Properties

Label 49.24.a.f.1.7
Level $49$
Weight $24$
Character 49.1
Self dual yes
Analytic conductor $164.250$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,24,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 24); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 24, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-966,-177148] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.249978299\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 7 x^{13} - 21591353 x^{12} - 1736098763 x^{11} + 177925612890704 x^{10} + \cdots - 50\!\cdots\!18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{49}\cdot 3^{13}\cdot 5^{3}\cdot 7^{23} \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-319.185\) of defining polynomial
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-708.370 q^{2} +198278. q^{3} -7.88682e6 q^{4} +3.63664e7 q^{5} -1.40454e8 q^{6} +1.15290e10 q^{8} -5.48291e10 q^{9} -2.57609e10 q^{10} -2.09183e11 q^{11} -1.56378e12 q^{12} -1.80194e12 q^{13} +7.21066e12 q^{15} +5.79926e13 q^{16} +6.17559e13 q^{17} +3.88393e13 q^{18} +3.57454e14 q^{19} -2.86816e14 q^{20} +1.48179e14 q^{22} +2.91652e14 q^{23} +2.28595e15 q^{24} -1.05984e16 q^{25} +1.27644e15 q^{26} -2.95379e16 q^{27} +6.50216e16 q^{29} -5.10781e15 q^{30} +1.04056e17 q^{31} -1.37793e17 q^{32} -4.14764e16 q^{33} -4.37460e16 q^{34} +4.32427e17 q^{36} -4.18945e17 q^{37} -2.53210e17 q^{38} -3.57286e17 q^{39} +4.19269e17 q^{40} +6.10198e18 q^{41} -6.48576e18 q^{43} +1.64979e18 q^{44} -1.99394e18 q^{45} -2.06597e17 q^{46} +7.19477e18 q^{47} +1.14987e19 q^{48} +7.50759e18 q^{50} +1.22448e19 q^{51} +1.42116e19 q^{52} -1.00880e20 q^{53} +2.09237e19 q^{54} -7.60725e18 q^{55} +7.08752e19 q^{57} -4.60594e19 q^{58} +3.01840e20 q^{59} -5.68692e19 q^{60} +4.76484e19 q^{61} -7.37098e19 q^{62} -3.88869e20 q^{64} -6.55303e19 q^{65} +2.93806e19 q^{66} +8.72370e20 q^{67} -4.87058e20 q^{68} +5.78280e19 q^{69} -3.00535e21 q^{71} -6.32126e20 q^{72} -4.53197e20 q^{73} +2.96768e20 q^{74} -2.10143e21 q^{75} -2.81918e21 q^{76} +2.53090e20 q^{78} -6.15165e21 q^{79} +2.10899e21 q^{80} -6.94924e20 q^{81} -4.32246e21 q^{82} -6.71780e21 q^{83} +2.24584e21 q^{85} +4.59432e21 q^{86} +1.28923e22 q^{87} -2.41168e21 q^{88} +3.62771e22 q^{89} +1.41245e21 q^{90} -2.30020e21 q^{92} +2.06319e22 q^{93} -5.09656e21 q^{94} +1.29993e22 q^{95} -2.73212e22 q^{96} +1.11533e23 q^{97} +1.14693e22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 966 q^{2} - 177148 q^{3} + 55357148 q^{4} - 74771022 q^{5} - 1504608254 q^{6} + 25222400616 q^{8} + 336909608980 q^{9} - 334296297894 q^{10} - 1355476566108 q^{11} - 4984668058916 q^{12} + 427040218556 q^{13}+ \cdots - 23\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −708.370 −0.244577 −0.122288 0.992495i \(-0.539023\pi\)
−0.122288 + 0.992495i \(0.539023\pi\)
\(3\) 198278. 0.646219 0.323109 0.946362i \(-0.395272\pi\)
0.323109 + 0.946362i \(0.395272\pi\)
\(4\) −7.88682e6 −0.940182
\(5\) 3.63664e7 0.333078 0.166539 0.986035i \(-0.446741\pi\)
0.166539 + 0.986035i \(0.446741\pi\)
\(6\) −1.40454e8 −0.158050
\(7\) 0 0
\(8\) 1.15290e10 0.474523
\(9\) −5.48291e10 −0.582401
\(10\) −2.57609e10 −0.0814631
\(11\) −2.09183e11 −0.221060 −0.110530 0.993873i \(-0.535255\pi\)
−0.110530 + 0.993873i \(0.535255\pi\)
\(12\) −1.56378e12 −0.607564
\(13\) −1.80194e12 −0.278864 −0.139432 0.990232i \(-0.544528\pi\)
−0.139432 + 0.990232i \(0.544528\pi\)
\(14\) 0 0
\(15\) 7.21066e12 0.215241
\(16\) 5.79926e13 0.824125
\(17\) 6.17559e13 0.437035 0.218517 0.975833i \(-0.429878\pi\)
0.218517 + 0.975833i \(0.429878\pi\)
\(18\) 3.88393e13 0.142442
\(19\) 3.57454e14 0.703969 0.351985 0.936006i \(-0.385507\pi\)
0.351985 + 0.936006i \(0.385507\pi\)
\(20\) −2.86816e14 −0.313154
\(21\) 0 0
\(22\) 1.48179e14 0.0540662
\(23\) 2.91652e14 0.0638255 0.0319127 0.999491i \(-0.489840\pi\)
0.0319127 + 0.999491i \(0.489840\pi\)
\(24\) 2.28595e15 0.306646
\(25\) −1.05984e16 −0.889059
\(26\) 1.27644e15 0.0682037
\(27\) −2.95379e16 −1.02258
\(28\) 0 0
\(29\) 6.50216e16 0.989648 0.494824 0.868993i \(-0.335232\pi\)
0.494824 + 0.868993i \(0.335232\pi\)
\(30\) −5.10781e15 −0.0526430
\(31\) 1.04056e17 0.735540 0.367770 0.929917i \(-0.380121\pi\)
0.367770 + 0.929917i \(0.380121\pi\)
