Properties

Label 49.24.a.h.1.22
Level $49$
Weight $24$
Character 49.1
Self dual yes
Analytic conductor $164.250$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,24,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,6030,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.249978299\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.22
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4682.86 q^{2} +533419. q^{3} +1.35406e7 q^{4} -4.63050e7 q^{5} +2.49793e9 q^{6} +2.41261e10 q^{8} +1.90393e11 q^{9} -2.16840e11 q^{10} +1.60986e12 q^{11} +7.22281e12 q^{12} -9.50878e12 q^{13} -2.47000e13 q^{15} -6.07746e11 q^{16} +1.24885e14 q^{17} +8.91583e14 q^{18} +3.62029e14 q^{19} -6.26998e14 q^{20} +7.53875e15 q^{22} +6.10783e15 q^{23} +1.28693e16 q^{24} -9.77677e15 q^{25} -4.45283e16 q^{26} +5.13413e16 q^{27} +8.30094e16 q^{29} -1.15667e17 q^{30} +1.39797e17 q^{31} -2.05230e17 q^{32} +8.58730e17 q^{33} +5.84819e17 q^{34} +2.57803e18 q^{36} -1.00014e18 q^{37} +1.69533e18 q^{38} -5.07216e18 q^{39} -1.11716e18 q^{40} -4.51785e18 q^{41} +3.67753e18 q^{43} +2.17985e19 q^{44} -8.81614e18 q^{45} +2.86021e19 q^{46} +1.92884e19 q^{47} -3.24184e17 q^{48} -4.57833e19 q^{50} +6.66160e19 q^{51} -1.28755e20 q^{52} +2.65567e18 q^{53} +2.40424e20 q^{54} -7.45446e19 q^{55} +1.93113e20 q^{57} +3.88721e20 q^{58} -4.66189e19 q^{59} -3.34452e20 q^{60} +2.44943e19 q^{61} +6.54649e20 q^{62} -9.55966e20 q^{64} +4.40304e20 q^{65} +4.02131e21 q^{66} +7.22237e19 q^{67} +1.69102e21 q^{68} +3.25803e21 q^{69} +3.05802e21 q^{71} +4.59342e21 q^{72} -3.22856e21 q^{73} -4.68353e21 q^{74} -5.21512e21 q^{75} +4.90209e21 q^{76} -2.37522e22 q^{78} +6.23431e21 q^{79} +2.81417e19 q^{80} +9.46225e21 q^{81} -2.11565e22 q^{82} -1.46030e22 q^{83} -5.78280e21 q^{85} +1.72214e22 q^{86} +4.42788e22 q^{87} +3.88396e22 q^{88} +2.77977e22 q^{89} -4.12848e22 q^{90} +8.27037e22 q^{92} +7.45702e22 q^{93} +9.03251e22 q^{94} -1.67638e22 q^{95} -1.09474e23 q^{96} -6.21716e22 q^{97} +3.06505e23 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6030 q^{2} + 99000906 q^{4} + 31751706690 q^{8} + 975236583640 q^{9} + 3514223137536 q^{11} + 96662500006976 q^{15} + 850136746459362 q^{16} - 774764811988990 q^{18} + 81\!\cdots\!60 q^{22} + 34\!\cdots\!60 q^{23}+ \cdots + 70\!\cdots\!64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4682.86 1.61684 0.808419 0.588607i \(-0.200324\pi\)
0.808419 + 0.588607i \(0.200324\pi\)
\(3\) 533419. 1.73850 0.869249 0.494375i \(-0.164603\pi\)
0.869249 + 0.494375i \(0.164603\pi\)
\(4\) 1.35406e7 1.61416
\(5\) −4.63050e7 −0.424105 −0.212052 0.977258i \(-0.568015\pi\)
−0.212052 + 0.977258i \(0.568015\pi\)
\(6\) 2.49793e9 2.81087
\(7\) 0 0
\(8\) 2.41261e10 0.993005
\(9\) 1.90393e11 2.02237
\(10\) −2.16840e11 −0.685709
\(11\) 1.60986e12 1.70127 0.850633 0.525760i \(-0.176219\pi\)
0.850633 + 0.525760i \(0.176219\pi\)
\(12\) 7.22281e12 2.80622
\(13\) −9.50878e12 −1.47155 −0.735777 0.677224i \(-0.763183\pi\)
−0.735777 + 0.677224i \(0.763183\pi\)
\(14\) 0 0
\(15\) −2.47000e13 −0.737305
\(16\) −6.07746e11 −0.00863660
\(17\) 1.24885e14 0.883787 0.441894 0.897067i \(-0.354307\pi\)
0.441894 + 0.897067i \(0.354307\pi\)
\(18\) 8.91583e14 3.26985
\(19\) 3.62029e14 0.712980 0.356490 0.934299i \(-0.383973\pi\)
0.356490 + 0.934299i \(0.383973\pi\)
\(20\) −6.26998e14 −0.684575
\(21\) 0 0
\(22\) 7.53875e15 2.75067
\(23\) 6.10783e15 1.33665 0.668324 0.743870i \(-0.267012\pi\)
0.668324 + 0.743870i \(0.267012\pi\)
\(24\) 1.28693e16 1.72634
\(25\) −9.77677e15 −0.820135
\(26\) −4.45283e16 −2.37926
\(27\) 5.13413e16 1.77739
\(28\) 0 0
\(29\) 8.30094e16 1.26343 0.631713 0.775202i \(-0.282352\pi\)
0.631713 + 0.775202i \(0.282352\pi\)
\(30\) −1.15667e17 −1.19210
\(31\) 1.39797e17 0.988183 0.494091 0.869410i \(-0.335501\pi\)
0.494091 + 0.869410i \(0.335501\pi\)
\(32\) −2.05230e17 −1.00697
\(33\) 8.58730e17 2.95765
\(34\) 5.84819e17 1.42894
\(35\) 0 0
\(36\) 2.57803e18 3.26444
\(37\) −1.00014e18 −0.924149 −0.462075 0.886841i \(-0.652895\pi\)
−0.462075 + 0.886841i \(0.652895\pi\)
\(38\) 1.69533e18 1.15277
\(39\) −5.07216e18 −2.55829
\(40\) −1.11716e18 −0.421138
\(41\) −4.51785e18 −1.28209 −0.641044 0.767504i \(-0.721498\pi\)
−0.641044 + 0.767504i \(0.721498\pi\)
\(42\) 0 0
\(43\) 3.67753e18 0.603489 0.301745 0.953389i \(-0.402431\pi\)
0.301745 + 0.953389i \(0.402431\pi\)
\(44\) 2.17985e19 2.74612
\(45\) −8.81614e18 −0.857698
\(46\) 2.86021e19 2.16114
\(47\) 1.92884e19 1.13808 0.569038 0.822311i \(-0.307316\pi\)
0.569038 + 0.822311i \(0.307316\pi\)
\(48\) −3.24184e17 −0.0150147
\(49\) 0 0
\(50\) −4.57833e19 −1.32603
\(51\) 6.66160e19 1.53646
\(52\) −1.28755e20 −2.37533
\(53\) 2.65567e18 0.0393552 0.0196776 0.999806i \(-0.493736\pi\)
0.0196776 + 0.999806i \(0.493736\pi\)
\(54\) 2.40424e20 2.87376
\(55\) −7.45446e19 −0.721515
\(56\) 0 0
\(57\) 1.93113e20 1.23951
\(58\) 3.88721e20 2.04276
\(59\) −4.66189e19 −0.201263 −0.100631 0.994924i \(-0.532086\pi\)
−0.100631 + 0.994924i \(0.532086\pi\)
\(60\) −3.34452e20 −1.19013
\(61\) 2.44943e19 0.0720730 0.0360365 0.999350i \(-0.488527\pi\)
0.0360365 + 0.999350i \(0.488527\pi\)
\(62\) 6.54649e20 1.59773
\(63\) 0 0
\(64\) −9.55966e20 −1.61947
