(980\) 0 0
\(981\) 2.44495e34 0.964000
\(982\) −4.93687e34 −1.92384
\(983\) −3.08066e34 −1.18653 −0.593264 0.805008i \(-0.702161\pi\)
−0.593264 + 0.805008i \(0.702161\pi\)
\(984\) −2.12408e33 −0.0808590
\(985\) 3.95528e34 1.48820
\(986\) −7.61119e34 −2.83053
\(987\) 0 0
\(988\) −5.51033e33 −0.200204
\(989\) 7.30302e33 0.262268
\(990\) 2.19440e34 0.778951
\(991\) 4.32291e34 1.51680 0.758401 0.651788i \(-0.225981\pi\)
0.758401 + 0.651788i \(0.225981\pi\)
\(992\) −6.74693e34 −2.34003
\(993\) −6.26010e32 −0.0214617
\(994\) 0 0
\(995\) −5.64847e34 −1.89219
\(996\) 2.41308e34 0.799079
\(997\) −5.18143e34 −1.69611 −0.848057 0.529904i \(-0.822228\pi\)
−0.848057 + 0.529904i \(0.822228\pi\)
\(998\) −3.24393e34 −1.04971
\(999\) 3.62197e34 1.15862
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.24.a.h.1.23 24
7.6 odd 2 inner 49.24.a.h.1.24 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.24.a.h.1.23 24 1.1 even 1 trivial
49.24.a.h.1.24 yes 24 7.6 odd 2 inner