\(32\) −1.37793e17 −0.676085
\(33\) −4.14764e16 −0.142853
\(34\) −4.37460e16 −0.106888
\(35\) 0 0
\(36\) 4.32427e17 0.547563
\(37\) −4.18945e17 −0.387112 −0.193556 0.981089i \(-0.562002\pi\)
−0.193556 + 0.981089i \(0.562002\pi\)
\(38\) −2.53210e17 −0.172174
\(39\) −3.57286e17 −0.180207
\(40\) 4.19269e17 0.158053
\(41\) 6.10198e18 1.73163 0.865817 0.500360i \(-0.166799\pi\)
0.865817 + 0.500360i \(0.166799\pi\)
\(42\) 0 0
\(43\) −6.48576e18 −1.06432 −0.532162 0.846642i \(-0.678620\pi\)
−0.532162 + 0.846642i \(0.678620\pi\)
\(44\) 1.64979e18 0.207837
\(45\) −1.99394e18 −0.193985
\(46\) −2.06597e17 −0.0156102
\(47\) 7.19477e18 0.424514 0.212257 0.977214i \(-0.431919\pi\)
0.212257 + 0.977214i \(0.431919\pi\)
\(48\) 1.14987e19 0.532565
\(49\) 0 0
\(50\) 7.50759e18 0.217443
\(51\) 1.22448e19 0.282420
\(52\) 1.42116e19 0.262183
\(53\) −1.00880e20 −1.49497 −0.747484 0.664279i \(-0.768738\pi\)
−0.747484 + 0.664279i \(0.768738\pi\)
\(54\) 2.09237e19 0.250099
\(55\) −7.60725e18 −0.0736303
\(56\) 0 0
\(57\) 7.08752e19 0.454918
\(58\) −4.60594e19 −0.242045
\(59\) 3.01840e20 1.30310 0.651552 0.758604i \(-0.274118\pi\)
0.651552 + 0.758604i \(0.274118\pi\)
\(60\) −5.68692e19 −0.202366
\(61\) 4.76484e19 0.140202 0.0701011 0.997540i \(-0.477668\pi\)
0.0701011 + 0.997540i \(0.477668\pi\)
\(62\) −7.37098e19 −0.179896
\(63\) 0 0
\(64\) −3.88869e20 −0.658770
\(65\) −6.55303e19 −0.0928835
\(66\) 2.93806e19 0.0349386
\(67\) 8.72370e20 0.872651 0.436326 0.899789i \(-0.356280\pi\)
0.436326 + 0.899789i \(0.356280\pi\)
\(68\) −4.87058e20 −0.410892
\(69\) 5.78280e19 0.0412452
\(70\) 0 0
\(71\) −3.00535e21 −1.54321 −0.771603 0.636105i \(-0.780545\pi\)
−0.771603 + 0.636105i \(0.780545\pi\)
\(72\) −6.32126e20 −0.276363
\(73\) −4.53197e20 −0.169073 −0.0845364 0.996420i \(-0.526941\pi\)
−0.0845364 + 0.996420i \(0.526941\pi\)
\(74\) 2.96768e20 0.0946786
\(75\) −2.10143e21 −0.574527
\(76\) −2.81918e21 −0.661859
\(77\) 0 0
\(78\) 2.53090e20 0.0440745
\(79\) −6.15165e21 −0.925295 −0.462647 0.886542i \(-0.653100\pi\)
−0.462647 + 0.886542i \(0.653100\pi\)
\(80\) 2.10899e21 0.274498
\(81\) −6.94924e20 −0.0784078
\(82\) −4.32246e21 −0.423517
\(83\) −6.71780e21 −0.572571 −0.286285 0.958144i \(-0.592421\pi\)
−0.286285 + 0.958144i \(0.592421\pi\)
\(84\) 0 0
\(85\) 2.24584e21 0.145567
\(86\) 4.59432e21 0.260309
\(87\) 1.28923e22 0.639530
\(88\) −2.41168e21 −0.104898
\(89\) 3.62771e22 1.38563 0.692815 0.721115i \(-0.256370\pi\)
0.692815 + 0.721115i \(0.256370\pi\)
\(90\) 1.41245e21 0.0474442
\(91\) 0 0
\(92\) −2.30020e21 −0.0600076
\(93\) 2.06319e22 0.475320
\(94\) −5.09656e21 −0.103826
\(95\) 1.29993e22 0.234477
\(96\) −2.73212e22 −0.436899
\(97\) 1.11533e23 1.58317 0.791584 0.611061i \(-0.209257\pi\)
0.791584 + 0.611061i \(0.209257\pi\)
\(98\) 0 0
\(99\) 1.14693e22 0.128746
\(100\) 8.35878e22 0.835878
\(101\) −1.50339e23 −1.34083 −0.670417 0.741984i \(-0.733885\pi\)
−0.670417 + 0.741984i \(0.733885\pi\)
\(102\) −8.67386e21 −0.0690734
\(103\) 1.51745e23 1.08015 0.540077 0.841616i \(-0.318395\pi\)
0.540077 + 0.841616i \(0.318395\pi\)
\(104\) −2.07747e22 −0.132328
\(105\) 0 0
\(106\) 7.14603e22 0.365634
\(107\) 6.44376e22 0.295955 0.147978 0.988991i \(-0.452724\pi\)
0.147978 + 0.988991i \(0.452724\pi\)
\(108\) 2.32960e23 0.961409
\(109\) 8.38566e22 0.311267 0.155633 0.987815i \(-0.450258\pi\)
0.155633 + 0.987815i \(0.450258\pi\)
\(110\) 5.38874e21 0.0180083
\(111\) −8.30674e22 −0.250159
\(112\) 0 0
\(113\) −3.30075e22 −0.0809488 −0.0404744 0.999181i \(-0.512887\pi\)
−0.0404744 + 0.999181i \(0.512887\pi\)
\(114\) −5.02058e22 −0.111262
\(115\) 1.06063e22 0.0212589
\(116\) −5.12814e23 −0.930450
\(117\) 9.87990e22 0.162411
\(118\) −2.13814e23 −0.318709
\(119\) 0 0
\(120\) 8.31318e22 0.102137
\(121\) −8.51673e23 −0.951132
\(122\) −3.37527e22 −0.0342902
\(123\) 1.20989e24 1.11901
\(124\) −8.20668e23 −0.691541
\(125\) −8.18948e23 −0.629204
\(126\) 0 0
\(127\) −2.22220e24 −1.42246 −0.711231 0.702958i \(-0.751862\pi\)
−0.711231 + 0.702958i \(0.751862\pi\)
\(128\) 1.43135e24 0.837205
\(129\) −1.28598e24 −0.687786
\(130\) 4.64197e22 0.0227171
\(131\) −9.43331e23 −0.422712 −0.211356 0.977409i \(-0.567788\pi\)
−0.211356 + 0.977409i \(0.567788\pi\)
\(132\) 3.27117e23 0.134308
\(133\) 0 0