\(65\) 4.40304e20 0.624093
\(66\) 4.02131e21 4.78203
\(67\) 7.22237e19 0.0722469 0.0361235 0.999347i \(-0.488499\pi\)
0.0361235 + 0.999347i \(0.488499\pi\)
\(68\) 1.69102e21 1.42658
\(69\) 3.25803e21 2.32376
\(70\) 0 0
\(71\) 3.05802e21 1.57025 0.785125 0.619337i \(-0.212599\pi\)
0.785125 + 0.619337i \(0.212599\pi\)
\(72\) 4.59342e21 2.00823
\(73\) −3.22856e21 −1.20447 −0.602235 0.798319i \(-0.705723\pi\)
−0.602235 + 0.798319i \(0.705723\pi\)
\(74\) −4.68353e21 −1.49420
\(75\) −5.21512e21 −1.42580
\(76\) 4.90209e21 1.15087
\(77\) 0 0
\(78\) −2.37522e22 −4.13635
\(79\) 6.23431e21 0.937728 0.468864 0.883270i \(-0.344663\pi\)
0.468864 + 0.883270i \(0.344663\pi\)
\(80\) 2.81417e19 0.00366282
\(81\) 9.46225e21 1.06762
\(82\) −2.11565e22 −2.07293
\(83\) −1.46030e22 −1.24464 −0.622321 0.782762i \(-0.713810\pi\)
−0.622321 + 0.782762i \(0.713810\pi\)
\(84\) 0 0
\(85\) −5.78280e21 −0.374818
\(86\) 1.72214e22 0.975744
\(87\) 4.42788e22 2.19646
\(88\) 3.88396e22 1.68937
\(89\) 2.77977e22 1.06175 0.530877 0.847449i \(-0.321863\pi\)
0.530877 + 0.847449i \(0.321863\pi\)
\(90\) −4.12848e22 −1.38676
\(91\) 0 0
\(92\) 8.27037e22 2.15757
\(93\) 7.45702e22 1.71795
\(94\) 9.03251e22 1.84009
\(95\) −1.67638e22 −0.302378
\(96\) −1.09474e23 −1.75061
\(97\) −6.21716e22 −0.882505 −0.441253 0.897383i \(-0.645466\pi\)
−0.441253 + 0.897383i \(0.645466\pi\)
\(98\) 0 0
\(99\) 3.06505e23 3.44059
\(100\) −1.32383e23 −1.32383
\(101\) −4.85268e22 −0.432799 −0.216399 0.976305i \(-0.569431\pi\)
−0.216399 + 0.976305i \(0.569431\pi\)
\(102\) 3.11954e23 2.48421
\(103\) 5.65096e22 0.402248 0.201124 0.979566i \(-0.435541\pi\)
0.201124 + 0.979566i \(0.435541\pi\)
\(104\) −2.29409e23 −1.46126
\(105\) 0 0
\(106\) 1.24362e22 0.0636310
\(107\) 7.38533e22 0.339200 0.169600 0.985513i \(-0.445752\pi\)
0.169600 + 0.985513i \(0.445752\pi\)
\(108\) 6.95192e23 2.86901
\(109\) 1.17182e23 0.434968 0.217484 0.976064i \(-0.430215\pi\)
0.217484 + 0.976064i \(0.430215\pi\)
\(110\) −3.49082e23 −1.16657
\(111\) −5.33495e23 −1.60663
\(112\) 0 0
\(113\) −4.94797e23 −1.21346 −0.606729 0.794909i \(-0.707519\pi\)
−0.606729 + 0.794909i \(0.707519\pi\)
\(114\) 9.04323e23 2.00409
\(115\) −2.82823e23 −0.566879
\(116\) 1.12400e24 2.03938
\(117\) −1.81040e24 −2.97603
\(118\) −2.18310e23 −0.325409
\(119\) 0 0
\(120\) −5.95913e23 −0.732147
\(121\) 1.69622e24 1.89430
\(122\) 1.14704e23 0.116530
\(123\) −2.40991e24 −2.22891
\(124\) 1.89293e24 1.59509
\(125\) 1.00471e24 0.771928
\(126\) 0 0
\(127\) −8.44917e23 −0.540843 −0.270422 0.962742i \(-0.587163\pi\)
−0.270422 + 0.962742i \(0.587163\pi\)
\(128\) −2.75506e24 −1.61145
\(129\) 1.96167e24 1.04916
\(130\) 2.06188e24 1.00906
\(131\) −3.30362e24 −1.48037 −0.740184 0.672404i \(-0.765262\pi\)
−0.740184 + 0.672404i \(0.765262\pi\)
\(132\) 1.16277e25 4.77413
\(133\) 0 0
\(134\) 3.38213e23 0.116812
\(135\) −2.37736e24 −0.753801
\(136\) 3.01298e24 0.877605
\(137\) −5.69859e24 −1.52574 −0.762871 0.646550i \(-0.776211\pi\)
−0.762871 + 0.646550i \(0.776211\pi\)
\(138\) 1.52569e25 3.75714
\(139\) −2.51026e24 −0.568916 −0.284458 0.958689i \(-0.591814\pi\)
−0.284458 + 0.958689i \(0.591814\pi\)
\(140\) 0 0
\(141\) 1.02888e25 1.97854
\(142\) 1.43203e25 2.53884
\(143\) −1.53078e25 −2.50350
\(144\) −1.15710e23 −0.0174664
\(145\) −3.84375e24 −0.535825
\(146\) −1.51189e25 −1.94743
\(147\) 0 0
\(148\) −1.35425e25 −1.49173
\(149\) −1.78941e24 −0.182419 −0.0912093 0.995832i \(-0.529073\pi\)
−0.0912093 + 0.995832i \(0.529073\pi\)
\(150\) −2.44217e25 −2.30529
\(151\) 6.43708e24 0.562929 0.281465 0.959572i \(-0.409180\pi\)
0.281465 + 0.959572i \(0.409180\pi\)
\(152\) 8.73434e24 0.707992
\(153\) 2.37772e25 1.78735
\(154\) 0 0
\(155\) −6.47329e24 −0.419093
\(156\) −6.86801e25 −4.12951
\(157\) −2.65261e25 −1.48193 −0.740964 0.671545i \(-0.765631\pi\)
−0.740964 + 0.671545i \(0.765631\pi\)
\(158\) 2.91944e25 1.51615
\(159\) 1.41659e24 0.0684190
\(160\) 9.50318e24 0.427060
\(161\) 0 0
\(162\) 4.43104e25 1.72617
\(163\) −9.86677e24 −0.358111 −0.179055 0.983839i \(-0.557304\pi\)
−0.179055 + 0.983839i \(0.557304\pi\)
\(164\) −6.11745e25 −2.06950
\(165\) −3.97635e25 −1.25435
\(166\) −6.83839e25 −2.01239
\(167\) −3.07173e25 −0.843614 −0.421807 0.906686i \(-0.638604\pi\)
−0.421807 + 0.906686i \(0.638604\pi\)
\(168\) 0 0
\(169\) 4.86630e25 1.16547
\(170\) −2.70801e25 −0.606020
\(171\) 6.89277e25 1.44191
\(172\) 4.97960e25 0.974131
\(173\) −2.88321e25 −0.527651 −0.263825 0.964570i \(-0.584984\pi\)
−0.263825 + 0.964570i \(0.584984\pi\)
\(174\) 2.07351e26 3.55133
\(175\) 0 0
\(176\) −9.78387e23 −0.0146931
\(177\) −2.48674e25 −0.349895
\(178\) 1.30173e26 1.71668
\(179\) −2.07043e25 −0.256007 −0.128003 0.991774i \(-0.540857\pi\)
−0.128003 + 0.991774i \(0.540857\pi\)
\(180\) −1.19376e26 −1.38447
\(181\) −1.25168e26 −1.36204 −0.681021 0.732264i \(-0.738464\pi\)
−0.681021 + 0.732264i \(0.738464\pi\)
\(182\) 0 0
\(183\) 1.30657e25 0.125299
\(184\) 1.47358e26 1.32730
\(185\) 4.63116e25 0.391936
\(186\) 3.49202e26 2.77765
\(187\) 2.01047e26 1.50356
\(188\) 2.61177e26 1.83704
\(189\) 0 0
\(190\) −7.85024e25 −0.488896
\(191\) 5.36605e25 0.314609 0.157304 0.987550i \(-0.449720\pi\)
0.157304 + 0.987550i \(0.449720\pi\)