\(134\) −6.17961e23 −0.213430
\(135\) −1.07419e24 −0.340598
\(136\) 7.11985e23 0.207383
\(137\) −8.60235e23 −0.230319 −0.115160 0.993347i \(-0.536738\pi\)
−0.115160 + 0.993347i \(0.536738\pi\)
\(138\) −4.09636e22 −0.0100876
\(139\) −8.91816e23 −0.202118 −0.101059 0.994880i \(-0.532223\pi\)
−0.101059 + 0.994880i \(0.532223\pi\)
\(140\) 0 0
\(141\) 1.42656e24 0.274329
\(142\) 2.12890e24 0.377432
\(143\) 3.76936e23 0.0616458
\(144\) −3.17968e24 −0.479971
\(145\) 2.36461e24 0.329630
\(146\) 3.21031e23 0.0413513
\(147\) 0 0
\(148\) 3.30414e24 0.363956
\(149\) 4.30284e24 0.438645 0.219322 0.975652i \(-0.429615\pi\)
0.219322 + 0.975652i \(0.429615\pi\)
\(150\) 1.48859e24 0.140516
\(151\) −1.27154e25 −1.11198 −0.555988 0.831191i \(-0.687660\pi\)
−0.555988 + 0.831191i \(0.687660\pi\)
\(152\) 4.12109e24 0.334050
\(153\) −3.38602e24 −0.254529
\(154\) 0 0
\(155\) 3.78413e24 0.244992
\(156\) 2.81785e24 0.169428
\(157\) −2.46086e25 −1.37480 −0.687401 0.726278i \(-0.741248\pi\)
−0.687401 + 0.726278i \(0.741248\pi\)
\(158\) 4.35764e24 0.226305
\(159\) −2.00022e25 −0.966077
\(160\) −5.01103e24 −0.225189
\(161\) 0 0
\(162\) 4.92263e23 0.0191767
\(163\) 2.67319e25 0.970224 0.485112 0.874452i \(-0.338779\pi\)
0.485112 + 0.874452i \(0.338779\pi\)
\(164\) −4.81252e25 −1.62805
\(165\) −1.50835e24 −0.0475813
\(166\) 4.75869e24 0.140037
\(167\) −4.75377e24 −0.130557 −0.0652783 0.997867i \(-0.520794\pi\)
−0.0652783 + 0.997867i \(0.520794\pi\)
\(168\) 0 0
\(169\) −3.85069e25 −0.922235
\(170\) −1.59089e24 −0.0356022
\(171\) −1.95989e25 −0.409992
\(172\) 5.11521e25 1.00066
\(173\) −2.73639e25 −0.500782 −0.250391 0.968145i \(-0.580559\pi\)
−0.250391 + 0.968145i \(0.580559\pi\)
\(174\) −9.13255e24 −0.156414
\(175\) 0 0
\(176\) −1.21311e25 −0.182181
\(177\) 5.98482e25 0.842090
\(178\) −2.56976e25 −0.338893
\(179\) −7.55656e25 −0.934360 −0.467180 0.884162i \(-0.654730\pi\)
−0.467180 + 0.884162i \(0.654730\pi\)
\(180\) 1.57258e25 0.182381
\(181\) −1.80390e26 −1.96295 −0.981475 0.191588i \(-0.938636\pi\)
−0.981475 + 0.191588i \(0.938636\pi\)
\(182\) 0 0
\(183\) 9.44761e24 0.0906013
\(184\) 3.36246e24 0.0302867
\(185\) −1.52355e25 −0.128939
\(186\) −1.46150e25 −0.116252
\(187\) −1.29183e25 −0.0966110
\(188\) −5.67439e25 −0.399120
\(189\) 0 0
\(190\) −9.20833e24 −0.0573475
\(191\) 2.46966e26 1.44795 0.723974 0.689827i \(-0.242313\pi\)
0.723974 + 0.689827i \(0.242313\pi\)
\(192\) −7.71042e25 −0.425710
\(193\) −1.66881e26 −0.867956 −0.433978 0.900923i \(-0.642891\pi\)
−0.433978 + 0.900923i \(0.642891\pi\)
\(194\) −7.90063e25 −0.387206
\(195\) −1.29932e25 −0.0600231
\(196\) 0 0
\(197\) −4.54524e26 −1.86722 −0.933608 0.358295i \(-0.883358\pi\)
−0.933608 + 0.358295i \(0.883358\pi\)
\(198\) −8.12452e24 −0.0314882
\(199\) −3.83977e26 −1.40441 −0.702206 0.711974i \(-0.747801\pi\)
−0.702206 + 0.711974i \(0.747801\pi\)
\(200\) −1.22189e26 −0.421879
\(201\) 1.72972e26 0.563924
\(202\) 1.06495e26 0.327937
\(203\) 0 0
\(204\) −9.65727e25 −0.265526
\(205\) 2.21907e26 0.576769
\(206\) −1.07491e26 −0.264181
\(207\) −1.59910e25 −0.0371720
\(208\) −1.04499e26 −0.229819
\(209\) −7.47734e25 −0.155620
\(210\) 0 0
\(211\) −2.85833e26 −0.533169 −0.266584 0.963812i \(-0.585895\pi\)
−0.266584 + 0.963812i \(0.585895\pi\)
\(212\) 7.95622e26 1.40554
\(213\) −5.95894e26 −0.997249
\(214\) −4.56457e25 −0.0723837
\(215\) −2.35864e26 −0.354503
\(216\) −3.40543e26 −0.485237
\(217\) 0 0
\(218\) −5.94015e25 −0.0761286
\(219\) −8.98589e25 −0.109258
\(220\) 5.99970e25 0.0692259
\(221\) −1.11281e26 −0.121873
\(222\) 5.88425e25 0.0611831
\(223\) −1.85936e27 −1.83594 −0.917970 0.396650i \(-0.870173\pi\)
−0.917970 + 0.396650i \(0.870173\pi\)
\(224\) 0 0
\(225\) 5.81101e26 0.517789
\(226\) 2.33815e25 0.0197982
\(227\) −2.05594e27 −1.65467 −0.827337 0.561707i \(-0.810145\pi\)
−0.827337 + 0.561707i \(0.810145\pi\)
\(228\) −5.58980e26 −0.427706
\(229\) −1.07872e26 −0.0784877 −0.0392439 0.999230i \(-0.512495\pi\)
−0.0392439 + 0.999230i \(0.512495\pi\)
\(230\) −7.51320e24 −0.00519942
\(231\) 0 0
\(232\) 7.49636e26 0.469611
\(233\) 2.32000e27 1.38323 0.691614 0.722267i \(-0.256900\pi\)
0.691614 + 0.722267i \(0.256900\pi\)
\(234\) −6.99862e25 −0.0397219
\(235\) 2.61648e26 0.141396
\(236\) −2.38056e27 −1.22516
\(237\) −1.21974e27 −0.597943
\(238\) 0 0
\(239\) −1.98782e27 −0.884709 −0.442354 0.896840i \(-0.645857\pi\)
−0.442354 + 0.896840i \(0.645857\pi\)
\(240\) 4.18165e26 0.177386
\(241\) −3.46684e27 −1.40197 −0.700984 0.713177i \(-0.747256\pi\)
−0.700984 + 0.713177i \(0.747256\pi\)
\(242\) 6.03299e26 0.232625
\(243\) 2.64300e27 0.971909
\(244\) −3.75794e26 −0.131816
\(245\) 0 0
\(246\) −8.57047e26 −0.273685
\(247\) −6.44112e26 −0.196312
\(248\) 1.19966e27 0.349031
\(249\) −1.33199e27 −0.370006
\(250\) 5.80118e26 0.153889
\(251\) 4.95207e27 1.25470 0.627348 0.778739i \(-0.284140\pi\)
0.627348 + 0.778739i \(0.284140\pi\)
\(252\) 0 0
\(253\) −6.10086e25 −0.0141093
\(254\) 1.57414e27 0.347901
\(255\) 4.45301e26 0.0940679
\(256\) 2.24815e27 0.454010
\(257\) −3.34941e27 −0.646752 −0.323376 0.946271i \(-0.604818\pi\)
−0.323376 + 0.946271i \(0.604818\pi\)
\(258\) 9.10951e26 0.168217
\(259\) 0 0
\(260\) 5.16826e26 0.0873274
\(261\) −3.56508e27 −0.576372
\(262\) 6.68227e26 0.103385
\(263\) −9.85711e27 −1.45968 −0.729842 0.683616i \(-0.760406\pi\)
−0.729842 + 0.683616i \(0.760406\pi\)
\(264\) −4.78182e26 −0.0677873
\(265\) −3.66864e27 −0.497941
\(266\) 0 0
\(267\) 7.19294e27 0.895420
\(268\) −6.88023e27 −0.820451
\(269\) 1.24725e28 1.42496 0.712481 0.701691i \(-0.247571\pi\)
0.712481 + 0.701691i \(0.247571\pi\)
\(270\) 7.60922e26 0.0833023
\(271\) 3.42236e27 0.359070 0.179535 0.983752i \(-0.442541\pi\)
0.179535 + 0.983752i \(0.442541\pi\)
\(272\) 3.58139e27 0.360171
\(273\) 0 0
\(274\) 6.09364e26 0.0563308
\(275\) 2.21701e27 0.196536
\(276\) −4.56079e26 −0.0387780
\(277\) −5.55393e26 −0.0452985 −0.0226492 0.999743i \(-0.507210\pi\)
−0.0226492 + 0.999743i \(0.507210\pi\)
\(278\) 6.31736e26 0.0494334
\(279\) −5.70527e27 −0.428379
\(280\) 0 0
\(281\) −1.78549e28 −1.23491 −0.617453 0.786608i \(-0.711835\pi\)
−0.617453 + 0.786608i \(0.711835\pi\)
\(282\) −1.01053e27 −0.0670944
\(283\) 1.38627e28 0.883695 0.441847 0.897090i \(-0.354323\pi\)
0.441847 + 0.897090i \(0.354323\pi\)
\(284\) 2.37026e28 1.45089
\(285\) 2.57748e27 0.151523
\(286\) −2.67010e26 −0.0150771
\(287\) 0 0
\(288\) 7.55505e27 0.393753
\(289\) −1.61538e28 −0.809001
\(290\) −1.67501e27 −0.0806198
\(291\) 2.21144e28 1.02307
\(292\) 3.57428e27 0.158959
\(293\) 2.78981e28 1.19288 0.596440 0.802658i \(-0.296582\pi\)
0.596440 + 0.802658i \(0.296582\pi\)
\(294\) 0 0
\(295\) 1.09769e28 0.434035
\(296\) −4.83002e27 −0.183694
\(297\) 6.17883e27 0.226051
\(298\) −3.04800e27 −0.107282
\(299\) −5.25540e26 −0.0177986
\(300\) 1.65736e28 0.540160
\(301\) 0 0
\(302\) 9.00720e27 0.271963
\(303\) −2.98088e28 −0.866473
\(304\) 2.07297e28 0.580159
\(305\) 1.73280e27 0.0466983
\(306\) 2.39855e27 0.0622520
\(307\) 4.23229e27 0.105800 0.0528998 0.998600i \(-0.483154\pi\)
0.0528998 + 0.998600i \(0.483154\pi\)
\(308\) 0 0
\(309\) 3.00876e28 0.698016
\(310\) −2.68056e27 −0.0599193
\(311\) 5.13859e28 1.10688 0.553438 0.832890i \(-0.313315\pi\)
0.553438 + 0.832890i \(0.313315\pi\)
\(312\) −4.11915e27 −0.0855126
\(313\) 4.91458e28 0.983392 0.491696 0.870767i \(-0.336377\pi\)
0.491696 + 0.870767i \(0.336377\pi\)
\(314\) 1.74320e28 0.336244
\(315\) 0 0
\(316\) 4.85170e28 0.869946
\(317\) −1.97514e27 −0.0341519 −0.0170760 0.999854i \(-0.505436\pi\)
−0.0170760 + 0.999854i \(0.505436\pi\)
\(318\) 1.41690e28 0.236280
\(319\) −1.36014e28 −0.218772
\(320\) −1.41418e28 −0.219422
\(321\) 1.27765e28 0.191252
\(322\) 0 0
\(323\) 2.20749e28 0.307659
\(324\) 5.48074e27 0.0737177
\(325\) 1.90977e28 0.247927
\(326\) −1.89361e28 −0.237294
\(327\) 1.66269e28 0.201146
\(328\) 7.03498e28 0.821701
\(329\) 0 0
\(330\) 1.06847e27 0.0116373
\(331\) −1.15555e29 −1.21553 −0.607765 0.794117i \(-0.707934\pi\)
−0.607765 + 0.794117i \(0.707934\pi\)
\(332\) 5.29821e28 0.538321
\(333\) 2.29704e28 0.225455
\(334\) 3.36743e27 0.0319311
\(335\) 3.17250e28 0.290661
\(336\) 0 0
\(337\) −9.67511e28 −0.827775 −0.413887 0.910328i \(-0.635829\pi\)
−0.413887 + 0.910328i \(0.635829\pi\)
\(338\) 2.72771e28 0.225557
\(339\) −6.54465e27 −0.0523107
\(340\) −1.77126e28 −0.136859
\(341\) −2.17667e28 −0.162599
\(342\) 1.38833e28 0.100275
\(343\) 0 0
\(344\) −7.47745e28 −0.505047
\(345\) 2.10300e27 0.0137379
\(346\) 1.93838e28 0.122479