\(192\) −5.09930e26 −2.81544
\(193\) 2.97683e26 1.54827 0.774133 0.633024i \(-0.218186\pi\)
0.774133 + 0.633024i \(0.218186\pi\)
\(194\) −2.91141e26 −1.42687
\(195\) 2.34867e26 1.08498
\(196\) 0 0
\(197\) −1.24865e26 −0.512953 −0.256477 0.966550i \(-0.582562\pi\)
−0.256477 + 0.966550i \(0.582562\pi\)
\(198\) 1.43532e27 5.56288
\(199\) 1.54378e25 0.0564644 0.0282322 0.999601i \(-0.491012\pi\)
0.0282322 + 0.999601i \(0.491012\pi\)
\(200\) −2.35875e26 −0.814398
\(201\) 3.85255e25 0.125601
\(202\) −2.27244e26 −0.699765
\(203\) 0 0
\(204\) 9.02021e26 2.48010
\(205\) 2.09199e26 0.543740
\(206\) 2.64627e26 0.650370
\(207\) 1.16289e27 2.70320
\(208\) 5.77893e24 0.0127092
\(209\) 5.82816e26 1.21297
\(210\) 0 0
\(211\) 8.50068e26 1.58564 0.792821 0.609454i \(-0.208611\pi\)
0.792821 + 0.609454i \(0.208611\pi\)
\(212\) 3.59594e25 0.0635258
\(213\) 1.63120e27 2.72988
\(214\) 3.45845e26 0.548432
\(215\) −1.70288e26 −0.255943
\(216\) 1.23866e27 1.76496
\(217\) 0 0
\(218\) 5.48748e26 0.703272
\(219\) −1.72218e27 −2.09397
\(220\) −1.00938e27 −1.16464
\(221\) −1.18750e27 −1.30054
\(222\) −2.49828e27 −2.59766
\(223\) 3.94025e26 0.389061 0.194531 0.980896i \(-0.437682\pi\)
0.194531 + 0.980896i \(0.437682\pi\)
\(224\) 0 0
\(225\) −1.86143e27 −1.65862
\(226\) −2.31707e27 −1.96197
\(227\) −6.53188e26 −0.525704 −0.262852 0.964836i \(-0.584663\pi\)
−0.262852 + 0.964836i \(0.584663\pi\)
\(228\) 2.61487e27 2.00078
\(229\) 9.25953e24 0.00673722 0.00336861 0.999994i \(-0.498928\pi\)
0.00336861 + 0.999994i \(0.498928\pi\)
\(230\) −1.32442e27 −0.916551
\(231\) 0 0
\(232\) 2.00269e27 1.25459
\(233\) −3.94406e26 −0.235153 −0.117576 0.993064i \(-0.537512\pi\)
−0.117576 + 0.993064i \(0.537512\pi\)
\(234\) −8.47786e27 −4.81176
\(235\) −8.93151e26 −0.482664
\(236\) −6.31247e26 −0.324871
\(237\) 3.32550e27 1.63024
\(238\) 0 0
\(239\) 1.77841e27 0.791510 0.395755 0.918356i \(-0.370483\pi\)
0.395755 + 0.918356i \(0.370483\pi\)
\(240\) 1.50113e25 0.00636781
\(241\) 9.72071e26 0.393099 0.196549 0.980494i \(-0.437026\pi\)
0.196549 + 0.980494i \(0.437026\pi\)
\(242\) 7.94315e27 3.06278
\(243\) 2.13912e26 0.0786615
\(244\) 3.31668e26 0.116338
\(245\) 0 0
\(246\) −1.12853e28 −3.60378
\(247\) −3.44246e27 −1.04919
\(248\) 3.37274e27 0.981271
\(249\) −7.78953e27 −2.16381
\(250\) 4.70493e27 1.24808
\(251\) −3.00272e27 −0.760793 −0.380397 0.924823i \(-0.624213\pi\)
−0.380397 + 0.924823i \(0.624213\pi\)
\(252\) 0 0
\(253\) 9.83275e27 2.27399
\(254\) −3.95663e27 −0.874456
\(255\) −3.08466e27 −0.651621
\(256\) −4.88236e27 −0.985985
\(257\) −2.32862e26 −0.0449643 −0.0224821 0.999747i \(-0.507157\pi\)
−0.0224821 + 0.999747i \(0.507157\pi\)
\(258\) 9.18621e27 1.69633
\(259\) 0 0
\(260\) 5.96198e27 1.00739
\(261\) 1.58044e28 2.55512
\(262\) −1.54704e28 −2.39351
\(263\) −1.10968e28 −1.64327 −0.821633 0.570016i \(-0.806937\pi\)
−0.821633 + 0.570016i \(0.806937\pi\)
\(264\) 2.07178e28 2.93696
\(265\) −1.22971e26 −0.0166907
\(266\) 0 0
\(267\) 1.48278e28 1.84586
\(268\) 9.77951e26 0.116618
\(269\) 8.43909e27 0.964149 0.482075 0.876130i \(-0.339883\pi\)
0.482075 + 0.876130i \(0.339883\pi\)
\(270\) −1.11328e28 −1.21877
\(271\) 1.67129e27 0.175350 0.0876750 0.996149i \(-0.472056\pi\)
0.0876750 + 0.996149i \(0.472056\pi\)
\(272\) −7.58984e25 −0.00763291
\(273\) 0 0
\(274\) −2.66857e28 −2.46688
\(275\) −1.57392e28 −1.39527
\(276\) 4.41157e28 3.75093
\(277\) 1.33338e28 1.08752 0.543759 0.839241i \(-0.317001\pi\)
0.543759 + 0.839241i \(0.317001\pi\)
\(278\) −1.17552e28 −0.919844
\(279\) 2.66163e28 1.99847
\(280\) 0 0
\(281\) −1.98782e28 −1.37485 −0.687423 0.726258i \(-0.741258\pi\)
−0.687423 + 0.726258i \(0.741258\pi\)
\(282\) 4.81811e28 3.19898
\(283\) −5.32061e27 −0.339170 −0.169585 0.985516i \(-0.554243\pi\)
−0.169585 + 0.985516i \(0.554243\pi\)
\(284\) 4.14074e28 2.53464
\(285\) −8.94211e27 −0.525683
\(286\) −7.16843e28 −4.04776
\(287\) 0 0
\(288\) −3.90743e28 −2.03647
\(289\) −4.37130e27 −0.218920
\(290\) −1.79998e28 −0.866343
\(291\) −3.31635e28 −1.53423
\(292\) −4.37166e28 −1.94421
\(293\) −3.59762e28 −1.53829 −0.769143 0.639077i \(-0.779317\pi\)
−0.769143 + 0.639077i \(0.779317\pi\)
\(294\) 0 0
\(295\) 2.15869e27 0.0853565
\(296\) −2.41295e28 −0.917685
\(297\) 8.26523e28 3.02382
\(298\) −8.37958e27 −0.294941
\(299\) −5.80780e28 −1.96695
\(300\) −7.06158e28 −2.30148
\(301\) 0 0
\(302\) 3.01440e28 0.910165
\(303\) −2.58851e28 −0.752419
\(304\) −2.20022e26 −0.00615772
\(305\) −1.13421e27 −0.0305665
\(306\) 1.11345e29 2.88985
\(307\) 6.46598e28 1.61638 0.808190 0.588922i \(-0.200448\pi\)
0.808190 + 0.588922i \(0.200448\pi\)
\(308\) 0 0
\(309\) 3.01433e28 0.699307
\(310\) −3.03135e28 −0.677605
\(311\) 4.18416e28 0.901287 0.450644 0.892704i \(-0.351194\pi\)
0.450644 + 0.892704i \(0.351194\pi\)
\(312\) −1.22371e29 −2.54040
\(313\) −1.55289e27 −0.0310728 −0.0155364 0.999879i \(-0.504946\pi\)
−0.0155364 + 0.999879i \(0.504946\pi\)
\(314\) −1.24218e29 −2.39604
\(315\) 0 0
\(316\) 8.44163e28 1.51365
\(317\) −4.54172e28 −0.785305 −0.392653 0.919687i \(-0.628443\pi\)
−0.392653 + 0.919687i \(0.628443\pi\)
\(318\) 6.63368e27 0.110622
\(319\) 1.33633e29 2.14942
\(320\) 4.42660e28 0.686824