\(347\) 1.64508e29 1.00554 0.502769 0.864421i \(-0.332315\pi\)
0.502769 + 0.864421i \(0.332315\pi\)
\(348\) −1.01680e29 −0.601274
\(349\) −4.86435e28 −0.278312 −0.139156 0.990270i \(-0.544439\pi\)
−0.139156 + 0.990270i \(0.544439\pi\)
\(350\) 0 0
\(351\) 5.32256e28 0.285160
\(352\) 2.88239e28 0.149456
\(353\) −8.13214e28 −0.408127 −0.204064 0.978958i \(-0.565415\pi\)
−0.204064 + 0.978958i \(0.565415\pi\)
\(354\) −4.23947e28 −0.205956
\(355\) −1.09294e29 −0.514008
\(356\) −2.86111e29 −1.30274
\(357\) 0 0
\(358\) 5.35284e28 0.228523
\(359\) −1.84559e29 −0.763043 −0.381521 0.924360i \(-0.624600\pi\)
−0.381521 + 0.924360i \(0.624600\pi\)
\(360\) −2.29882e28 −0.0920504
\(361\) −1.30056e29 −0.504427
\(362\) 1.27783e29 0.480092
\(363\) −1.68868e29 −0.614640
\(364\) 0 0
\(365\) −1.64812e28 −0.0563144
\(366\) −6.69240e27 −0.0221590
\(367\) −1.10154e29 −0.353459 −0.176730 0.984259i \(-0.556552\pi\)
−0.176730 + 0.984259i \(0.556552\pi\)
\(368\) 1.69136e28 0.0526002
\(369\) −3.34566e29 −1.00851
\(370\) 1.07924e28 0.0315354
\(371\) 0 0
\(372\) −1.62720e29 −0.446887
\(373\) 6.84128e29 1.82174 0.910868 0.412698i \(-0.135413\pi\)
0.910868 + 0.412698i \(0.135413\pi\)
\(374\) 9.15093e27 0.0236288
\(375\) −1.62379e29 −0.406603
\(376\) 8.29487e28 0.201442
\(377\) −1.17165e29 −0.275978
\(378\) 0 0
\(379\) 2.90688e28 0.0644282 0.0322141 0.999481i \(-0.489744\pi\)
0.0322141 + 0.999481i \(0.489744\pi\)
\(380\) −1.02523e29 −0.220451
\(381\) −4.40613e29 −0.919222
\(382\) −1.74943e29 −0.354135
\(383\) 6.85880e29 1.34729 0.673647 0.739053i \(-0.264727\pi\)
0.673647 + 0.739053i \(0.264727\pi\)
\(384\) 2.83805e29 0.541018
\(385\) 0 0
\(386\) 1.18213e29 0.212282
\(387\) 3.55609e29 0.619864
\(388\) −8.79638e29 −1.48847
\(389\) 8.24271e28 0.135410 0.0677048 0.997705i \(-0.478432\pi\)
0.0677048 + 0.997705i \(0.478432\pi\)
\(390\) 9.20399e27 0.0146802
\(391\) 1.80112e28 0.0278940
\(392\) 0 0
\(393\) −1.87042e29 −0.273164
\(394\) 3.21971e29 0.456678
\(395\) −2.23714e29 −0.308195
\(396\) −9.04565e28 −0.121045
\(397\) −1.05747e30 −1.37460 −0.687301 0.726372i \(-0.741205\pi\)
−0.687301 + 0.726372i \(0.741205\pi\)
\(398\) 2.71997e29 0.343486
\(399\) 0 0
\(400\) −6.14630e29 −0.732696
\(401\) 1.13386e30 1.31341 0.656705 0.754148i \(-0.271950\pi\)
0.656705 + 0.754148i \(0.271950\pi\)
\(402\) −1.22528e29 −0.137923
\(403\) −1.87502e29 −0.205116
\(404\) 1.18569e30 1.26063
\(405\) −2.52719e28 −0.0261159
\(406\) 0 0
\(407\) 8.76362e28 0.0855752
\(408\) 1.41171e29 0.134015
\(409\) −3.31413e29 −0.305880 −0.152940 0.988235i \(-0.548874\pi\)
−0.152940 + 0.988235i \(0.548874\pi\)
\(410\) −1.57192e29 −0.141064
\(411\) −1.70566e29 −0.148837
\(412\) −1.19678e30 −1.01554
\(413\) 0 0
\(414\) 1.13275e28 0.00909141
\(415\) −2.44303e29 −0.190711
\(416\) 2.48295e29 0.188536
\(417\) −1.76827e29 −0.130613
\(418\) 5.29672e28 0.0380609
\(419\) −2.21807e30 −1.55065 −0.775326 0.631561i \(-0.782415\pi\)
−0.775326 + 0.631561i \(0.782415\pi\)
\(420\) 0 0
\(421\) −8.95652e29 −0.592782 −0.296391 0.955067i \(-0.595783\pi\)
−0.296391 + 0.955067i \(0.595783\pi\)
\(422\) 2.02476e29 0.130401
\(423\) −3.94483e29 −0.247237
\(424\) −1.16305e30 −0.709397
\(425\) −6.54514e29 −0.388550
\(426\) 4.22113e29 0.243904
\(427\) 0 0
\(428\) −5.08208e29 −0.278252
\(429\) 7.47381e28 0.0398367
\(430\) 1.67079e29 0.0867031
\(431\) 1.55948e30 0.787935 0.393967 0.919124i \(-0.371102\pi\)
0.393967 + 0.919124i \(0.371102\pi\)
\(432\) −1.71298e30 −0.842732
\(433\) −4.19947e29 −0.201180 −0.100590 0.994928i \(-0.532073\pi\)
−0.100590 + 0.994928i \(0.532073\pi\)
\(434\) 0 0
\(435\) 4.68849e29 0.213013
\(436\) −6.61362e29 −0.292647
\(437\) 1.04252e29 0.0449312
\(438\) 6.36533e28 0.0267220
\(439\) −4.20126e29 −0.171806 −0.0859028 0.996304i \(-0.527377\pi\)
−0.0859028 + 0.996304i \(0.527377\pi\)
\(440\) −8.77041e28 −0.0349393
\(441\) 0 0
\(442\) 7.88279e28 0.0298074
\(443\) −2.14366e30 −0.789791 −0.394896 0.918726i \(-0.629219\pi\)
−0.394896 + 0.918726i \(0.629219\pi\)
\(444\) 6.55138e29 0.235195
\(445\) 1.31927e30 0.461523
\(446\) 1.31712e30 0.449028
\(447\) 8.53157e29 0.283460
\(448\) 0 0
\(449\) −3.14728e30 −0.993349 −0.496675 0.867937i \(-0.665446\pi\)
−0.496675 + 0.867937i \(0.665446\pi\)
\(450\) −4.11635e29 −0.126639
\(451\) −1.27643e30 −0.382796