\(321\) 3.93947e28 0.589699
\(322\) 0 0
\(323\) 4.52120e28 0.630122
\(324\) 1.28125e29 1.72331
\(325\) 9.29652e28 1.20687
\(326\) −4.62047e28 −0.579007
\(327\) 6.25072e28 0.756190
\(328\) −1.08998e29 −1.27312
\(329\) 0 0
\(330\) −1.86207e29 −2.02808
\(331\) −8.48775e28 −0.892834 −0.446417 0.894825i \(-0.647300\pi\)
−0.446417 + 0.894825i \(0.647300\pi\)
\(332\) −1.97734e29 −2.00906
\(333\) −1.90420e29 −1.86898
\(334\) −1.43845e29 −1.36399
\(335\) −3.34432e27 −0.0306402
\(336\) 0 0
\(337\) −1.88061e29 −1.60899 −0.804497 0.593956i \(-0.797565\pi\)
−0.804497 + 0.593956i \(0.797565\pi\)
\(338\) 2.27882e29 1.88438
\(339\) −2.63934e29 −2.10959
\(340\) −7.83026e28 −0.605019
\(341\) 2.25053e29 1.68116
\(342\) 3.22779e29 2.33134
\(343\) 0 0
\(344\) 8.87244e28 0.599268
\(345\) −1.50863e29 −0.985517
\(346\) −1.35017e29 −0.853126
\(347\) 5.05081e28 0.308725 0.154363 0.988014i \(-0.450668\pi\)
0.154363 + 0.988014i \(0.450668\pi\)
\(348\) 5.99561e29 3.54546
\(349\) −2.43633e29 −1.39394 −0.696968 0.717102i \(-0.745468\pi\)
−0.696968 + 0.717102i \(0.745468\pi\)
\(350\) 0 0
\(351\) −4.88193e29 −2.61553
\(352\) −3.30392e29 −1.71312
\(353\) 2.89269e29 1.45175 0.725877 0.687825i \(-0.241434\pi\)
0.725877 + 0.687825i \(0.241434\pi\)
\(354\) −1.16451e29 −0.565723
\(355\) −1.41602e29 −0.665950
\(356\) 3.76398e29 1.71385
\(357\) 0 0
\(358\) −9.69555e28 −0.413921
\(359\) −1.15389e29 −0.477068 −0.238534 0.971134i \(-0.576667\pi\)
−0.238534 + 0.971134i \(0.576667\pi\)
\(360\) −2.12699e29 −0.851698
\(361\) −1.26765e29 −0.491660
\(362\) −5.86146e29 −2.20220
\(363\) 9.04795e29 3.29324
\(364\) 0 0
\(365\) 1.49499e29 0.510822
\(366\) 6.11851e28 0.202588
\(367\) −9.96647e28 −0.319802 −0.159901 0.987133i \(-0.551118\pi\)
−0.159901 + 0.987133i \(0.551118\pi\)
\(368\) −3.71201e27 −0.0115441
\(369\) −8.60166e29 −2.59286
\(370\) 2.16871e29 0.633697
\(371\) 0 0
\(372\) 1.00972e30 2.77306
\(373\) 1.22846e29 0.327121 0.163561 0.986533i \(-0.447702\pi\)
0.163561 + 0.986533i \(0.447702\pi\)
\(374\) 9.41477e29 2.43101
\(375\) 5.35933e29 1.34199
\(376\) 4.65354e29 1.13012
\(377\) −7.89318e29 −1.85920
\(378\) 0 0
\(379\) 6.24049e29 1.38314 0.691572 0.722307i \(-0.256918\pi\)
0.691572 + 0.722307i \(0.256918\pi\)
\(380\) −2.26991e29 −0.488088
\(381\) −4.50695e29 −0.940254
\(382\) 2.51285e29 0.508671
\(383\) −5.02673e29 −0.987416 −0.493708 0.869628i \(-0.664359\pi\)
−0.493708 + 0.869628i \(0.664359\pi\)
\(384\) −1.46960e30 −2.80150
\(385\) 0 0
\(386\) 1.39401e30 2.50329
\(387\) 7.00175e29 1.22048
\(388\) −8.41841e29 −1.42451
\(389\) 7.28857e28 0.119735 0.0598676 0.998206i \(-0.480932\pi\)
0.0598676 + 0.998206i \(0.480932\pi\)
\(390\) 1.09985e30 1.75424
\(391\) 7.62777e29 1.18131
\(392\) 0 0
\(393\) −1.76221e30 −2.57362
\(394\) −5.84724e29 −0.829363
\(395\) −2.88680e29 −0.397695
\(396\) 4.15027e30 5.55369
\(397\) −8.25507e29 −1.07307 −0.536537 0.843877i \(-0.680268\pi\)
−0.536537 + 0.843877i \(0.680268\pi\)
\(398\) 7.22931e28 0.0912938
\(399\) 0 0
\(400\) 5.94180e27 0.00708318
\(401\) 9.36237e29 1.08449 0.542245 0.840220i \(-0.317574\pi\)
0.542245 + 0.840220i \(0.317574\pi\)
\(402\) 1.80409e29 0.203077
\(403\) −1.32930e30 −1.45416
\(404\) −6.57082e29 −0.698609
\(405\) −4.38150e29 −0.452783
\(406\) 0 0
\(407\) −1.61009e30 −1.57222
\(408\) 1.60718e30 1.52571
\(409\) −9.09429e29 −0.839365 −0.419682 0.907671i \(-0.637858\pi\)
−0.419682 + 0.907671i \(0.637858\pi\)
\(410\) 9.79652e29 0.879139
\(411\) −3.03974e30 −2.65250
\(412\) 7.65173e29 0.649294
\(413\) 0 0
\(414\) 5.44564e30 4.37064
\(415\) 6.76193e29 0.527859
\(416\) 1.95149e30 1.48181
\(417\) −1.33902e30 −0.989058
\(418\) 2.72925e30 1.96117
\(419\) −7.07532e29 −0.494635 −0.247318 0.968934i \(-0.579549\pi\)
−0.247318 + 0.968934i \(0.579549\pi\)
\(420\) 0 0
\(421\) −1.66361e30 −1.10105 −0.550524 0.834819i \(-0.685572\pi\)
−0.550524 + 0.834819i \(0.685572\pi\)
\(422\) 3.98075e30 2.56373
\(423\) 3.67238e30 2.30162
\(424\) 6.40710e28 0.0390799
\(425\) −1.22097e30 −0.724825
\(426\) 7.63870e30 4.41377
\(427\) 0 0
\(428\) 1.00002e30 0.547525
\(429\) −8.16547e30 −4.35234
\(430\) −7.97437e29 −0.413818
\(431\) 3.77883e30 1.90927 0.954637 0.297771i \(-0.0962430\pi\)
0.954637 + 0.297771i \(0.0962430\pi\)
\(432\) −3.12025e28 −0.0153506
\(433\) 2.45668e30 1.17690 0.588448 0.808535i \(-0.299739\pi\)
0.588448 + 0.808535i \(0.299739\pi\)
\(434\) 0 0
\(435\) −2.05033e30 −0.931531
\(436\) 1.58672e30 0.702109
\(437\) 2.21121e30 0.953003
\(438\) −8.06471e30 −3.38561
\(439\) 2.11265e30 0.863944 0.431972 0.901887i \(-0.357818\pi\)
0.431972 + 0.901887i \(0.357818\pi\)
\(440\) −1.79847e30 −0.716468
\(441\) 0 0
\(442\) −5.56092e30 −2.10276
\(443\) 4.94284e30 1.82110 0.910549 0.413401i \(-0.135659\pi\)
0.910549 + 0.413401i \(0.135659\pi\)
\(444\) −7.22384e30 −2.59337
\(445\) −1.28717e30 −0.450295
\(446\) 1.84517e30 0.629049
\(447\) −9.54508e29 −0.317134
\(448\) 0 0
\(449\) −3.96638e30 −1.25188 −0.625938 0.779873i \(-0.715284\pi\)
−0.625938 + 0.779873i \(0.715284\pi\)
\(450\) −8.71680e30 −2.68172
\(451\) −7.27311e30 −2.18117
\(452\) −6.69984e30 −1.95872
\(453\) 3.43366e30 0.978651
\(454\) −3.05879e30 −0.849978
\(455\) 0 0
\(456\) 4.65906e30 1.23084