\(452\) 2.60324e29 0.0761066
\(453\) −2.52118e30 −0.718579
\(454\) 1.45636e30 0.404694
\(455\) 0 0
\(456\) 8.17121e29 0.215869
\(457\) −1.21197e30 −0.312216 −0.156108 0.987740i \(-0.549895\pi\)
−0.156108 + 0.987740i \(0.549895\pi\)
\(458\) 7.64134e28 0.0191963
\(459\) −1.82414e30 −0.446902
\(460\) −8.36502e28 −0.0199872
\(461\) 6.86525e30 1.59991 0.799955 0.600060i \(-0.204857\pi\)
0.799955 + 0.600060i \(0.204857\pi\)
\(462\) 0 0
\(463\) 6.95804e30 1.54279 0.771393 0.636360i \(-0.219561\pi\)
0.771393 + 0.636360i \(0.219561\pi\)
\(464\) 3.77078e30 0.815594
\(465\) 7.50309e29 0.158318
\(466\) −1.64341e30 −0.338306
\(467\) 7.30229e30 1.46661 0.733306 0.679899i \(-0.237976\pi\)
0.733306 + 0.679899i \(0.237976\pi\)
\(468\) −7.79210e29 −0.152696
\(469\) 0 0
\(470\) −1.85344e29 −0.0345822
\(471\) −4.87933e30 −0.888423
\(472\) 3.47992e30 0.618353
\(473\) 1.35671e30 0.235280
\(474\) 8.64024e29 0.146243
\(475\) −3.78844e30 −0.625870
\(476\) 0 0
\(477\) 5.53115e30 0.870671
\(478\) 1.40811e30 0.216379
\(479\) 1.02559e31 1.53857 0.769285 0.638906i \(-0.220613\pi\)
0.769285 + 0.638906i \(0.220613\pi\)
\(480\) −9.93576e29 −0.145521
\(481\) 7.54915e29 0.107952
\(482\) 2.45581e30 0.342889
\(483\) 0 0
\(484\) 6.71699e30 0.894238
\(485\) 4.05604e30 0.527318
\(486\) −1.87222e30 −0.237706
\(487\) 4.95394e30 0.614282 0.307141 0.951664i \(-0.400628\pi\)
0.307141 + 0.951664i \(0.400628\pi\)
\(488\) 5.49339e29 0.0665292
\(489\) 5.30034e30 0.626977
\(490\) 0 0
\(491\) −1.15464e29 −0.0130320 −0.00651600 0.999979i \(-0.502074\pi\)
−0.00651600 + 0.999979i \(0.502074\pi\)
\(492\) −9.54216e30 −1.05208
\(493\) 4.01547e30 0.432511
\(494\) 4.56270e29 0.0480133
\(495\) 4.17098e29 0.0428824
\(496\) 6.03446e30 0.606176
\(497\) 0 0
\(498\) 9.43542e29 0.0904949
\(499\) −1.24141e31 −1.16348 −0.581739 0.813376i \(-0.697627\pi\)
−0.581739 + 0.813376i \(0.697627\pi\)
\(500\) 6.45890e30 0.591566
\(501\) −9.42567e29 −0.0843682
\(502\) −3.50789e30 −0.306870
\(503\) 1.74721e30 0.149387 0.0746935 0.997207i \(-0.476202\pi\)
0.0746935 + 0.997207i \(0.476202\pi\)
\(504\) 0 0
\(505\) −5.46729e30 −0.446602
\(506\) 4.32166e28 0.00345080
\(507\) −7.63506e30 −0.595966
\(508\) 1.75261e31 1.33737
\(509\) −1.14068e31 −0.850958 −0.425479 0.904968i \(-0.639894\pi\)
−0.425479 + 0.904968i \(0.639894\pi\)
\(510\) −3.15438e29 −0.0230068
\(511\) 0 0
\(512\) −1.35996e31 −0.948245
\(513\) −1.05584e31 −0.719863
\(514\) 2.37262e30 0.158181
\(515\) 5.51842e30 0.359775
\(516\) 1.01423e31 0.646645
\(517\) −1.50503e30 −0.0938432
\(518\) 0 0
\(519\) −5.42566e30 −0.323614
\(520\) −7.55500e29 −0.0440754
\(521\) 2.55131e31 1.45589 0.727945 0.685635i \(-0.240475\pi\)
0.727945 + 0.685635i \(0.240475\pi\)
\(522\) 2.52539e30 0.140967
\(523\) 1.04286e31 0.569450 0.284725 0.958609i \(-0.408098\pi\)
0.284725 + 0.958609i \(0.408098\pi\)
\(524\) 7.43989e30 0.397426
\(525\) 0 0
\(526\) 6.98248e30 0.357005
\(527\) 6.42605e30 0.321456
\(528\) −2.40532e30 −0.117729
\(529\) −2.07954e31 −0.995926
\(530\) 2.59875e30 0.121785
\(531\) −1.65496e31 −0.758929
\(532\) 0 0
\(533\) −1.09954e31 −0.482891
\(534\) −5.09526e30 −0.218999
\(535\) 2.34337e30 0.0985761
\(536\) 1.00576e31 0.414093
\(537\) −1.49830e31 −0.603801
\(538\) −8.83516e30 −0.348513
\(539\) 0 0
\(540\) 8.47193e30 0.320224
\(541\) 1.02505e31 0.379294 0.189647 0.981852i \(-0.439266\pi\)
0.189647 + 0.981852i \(0.439266\pi\)
\(542\) −2.42430e30 −0.0878202
\(543\) −3.57674e31 −1.26850
\(544\) −8.50951e30 −0.295473
\(545\) 3.04957e30 0.103676
\(546\) 0 0
\(547\) 2.63292e31 0.858190 0.429095 0.903259i \(-0.358833\pi\)
0.429095 + 0.903259i \(0.358833\pi\)
\(548\) 6.78452e30 0.216542
\(549\) −2.61252e30 −0.0816539
\(550\) −1.57046e30 −0.0480681
\(551\) 2.32422e31 0.696682
\(552\) 6.66701e29 0.0195718
\(553\) 0 0
\(554\) 3.93424e29 0.0110789
\(555\) −3.02087e30 −0.0833225
\(556\) 7.03359e30 0.190028
\(557\) 1.21194e31 0.320736 0.160368 0.987057i \(-0.448732\pi\)
0.160368 + 0.987057i \(0.448732\pi\)
\(558\) 4.04144e30 0.104772
\(559\) 1.16870e31 0.296802
\(560\) 0 0
\(561\) −2.56141e30 −0.0624319
\(562\) 1.26478e31 0.302029
\(563\) −7.32890e31 −1.71472 −0.857358 0.514720i \(-0.827896\pi\)
−0.857358 + 0.514720i \(0.827896\pi\)
\(564\) −1.12511e31 −0.257919
\(565\) −1.20037e30 −0.0269623
\(566\) −9.81988e30 −0.216131
\(567\) 0 0
\(568\) −3.46487e31 −0.732287
\(569\) 7.34607e31 1.52147 0.760736 0.649061i \(-0.224838\pi\)
0.760736 + 0.649061i \(0.224838\pi\)
\(570\) −1.82581e30 −0.0370590
\(571\) 1.01603e31 0.202111 0.101056 0.994881i \(-0.467778\pi\)
0.101056 + 0.994881i \(0.467778\pi\)
\(572\) −2.97283e30 −0.0579583
\(573\) 4.89679e31 0.935692
\(574\) 0 0
\(575\) −3.09104e30 −0.0567446
\(576\) 2.13214e31 0.383669
\(577\) −8.13548e31 −1.43503 −0.717516 0.696542i \(-0.754721\pi\)
−0.717516 + 0.696542i \(0.754721\pi\)
\(578\) 1.14428e31 0.197863
\(579\) −3.30888e31 −0.560890
\(580\) −1.86492e31 −0.309912
\(581\) 0 0
\(582\) −1.56652e31 −0.250220
\(583\) 2.11024e31 0.330478
\(584\) −5.22491e30 −0.0802290
\(585\) 3.59297e30 0.0540954
\(586\) −1.97621e31 −0.291750
\(587\) −1.28648e32 −1.86237 −0.931185 0.364546i \(-0.881224\pi\)
−0.931185 + 0.364546i \(0.881224\pi\)
\(588\) 0 0
\(589\) 3.71951e31 0.517797
\(590\) −7.77567e30 −0.106155
\(591\) −9.01219e31 −1.20663
\(592\) −2.42957e31 −0.319029
\(593\) 1.39385e31 0.179509 0.0897544 0.995964i \(-0.471392\pi\)
0.0897544 + 0.995964i \(0.471392\pi\)
\(594\) −4.37690e30 −0.0552869
\(595\) 0 0
\(596\) −3.39357e31 −0.412406
\(597\) −7.61340e31 −0.907557
\(598\) 3.72277e29 0.00435313
\(599\) −1.06230e32 −1.21854 −0.609270 0.792963i \(-0.708537\pi\)
−0.609270 + 0.792963i \(0.708537\pi\)
\(600\) −2.42274e31 −0.272626
\(601\) −8.53543e31 −0.942256 −0.471128 0.882065i \(-0.656153\pi\)
−0.471128 + 0.882065i \(0.656153\pi\)
\(602\) 0 0
\(603\) −4.78313e31 −0.508233
\(604\) 1.00284e32 1.04546
\(605\) −3.09723e31 −0.316801
\(606\) 2.11157e31 0.211919
\(607\) −7.59194e31 −0.747623 −0.373812 0.927505i \(-0.621949\pi\)
−0.373812 + 0.927505i \(0.621949\pi\)
\(608\) −4.92545e31 −0.475943
\(609\) 0 0
\(610\) −1.22746e30 −0.0114213
\(611\) −1.29646e31 −0.118382
\(612\) 2.67049e31 0.239304
\(613\) 6.55349e31 0.576338 0.288169 0.957580i \(-0.406953\pi\)
0.288169 + 0.957580i \(0.406953\pi\)
\(614\) −2.99802e30 −0.0258761
\(615\) 4.39993e31 0.372719
\(616\) 0 0
\(617\) 7.78028e31 0.634915 0.317458 0.948272i \(-0.397171\pi\)
0.317458 + 0.948272i \(0.397171\pi\)
\(618\) −2.13132e31 −0.170718
\(619\) 1.12976e32 0.888269 0.444135 0.895960i \(-0.353511\pi\)
0.444135 + 0.895960i \(0.353511\pi\)
\(620\) −2.98448e31 −0.230337
\(621\) −8.61477e30 −0.0652665
\(622\) −3.64002e31 −0.270716
\(623\) 0 0
\(624\) −2.07199e31 −0.148513
\(625\) 9.65607e31 0.679485
\(626\) −3.48134e31 −0.240515
\(627\) −1.48259e31 −0.100564
\(628\) 1.94083e32 1.29256
\(629\) −2.58723e31 −0.169181
\(630\) 0 0
\(631\) −2.09401e32 −1.32020 −0.660101 0.751177i \(-0.729487\pi\)
−0.660101 + 0.751177i \(0.729487\pi\)
\(632\) −7.09225e31 −0.439074
\(633\) −5.66744e31 −0.344544
\(634\) 1.39913e30 0.00835277
\(635\) −8.08136e31 −0.473791
\(636\) 1.57754e32 0.908288
\(637\) 0 0
\(638\) 9.63484e30 0.0535065
\(639\) 1.64780e32 0.898765
\(640\) 5.20532e31 0.278854
\(641\) 6.89629e31 0.362867 0.181434 0.983403i \(-0.441926\pi\)
0.181434 + 0.983403i \(0.441926\pi\)
\(642\) −9.05052e30 −0.0467757
\(643\) 2.36652e32 1.20139 0.600696 0.799478i \(-0.294890\pi\)
0.600696 + 0.799478i \(0.294890\pi\)
\(644\) 0 0
\(645\) −4.67666e31 −0.229086
\(646\) −1.56372e31 −0.0752462
\(647\) 6.86462e31 0.324502 0.162251 0.986750i \(-0.448125\pi\)
0.162251 + 0.986750i \(0.448125\pi\)
\(648\) −8.01179e30 −0.0372064
\(649\) −6.31399e31 −0.288065
\(650\) −1.35283e31 −0.0606371
\(651\) 0 0
\(652\) −2.10829e32 −0.912187
\(653\) −3.07459e32 −1.30703 −0.653515 0.756913i \(-0.726707\pi\)
−0.653515 + 0.756913i \(0.726707\pi\)
\(654\) −1.17780e31 −0.0491957
\(655\) −3.43056e31 −0.140796
\(656\) 3.53870e32 1.42708
\(657\) 2.48484e31 0.0984682
\(658\) 0 0
\(659\) 4.91126e32 1.87936 0.939681 0.342053i \(-0.111122\pi\)
0.939681 + 0.342053i \(0.111122\pi\)
\(660\) 1.18961e31 0.0447351
\(661\) 1.55673e32 0.575303 0.287651 0.957735i \(-0.407126\pi\)
0.287651 + 0.957735i \(0.407126\pi\)
\(662\) 8.18554e31 0.297290
\(663\) −2.20645e31 −0.0787569
\(664\) −7.74497e31 −0.271698
\(665\) 0 0
\(666\) −1.62715e31 −0.0551409
\(667\) 1.89637e31 0.0631648
\(668\) 3.74921e31 0.122747
\(669\) −3.68671e32 −1.18642
\(670\) −2.24730e31 −0.0710888