\(457\) 2.22766e30 0.573869 0.286934 0.957950i \(-0.407364\pi\)
0.286934 + 0.957950i \(0.407364\pi\)
\(458\) 4.33611e28 0.0108930
\(459\) 6.41176e30 1.57084
\(460\) −3.82960e30 −0.915035
\(461\) 6.19772e30 1.44435 0.722173 0.691713i \(-0.243144\pi\)
0.722173 + 0.691713i \(0.243144\pi\)
\(462\) 0 0
\(463\) 1.66106e30 0.368301 0.184151 0.982898i \(-0.441047\pi\)
0.184151 + 0.982898i \(0.441047\pi\)
\(464\) −5.04487e28 −0.0109117
\(465\) −3.45297e30 −0.728592
\(466\) −1.84695e30 −0.380204
\(467\) −3.96880e30 −0.797105 −0.398553 0.917145i \(-0.630487\pi\)
−0.398553 + 0.917145i \(0.630487\pi\)
\(468\) −2.45139e31 −4.80381
\(469\) 0 0
\(470\) −4.18250e30 −0.780389
\(471\) −1.41495e31 −2.57633
\(472\) −1.12473e30 −0.199855
\(473\) 5.92031e30 1.02670
\(474\) 1.55729e31 2.63583
\(475\) −3.53948e30 −0.584740
\(476\) 0 0
\(477\) 5.05621e29 0.0795910
\(478\) 8.32806e30 1.27974
\(479\) 7.39482e30 1.10935 0.554675 0.832067i \(-0.312842\pi\)
0.554675 + 0.832067i \(0.312842\pi\)
\(480\) 5.06918e30 0.742443
\(481\) 9.51014e30 1.35994
\(482\) 4.55207e30 0.635577
\(483\) 0 0
\(484\) 2.29678e31 3.05772
\(485\) 2.87886e30 0.374275
\(486\) 1.00172e30 0.127183
\(487\) −1.12456e31 −1.39443 −0.697217 0.716860i \(-0.745579\pi\)
−0.697217 + 0.716860i \(0.745579\pi\)
\(488\) 5.90952e29 0.0715689
\(489\) −5.26312e30 −0.622575
\(490\) 0 0
\(491\) 2.95602e30 0.333634 0.166817 0.985988i \(-0.446651\pi\)
0.166817 + 0.985988i \(0.446651\pi\)
\(492\) −3.26316e31 −3.59782
\(493\) 1.03666e31 1.11660
\(494\) −1.61205e31 −1.69637
\(495\) −1.41927e31 −1.45917
\(496\) −8.49609e28 −0.00853454
\(497\) 0 0
\(498\) −3.64773e31 −3.49853
\(499\) −1.00086e31 −0.938030 −0.469015 0.883190i \(-0.655391\pi\)
−0.469015 + 0.883190i \(0.655391\pi\)
\(500\) 1.36044e31 1.24602
\(501\) −1.63852e31 −1.46662
\(502\) −1.40613e31 −1.23008
\(503\) −3.37564e30 −0.288618 −0.144309 0.989533i \(-0.546096\pi\)
−0.144309 + 0.989533i \(0.546096\pi\)
\(504\) 0 0
\(505\) 2.24704e30 0.183552
\(506\) 4.60454e31 3.67668
\(507\) 2.59578e31 2.02617
\(508\) −1.14407e31 −0.873010
\(509\) −2.17425e31 −1.62202 −0.811008 0.585036i \(-0.801081\pi\)
−0.811008 + 0.585036i \(0.801081\pi\)
\(510\) −1.44450e31 −1.05357
\(511\) 0 0
\(512\) 2.47726e29 0.0172730
\(513\) 1.85870e31 1.26725
\(514\) −1.09046e30 −0.0727000
\(515\) −2.61668e30 −0.170595
\(516\) 2.65621e31 1.69352
\(517\) 3.10517e31 1.93617
\(518\) 0 0
\(519\) −1.53796e31 −0.917319
\(520\) 1.06228e31 0.619728
\(521\) 4.06923e30 0.232209 0.116104 0.993237i \(-0.462959\pi\)
0.116104 + 0.993237i \(0.462959\pi\)
\(522\) 7.40097e31 4.13122
\(523\) 2.50335e30 0.136695 0.0683475 0.997662i \(-0.478227\pi\)
0.0683475 + 0.997662i \(0.478227\pi\)
\(524\) −4.47329e31 −2.38956
\(525\) 0 0
\(526\) −5.19650e31 −2.65690
\(527\) 1.74585e31 0.873343
\(528\) −5.21890e29 −0.0255440
\(529\) 1.64251e31 0.786627
\(530\) −5.75857e29 −0.0269862
\(531\) −8.87589e30 −0.407029
\(532\) 0 0
\(533\) 4.29593e31 1.88666
\(534\) 6.94367e31 2.98445
\(535\) −3.41978e30 −0.143856
\(536\) 1.74247e30 0.0717415
\(537\) −1.10441e31 −0.445067
\(538\) 3.95191e31 1.55887
\(539\) 0 0
\(540\) −3.21909e31 −1.21676
\(541\) −2.02315e31 −0.748617 −0.374309 0.927304i \(-0.622120\pi\)
−0.374309 + 0.927304i \(0.622120\pi\)
\(542\) 7.82643e30 0.283512
\(543\) −6.67671e31 −2.36791
\(544\) −2.56302e31 −0.889946
\(545\) −5.42612e30 −0.184472
\(546\) 0 0
\(547\) 2.47835e31 0.807808 0.403904 0.914801i \(-0.367653\pi\)
0.403904 + 0.914801i \(0.367653\pi\)
\(548\) −7.71624e31 −2.46280
\(549\) 4.66354e30 0.145759
\(550\) −7.37047e31 −2.25592
\(551\) 3.00518e31 0.900798
\(552\) 7.86035e31 2.30750
\(553\) 0 0
\(554\) 6.24403e31 1.75834
\(555\) 2.47035e31 0.681380
\(556\) −3.39904e31 −0.918324
\(557\) 2.25689e31 0.597278 0.298639 0.954366i \(-0.403467\pi\)
0.298639 + 0.954366i \(0.403467\pi\)
\(558\) 1.24640e32 3.23121
\(559\) −3.49689e31 −0.888067
\(560\) 0 0
\(561\) 1.07242e32 2.61393
\(562\) −9.30868e31 −2.22290
\(563\) −3.09646e31 −0.724467 −0.362233 0.932087i \(-0.617986\pi\)
−0.362233 + 0.932087i \(0.617986\pi\)
\(564\) 1.39317e32 3.19370
\(565\) 2.29116e31 0.514633
\(566\) −2.49157e31 −0.548383
\(567\) 0 0
\(568\) 7.37779e31 1.55927
\(569\) 5.92689e31 1.22754 0.613770 0.789485i \(-0.289652\pi\)
0.613770 + 0.789485i \(0.289652\pi\)
\(570\) −4.18747e31 −0.849945
\(571\) 9.46958e30 0.188372 0.0941858 0.995555i \(-0.469975\pi\)
0.0941858 + 0.995555i \(0.469975\pi\)
\(572\) −2.07277e32 −4.04107
\(573\) 2.86235e31 0.546947
\(574\) 0 0
\(575\) −5.97149e31 −1.09623
\(576\) −1.82009e32 −3.27517
\(577\) −2.32182e30 −0.0409550 −0.0204775 0.999790i \(-0.506519\pi\)
−0.0204775 + 0.999790i \(0.506519\pi\)
\(578\) −2.04702e31 −0.353958
\(579\) 1.58790e32 2.69165
\(580\) −5.20467e31 −0.864910
\(581\) 0 0
\(582\) −1.55300e32 −2.48061
\(583\) 4.27526e30 0.0669537
\(584\) −7.78925e31 −1.19605
\(585\) 8.38307e31 1.26215
\(586\) −1.68471e32 −2.48716
\(587\) −3.19769e31 −0.462912 −0.231456 0.972845i \(-0.574349\pi\)
−0.231456 + 0.972845i \(0.574349\pi\)
\(588\) 0 0
\(589\) 5.06105e31 0.704554
\(590\) 1.01088e31 0.138008
\(591\) −6.66052e31 −0.891768
\(592\) 6.07833e29 0.00798151
\(593\) −1.18158e32 −1.52172 −0.760858 0.648919i \(-0.775221\pi\)
−0.760858 + 0.648919i \(0.775221\pi\)
\(594\) 3.87049e32 4.88902
\(595\) 0 0
\(596\) −2.42297e31 −0.294454
\(597\) 8.23481e30 0.0981632
\(598\) −2.71971e32 −3.18024
\(599\) −2.76710e31 −0.317407 −0.158704 0.987326i \(-0.550731\pi\)
−0.158704 + 0.987326i \(0.550731\pi\)
\(600\) −1.25820e32 −1.41583
\(601\) −4.27973e31 −0.472454 −0.236227 0.971698i \(-0.575911\pi\)
−0.236227 + 0.971698i \(0.575911\pi\)
\(602\) 0 0
\(603\) 1.37509e31 0.146110
\(604\) 8.71619e31 0.908661
\(605\) −7.85434e31 −0.803383
\(606\) −1.21216e32 −1.21654
\(607\) 1.90086e31 0.187189 0.0935945 0.995610i \(-0.470164\pi\)
0.0935945 + 0.995610i \(0.470164\pi\)
\(608\) −7.42993e31 −0.717948
\(609\) 0 0
\(610\) −5.31136e30 −0.0494211
\(611\) −1.83409e32 −1.67474
\(612\) 3.21957e32 2.88507
\(613\) 1.40286e32 1.23373 0.616865 0.787069i \(-0.288403\pi\)
0.616865 + 0.787069i \(0.288403\pi\)
\(614\) 3.02793e32 2.61342
\(615\) 1.11591e32 0.945290
\(616\) 0 0
\(617\) −2.02136e32 −1.64954 −0.824771 0.565467i \(-0.808696\pi\)
−0.824771 + 0.565467i \(0.808696\pi\)
\(618\) 1.41157e32 1.13067
\(619\) 9.37113e31 0.736800 0.368400 0.929667i \(-0.379906\pi\)
0.368400 + 0.929667i \(0.379906\pi\)
\(620\) −8.76522e31 −0.676485
\(621\) 3.13584e32 2.37575
\(622\) 1.95938e32 1.45724
\(623\) 0 0
\(624\) 3.08259e30 0.0220949
\(625\) 7.00250e31 0.492757
\(626\) −7.27197e30 −0.0502397
\(627\) 3.10885e32 2.10874
\(628\) −3.59179e32 −2.39207
\(629\) −1.24903e32 −0.816752
\(630\) 0 0
\(631\) 2.80429e32 1.76801 0.884006 0.467476i \(-0.154837\pi\)
0.884006 + 0.467476i \(0.154837\pi\)
\(632\) 1.50409e32 0.931169
\(633\) 4.53442e32 2.75664
\(634\) −2.12682e32 −1.26971
\(635\) 3.91239e31 0.229374
\(636\) 1.91814e31 0.110439
\(637\) 0 0
\(638\) 6.25787e32 3.47527
\(639\) 5.82224e32 3.17563
\(640\) 1.27573e32 0.683424
\(641\) −1.19413e32 −0.628323 −0.314162 0.949370i \(-0.601723\pi\)
−0.314162 + 0.949370i \(0.601723\pi\)
\(642\) 1.84480e32 0.953447
\(643\) −3.13384e32 −1.59093 −0.795463 0.606002i \(-0.792772\pi\)
−0.795463 + 0.606002i \(0.792772\pi\)
\(644\) 0 0
\(645\) −9.08350e31 −0.444955
\(646\) 2.11722e32 1.01881
\(647\) −1.16353e32 −0.550018 −0.275009 0.961442i \(-0.588681\pi\)
−0.275009 + 0.961442i \(0.588681\pi\)
\(648\) 2.28287e32 1.06015
\(649\) −7.50498e31 −0.342402
\(650\) 4.35343e32 1.95132
\(651\) 0 0
\(652\) −1.33602e32 −0.578050
\(653\) 2.52698e31 0.107424 0.0537119 0.998556i \(-0.482895\pi\)
0.0537119 + 0.998556i \(0.482895\pi\)
\(654\) 2.92713e32 1.22264
\(655\) 1.52974e32 0.627831
\(656\) 2.74571e30 0.0110729
\(657\) −6.14694e32 −2.43589
\(658\) 0 0
\(659\) −3.85321e32 −1.47448 −0.737242 0.675629i \(-0.763872\pi\)
−0.737242 + 0.675629i \(0.763872\pi\)
\(660\) −5.38421e32 −2.02473
\(661\) −2.70466e32 −0.999531 −0.499766 0.866161i \(-0.666581\pi\)
−0.499766 + 0.866161i \(0.666581\pi\)
\(662\) −3.97470e32 −1.44357
\(663\) −6.33437e32 −2.26099
\(664\) −3.52313e32 −1.23594
\(665\) 0 0
\(666\) −8.91710e32 −3.02183
\(667\) 5.07007e32 1.68876
\(668\) −4.15931e32 −1.36173
\(669\) 2.10181e32 0.676382
\(670\) −1.56610e31 −0.0495403
\(671\) 3.94325e31 0.122615
\(672\) 0 0
\(673\) 4.60479e32 1.38368 0.691842 0.722049i \(-0.256800\pi\)
0.691842 + 0.722049i \(0.256800\pi\)
\(674\) −8.80663e32 −2.60148
\(675\) −5.01952e32 −1.45770
\(676\) 6.58926e32 1.88126
\(677\) 2.16211e32 0.606887 0.303443 0.952849i \(-0.401864\pi\)
0.303443 + 0.952849i \(0.401864\pi\)
\(678\) −1.23597e33 −3.41087
\(679\) 0 0
\(680\) −1.39516e32 −0.372197
\(681\) −3.48423e32 −0.913934
\(682\) 1.05389e33 2.71817
\(683\) −5.14337e32 −1.30440 −0.652199 0.758048i \(-0.726153\pi\)
−0.652199 + 0.758048i \(0.726153\pi\)
\(684\) 9.33322e32 2.32748
\(685\) 2.63874e32 0.647075
\(686\) 0 0
\(687\) 4.93921e30 0.0117126
\(688\) −2.23501e30 −0.00521209
\(689\) −2.52522e31 −0.0579133
\(690\) −7.06472e32 −1.59342
\(691\) −4.83212e32 −1.07187 −0.535933 0.844260i \(-0.680040\pi\)
−0.535933 + 0.844260i \(0.680040\pi\)
\(692\) −3.90404e32 −0.851715
\(693\) 0 0
\(694\) 2.36523e32 0.499159
\(695\) 1.16237e32 0.241280
\(696\) 1.06827e33 2.18110
\(697\) −5.64212e32 −1.13309
\(698\) −1.14090e33 −2.25377
\(699\) −2.10383e32 −0.408812
\(700\) 0 0
\(701\) 7.49198e29 0.00140877 0.000704384 1.00000i \(-0.499776\pi\)
0.000704384 1.00000i \(0.499776\pi\)
\(702\) −2.28614e33 −4.22889
\(703\) −3.62081e32 −0.658900
\(704\) −1.53897e33 −2.75515
\(705\) −4.76424e32 −0.839110
\(706\) 1.35461e33 2.34725
\(707\) 0 0
\(708\) −3.36719e32 −0.564788
\(709\) 6.25812e32 1.03279 0.516395 0.856351i \(-0.327274\pi\)
0.516395 + 0.856351i \(0.327274\pi\)
\(710\) −6.63100e32 −1.07673
\(711\) 1.18697e33 1.89644
\(712\) 6.70649e32 1.05433
\(713\) 8.53854e32 1.32085
\(714\) 0 0
\(715\) 7.08828e32 1.06175
\(716\) −2.80349e32 −0.413237
\(717\) 9.48639e32 1.37604
\(718\) −5.40353e32 −0.771341
\(719\) 7.22330e32 1.01474 0.507368 0.861729i \(-0.330618\pi\)
0.507368 + 0.861729i \(0.330618\pi\)
\(720\) 5.35798e30 0.00740759
\(721\) 0 0
\(722\) −5.93621e32 −0.794934
\(723\) 5.18521e32 0.683402
\(724\) −1.69485e33 −2.19856
\(725\) −8.11564e32 −1.03618
\(726\) 4.23703e33 5.32464
\(727\) −2.49972e32 −0.309205 −0.154602 0.987977i \(-0.549410\pi\)
−0.154602 + 0.987977i \(0.549410\pi\)
\(728\) 0 0
\(729\) −7.76702e32 −0.930867
\(730\) 7.00082e32 0.825916
\(731\) 4.59269e32 0.533356
\(732\) 1.76918e32 0.202253
\(733\) 1.18563e33 1.33430 0.667150 0.744923i \(-0.267514\pi\)
0.667150 + 0.744923i \(0.267514\pi\)
\(734\) −4.66716e32 −0.517068
\(735\) 0 0
\(736\) −1.25351e33 −1.34596
\(737\) 1.16270e32 0.122911
\(738\) −4.02804e33 −4.19224
\(739\) 7.64811e32 0.783688 0.391844 0.920032i \(-0.371837\pi\)
0.391844 + 0.920032i \(0.371837\pi\)
\(740\) 6.27087e32 0.632650
\(741\) −1.83627e33 −1.82401
\(742\) 0 0
\(743\) −6.08157e31 −0.0585658 −0.0292829 0.999571i \(-0.509322\pi\)
−0.0292829 + 0.999571i \(0.509322\pi\)
\(744\) 1.79908e33 1.70594
\(745\) 8.28589e31 0.0773645
\(746\) 5.75270e32 0.528902
\(747\) −2.78031e33 −2.51713
\(748\) 2.72230e33 2.42699
\(749\) 0 0
\(750\) 2.50970e33 2.16979
\(751\) −9.65039e32 −0.821647 −0.410824 0.911715i \(-0.634759\pi\)
−0.410824 + 0.911715i \(0.634759\pi\)
\(752\) −1.17225e31 −0.00982911
\(753\) −1.60171e33 −1.32264
\(754\) −3.69627e33 −3.00603
\(755\) −2.98069e32 −0.238741
\(756\) 0 0
\(757\) −2.00751e33 −1.55975 −0.779874 0.625936i \(-0.784717\pi\)
−0.779874 + 0.625936i \(0.784717\pi\)
\(758\) 2.92233e33 2.23632
\(759\) 5.24498e33 3.95333
\(760\) −4.04444e32 −0.300263
\(761\) 2.00839e33 1.46867 0.734334 0.678788i \(-0.237494\pi\)
0.734334 + 0.678788i \(0.237494\pi\)
\(762\) −2.11054e33 −1.52024
\(763\) 0 0
\(764\) 7.26595e32 0.507830
\(765\) −1.10100e33 −0.758023
\(766\) −2.35395e33 −1.59649
\(767\) 4.43289e32 0.296169
\(768\) −2.60434e33 −1.71413
\(769\) 2.70345e33 1.75293 0.876467 0.481463i \(-0.159894\pi\)
0.876467 + 0.481463i \(0.159894\pi\)
\(770\) 0 0
\(771\) −1.24213e32 −0.0781703
\(772\) 4.03081e33 2.49916
\(773\) 1.92398e33 1.17527 0.587633 0.809128i \(-0.300060\pi\)
0.587633 + 0.809128i \(0.300060\pi\)
\(774\) 3.27883e33 1.97332
\(775\) −1.36676e33 −0.810444
\(776\) −1.49996e33 −0.876332
\(777\) 0 0
\(778\) 3.41314e32 0.193593
\(779\) −1.63560e33 −0.914103
\(780\) 3.18023e33 1.75134
\(781\) 4.92298e33 2.67141
\(782\) 3.57198e33 1.90999
\(783\) 4.26181e33 2.24561
\(784\) 0 0
\(785\) 1.22829e33 0.628492
\(786\) −8.25219e33 −4.16112
\(787\) 3.91253e32 0.194423 0.0972116 0.995264i \(-0.469008\pi\)
0.0972116 + 0.995264i \(0.469008\pi\)
\(788\) −1.69074e33 −0.827991
\(789\) −5.91926e33 −2.85681
\(790\) −1.35185e33 −0.643008
\(791\) 0 0
\(792\) 7.39477e33 3.41653
\(793\) −2.32911e32 −0.106059
\(794\) −3.86574e33 −1.73499
\(795\) −6.55951e31 −0.0290168
\(796\) 2.09037e32 0.0911429
\(797\) 2.49718e33 1.07320 0.536598 0.843838i \(-0.319709\pi\)
0.536598 + 0.843838i \(0.319709\pi\)
\(798\) 0 0
\(799\) 2.40884e33 1.00582
\(800\) 2.00649e33 0.825851
\(801\) 5.29248e33 2.14726
\(802\) 4.38427e33 1.75345
\(803\) −5.19753e33 −2.04912
\(804\) 5.21658e32 0.202741
\(805\) 0 0
\(806\) −6.22491e33 −2.35115
\(807\) 4.50157e33 1.67617
\(808\) −1.17076e33 −0.429771
\(809\) 2.05732e33 0.744552 0.372276 0.928122i \(-0.378578\pi\)
0.372276 + 0.928122i \(0.378578\pi\)
\(810\) −2.05179e33 −0.732076
\(811\) −1.59034e33 −0.559437 −0.279718 0.960082i \(-0.590241\pi\)
−0.279718 + 0.960082i \(0.590241\pi\)
\(812\) 0 0
\(813\) 8.91499e32 0.304845
\(814\) −7.53983e33 −2.54203
\(815\) 4.56881e32 0.151877
\(816\) −4.04857e31 −0.0132698
\(817\) 1.33137e33 0.430275
\(818\) −4.25873e33 −1.35712
\(819\) 0 0
\(820\) 2.83268e33 0.877685
\(821\) 2.23471e33 0.682771 0.341385 0.939923i \(-0.389104\pi\)
0.341385 + 0.939923i \(0.389104\pi\)
\(822\) −1.42347e34 −4.28866
\(823\) −5.67980e33 −1.68747 −0.843733 0.536764i \(-0.819647\pi\)
−0.843733 + 0.536764i \(0.819647\pi\)
\(824\) 1.36335e33 0.399434
\(825\) −8.39561e33 −2.42567
\(826\) 0 0
\(827\) −3.34983e33 −0.941259 −0.470630 0.882331i \(-0.655973\pi\)
−0.470630 + 0.882331i \(0.655973\pi\)
\(828\) 1.57462e34 4.36341
\(829\) 2.54623e33 0.695858 0.347929 0.937521i \(-0.386885\pi\)
0.347929 + 0.937521i \(0.386885\pi\)
\(830\) 3.16652e33 0.853462
\(831\) 7.11250e33 1.89065
\(832\) 9.09007e33 2.38314
\(833\) 0 0
\(834\) −6.27044e33 −1.59915
\(835\) 1.42237e33 0.357781
\(836\) 7.89168e33 1.95793
\(837\) 7.17734e33 1.75639
\(838\) −3.31328e33 −0.799745
\(839\) −4.29761e33 −1.02321 −0.511604 0.859221i \(-0.670949\pi\)
−0.511604 + 0.859221i \(0.670949\pi\)
\(840\) 0 0
\(841\) 2.57383e33 0.596247
\(842\) −7.79044e33 −1.78022
\(843\) −1.06034e34 −2.39017
\(844\) 1.15104e34 2.55949
\(845\) −2.25334e33 −0.494282
\(846\) 1.71972e34 3.72134
\(847\) 0 0
\(848\) −1.61398e30 −0.000339895 0
\(849\) −2.83811e33 −0.589646
\(850\) −5.71765e33 −1.17192
\(851\) −6.10870e33 −1.23526
\(852\) 2.20875e34 4.40647
\(853\) 5.85716e33 1.15285 0.576426 0.817150i \(-0.304447\pi\)
0.576426 + 0.817150i \(0.304447\pi\)
\(854\) 0 0
\(855\) −3.19170e33 −0.611521
\(856\) 1.78179e33 0.336828
\(857\) 7.54719e33 1.40769 0.703843 0.710355i \(-0.251466\pi\)
0.703843 + 0.710355i \(0.251466\pi\)
\(858\) −3.82378e34 −7.03702
\(859\) −2.46676e33 −0.447926 −0.223963 0.974598i \(-0.571899\pi\)
−0.223963 + 0.974598i \(0.571899\pi\)
\(860\) −2.30581e33 −0.413133
\(861\) 0 0
\(862\) 1.76957e34 3.08699
\(863\) 1.06233e33 0.182867 0.0914334 0.995811i \(-0.470855\pi\)
0.0914334 + 0.995811i \(0.470855\pi\)
\(864\) −1.05368e34 −1.78978
\(865\) 1.33507e33 0.223779
\(866\) 1.15043e34 1.90285
\(867\) −2.33173e33 −0.380592
\(868\) 0 0
\(869\) 1.00364e34 1.59532
\(870\) −9.60141e33 −1.50613
\(871\) −6.86759e32 −0.106315
\(872\) 2.82714e33 0.431925
\(873\) −1.18370e34 −1.78475
\(874\) 1.03548e34 1.54085
\(875\) 0 0
\(876\) −2.33193e34 −3.38001
\(877\) −2.49039e33 −0.356264 −0.178132 0.984007i \(-0.557005\pi\)
−0.178132 + 0.984007i \(0.557005\pi\)
\(878\) 9.89325e33 1.39686
\(879\) −1.91904e34 −2.67431
\(880\) 4.53042e31 0.00623143
\(881\) 5.81218e33 0.789071 0.394536 0.918881i \(-0.370906\pi\)
0.394536 + 0.918881i \(0.370906\pi\)
\(882\) 0 0
\(883\) −7.58884e32 −0.100375 −0.0501877 0.998740i \(-0.515982\pi\)
−0.0501877 + 0.998740i \(0.515982\pi\)
\(884\) −1.60795e34 −2.09929
\(885\) 1.15149e33 0.148392
\(886\) 2.31466e34 2.94442
\(887\) −7.96331e33 −0.999936 −0.499968 0.866044i \(-0.666655\pi\)
−0.499968 + 0.866044i \(0.666655\pi\)
\(888\) −1.28711e34 −1.59539
\(889\) 0 0
\(890\) −6.02766e33 −0.728054
\(891\) 1.52329e34 1.81631
\(892\) 5.33534e33 0.628009
\(893\) 6.98297e33 0.811426
\(894\) −4.46983e33 −0.512754
\(895\) 9.58714e32 0.108574
\(896\) 0 0
\(897\) −3.09799e34 −3.41954
\(898\) −1.85740e34 −2.02408
\(899\) 1.16044e34 1.24850
\(900\) −2.52048e34 −2.67729
\(901\) 3.31654e32 0.0347816
\(902\) −3.40590e34 −3.52660
\(903\) 0 0
\(904\) −1.19375e34 −1.20497
\(905\) 5.79592e33 0.577649
\(906\) 1.60794e34 1.58232
\(907\) 1.04093e34 1.01143 0.505716 0.862700i \(-0.331228\pi\)
0.505716 + 0.862700i \(0.331228\pi\)
\(908\) −8.84456e33 −0.848572
\(909\) −9.23915e33 −0.875281
\(910\) 0 0
\(911\) 9.22536e33 0.852162 0.426081 0.904685i \(-0.359894\pi\)
0.426081 + 0.904685i \(0.359894\pi\)
\(912\) −1.17364e32 −0.0107052
\(913\) −2.35088e34 −2.11747
\(914\) 1.04318e34 0.927853
\(915\) −6.05010e32 −0.0531398
\(916\) 1.25380e32 0.0108750
\(917\) 0 0
\(918\) 3.00254e34 2.53979
\(919\) 3.37058e33 0.281564 0.140782 0.990041i \(-0.455038\pi\)
0.140782 + 0.990041i \(0.455038\pi\)
\(920\) −6.82341e33 −0.562913
\(921\) 3.44908e34 2.81007
\(922\) 2.90231e34 2.33527
\(923\) −2.90780e34 −2.31071
\(924\) 0 0
\(925\) 9.77817e33 0.757928
\(926\) 7.77851e33 0.595484
\(927\) 1.07590e34 0.813495
\(928\) −1.70360e34 −1.27223
\(929\) 1.35687e34 1.00082 0.500411 0.865788i \(-0.333182\pi\)
0.500411 + 0.865788i \(0.333182\pi\)
\(930\) −1.61698e34 −1.17802
\(931\) 0 0
\(932\) −5.34049e33 −0.379575
\(933\) 2.23191e34 1.56689
\(934\) −1.85854e34 −1.28879
\(935\) −9.30950e33 −0.637666
\(936\) −4.36779e34 −2.95521
\(937\) 1.03905e34 0.694437 0.347218 0.937784i \(-0.387126\pi\)
0.347218 + 0.937784i \(0.387126\pi\)
\(938\) 0 0
\(939\) −8.28341e32 −0.0540200
\(940\) −1.20938e34 −0.779099
\(941\) 1.35623e34 0.863084 0.431542 0.902093i \(-0.357970\pi\)
0.431542 + 0.902093i \(0.357970\pi\)
\(942\) −6.62602e34 −4.16550
\(943\) −2.75943e34 −1.71370
\(944\) 2.83325e31 0.00173823
\(945\) 0 0
\(946\) 2.77240e34 1.66000
\(947\) −1.14790e34 −0.679018 −0.339509 0.940603i \(-0.610261\pi\)
−0.339509 + 0.940603i \(0.610261\pi\)
\(948\) 4.50293e34 2.63147
\(949\) 3.06997e34 1.77244
\(950\) −1.65749e34 −0.945429
\(951\) −2.42264e34 −1.36525
\(952\) 0 0
\(953\) −1.90549e34 −1.04819 −0.524093 0.851661i \(-0.675596\pi\)
−0.524093 + 0.851661i \(0.675596\pi\)
\(954\) 2.36775e33 0.128686
\(955\) −2.48475e33 −0.133427
\(956\) 2.40808e34 1.27763
\(957\) 7.12826e34 3.73677
\(958\) 3.46289e34 1.79364
\(959\) 0 0
\(960\) 2.36123e34 1.19404
\(961\) −4.70207e32 −0.0234947
\(962\) 4.45347e34 2.19880
\(963\) 1.40611e34 0.685990
\(964\) 1.31624e34 0.634527
\(965\) −1.37842e34 −0.656626
\(966\) 0 0
\(967\) 2.28305e34 1.06197 0.530983 0.847383i \(-0.321823\pi\)
0.530983 + 0.847383i \(0.321823\pi\)
\(968\) 4.09230e34 1.88105
\(969\) 2.41170e34 1.09547
\(970\) 1.34813e34 0.605141
\(971\) 3.42378e34 1.51874 0.759372 0.650657i \(-0.225506\pi\)
0.759372 + 0.650657i \(0.225506\pi\)
\(972\) 2.89649e33 0.126973
\(973\) 0 0
\(974\) −5.26614e34 −2.25457
\(975\) 4.95894e34 2.09815
\(976\) −1.48864e31 −0.000622466 0
\(977\) −1.00426e34 −0.415009 −0.207504 0.978234i \(-0.566534\pi\)
−0.207504 + 0.978234i \(0.566534\pi\)
\(978\) −2.46465e34 −1.00660
\(979\) 4.47504e34 1.80633
\(980\) 0 0
\(981\) 2.23106e34 0.879667
\(982\) 1.38427e34 0.539433
\(983\) −1.06593e34 −0.410547 −0.205274 0.978705i \(-0.565808\pi\)
−0.205274 + 0.978705i \(0.565808\pi\)
\(984\) −5.81416e34 −2.21332
\(985\) 5.78186e33 0.217546
\(986\) 4.85455e34 1.80536
\(987\) 0 0
\(988\) −4.66129e34 −1.69356
\(989\) 2.24618e34 0.806652
\(990\) −6.64627e34 −2.35924
\(991\) 2.52628e34 0.886409 0.443204 0.896421i \(-0.353842\pi\)
0.443204 + 0.896421i \(0.353842\pi\)
\(992\) −2.86905e34 −0.995070
\(993\) −4.52753e34 −1.55219
\(994\) 0 0
\(995\) −7.14847e32 −0.0239468
\(996\) −1.05475e35 −3.49274
\(997\) −7.03487e33 −0.230283 −0.115141 0.993349i \(-0.536732\pi\)
−0.115141 + 0.993349i \(0.536732\pi\)
\(998\) −4.68688e34 −1.51664
\(999\) −5.13486e34 −1.64258
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.24.a.h.1.22 yes 24
7.6 odd 2 inner 49.24.a.h.1.21 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.24.a.h.1.21 24 7.6 odd 2 inner
49.24.a.h.1.22 yes 24 1.1 even 1 trivial