\(671\) −9.96724e30 −0.0309932
\(672\) 0 0
\(673\) 4.78075e32 1.43656 0.718278 0.695756i \(-0.244930\pi\)
0.718278 + 0.695756i \(0.244930\pi\)
\(674\) 6.85356e31 0.202454
\(675\) 3.13055e32 0.909132
\(676\) 3.03697e32 0.867069
\(677\) −3.26249e32 −0.915755 −0.457877 0.889015i \(-0.651390\pi\)
−0.457877 + 0.889015i \(0.651390\pi\)
\(678\) 4.63603e30 0.0127940
\(679\) 0 0
\(680\) 2.58924e31 0.0690747
\(681\) −4.07646e32 −1.06928
\(682\) 1.54189e31 0.0397678
\(683\) 2.96979e32 0.753160 0.376580 0.926384i \(-0.377100\pi\)
0.376580 + 0.926384i \(0.377100\pi\)
\(684\) 1.54573e32 0.385468
\(685\) −3.12837e31 −0.0767143
\(686\) 0 0
\(687\) −2.13887e31 −0.0507203
\(688\) −3.76127e32 −0.877136
\(689\) 1.81780e32 0.416893
\(690\) −1.48970e30 −0.00335996
\(691\) 1.33631e32 0.296421 0.148210 0.988956i \(-0.452649\pi\)
0.148210 + 0.988956i \(0.452649\pi\)
\(692\) 2.15814e32 0.470826
\(693\) 0 0
\(694\) −1.16533e32 −0.245931
\(695\) −3.24322e31 −0.0673210
\(696\) 1.48636e32 0.303472
\(697\) 3.76833e32 0.756784
\(698\) 3.44576e31 0.0680687
\(699\) 4.60004e32 0.893869
\(700\) 0 0
\(701\) 3.41548e32 0.642235 0.321118 0.947039i \(-0.395942\pi\)
0.321118 + 0.947039i \(0.395942\pi\)
\(702\) −3.77034e31 −0.0697436
\(703\) −1.49753e32 −0.272515
\(704\) 8.13449e31 0.145628
\(705\) 5.18791e31 0.0913729
\(706\) 5.76056e31 0.0998184
\(707\) 0 0
\(708\) −4.72012e32 −0.791718
\(709\) −1.92539e32 −0.317751 −0.158875 0.987299i \(-0.550787\pi\)
−0.158875 + 0.987299i \(0.550787\pi\)
\(710\) 7.74204e31 0.125714
\(711\) 3.37289e32 0.538893
\(712\) 4.18239e32 0.657514
\(713\) 3.03480e31 0.0469462
\(714\) 0 0
\(715\) 1.37078e31 0.0205329
\(716\) 5.95972e32 0.878469
\(717\) −3.94140e32 −0.571715
\(718\) 1.30736e32 0.186622
\(719\) −1.36743e33 −1.92098 −0.960488 0.278321i \(-0.910222\pi\)
−0.960488 + 0.278321i \(0.910222\pi\)
\(720\) −1.15634e32 −0.159868
\(721\) 0 0
\(722\) 9.21279e31 0.123371
\(723\) −6.87398e32 −0.905978
\(724\) 1.42271e33 1.84553
\(725\) −6.89126e32 −0.879856
\(726\) 1.19621e32 0.150327
\(727\) 2.18056e32 0.269726 0.134863 0.990864i \(-0.456941\pi\)
0.134863 + 0.990864i \(0.456941\pi\)
\(728\) 0 0
\(729\) 5.89471e32 0.706474
\(730\) 1.16747e31 0.0137732
\(731\) −4.00534e32 −0.465147
\(732\) −7.45116e31 −0.0851818
\(733\) 7.16063e32 0.805853 0.402926 0.915232i \(-0.367993\pi\)
0.402926 + 0.915232i \(0.367993\pi\)
\(734\) 7.80295e31 0.0864478
\(735\) 0 0
\(736\) −4.01874e31 −0.0431515
\(737\) −1.82485e32 −0.192909
\(738\) 2.36996e32 0.246657
\(739\) −1.28228e33 −1.31393 −0.656964 0.753922i \(-0.728160\pi\)
−0.656964 + 0.753922i \(0.728160\pi\)
\(740\) 1.20160e32 0.121226
\(741\) −1.27713e32 −0.126860
\(742\) 0 0
\(743\) −1.14998e32 −0.110744 −0.0553719 0.998466i \(-0.517634\pi\)
−0.0553719 + 0.998466i \(0.517634\pi\)
\(744\) 2.37866e32 0.225550
\(745\) 1.56479e32 0.146103
\(746\) −4.84615e32 −0.445554
\(747\) 3.68331e32 0.333466
\(748\) 1.01884e32 0.0908320
\(749\) 0 0
\(750\) 1.15025e32 0.0994457
\(751\) −3.96598e32 −0.337669 −0.168835 0.985644i \(-0.554000\pi\)
−0.168835 + 0.985644i \(0.554000\pi\)
\(752\) 4.17244e32 0.349852
\(753\) 9.81885e32 0.810809
\(754\) 8.29964e31 0.0674977
\(755\) −4.62414e32 −0.370374
\(756\) 0 0
\(757\) 5.00573e32 0.388924 0.194462 0.980910i \(-0.437704\pi\)
0.194462 + 0.980910i \(0.437704\pi\)
\(758\) −2.05914e31 −0.0157576
\(759\) −1.20967e31 −0.00911769
\(760\) 1.49870e32 0.111265
\(761\) −6.98031e32 −0.510447 −0.255224 0.966882i \(-0.582149\pi\)
−0.255224 + 0.966882i \(0.582149\pi\)
\(762\) 3.12117e32 0.224820
\(763\) 0 0
\(764\) −1.94778e33 −1.36134
\(765\) −1.23138e32 −0.0847781
\(766\) −4.85857e32 −0.329517
\(767\) −5.43899e32 −0.363389
\(768\) 4.45758e32 0.293390
\(769\) −1.41258e33 −0.915929 −0.457964 0.888971i \(-0.651421\pi\)
−0.457964 + 0.888971i \(0.651421\pi\)
\(770\) 0 0
\(771\) −6.64115e32 −0.417944
\(772\) 1.31616e33 0.816037
\(773\) −3.00166e33 −1.83357 −0.916785 0.399381i \(-0.869225\pi\)
−0.916785 + 0.399381i \(0.869225\pi\)
\(774\) −2.51902e32 −0.151604
\(775\) −1.10282e33 −0.653938
\(776\) 1.28586e33 0.751250
\(777\) 0 0
\(778\) −5.83888e31 −0.0331180
\(779\) 2.18118e33 1.21902
\(780\) 1.02475e32 0.0564326
\(781\) 6.28668e32 0.341142
\(782\) −1.27586e31 −0.00682221
\(783\) −1.92060e33 −1.01199
\(784\) 0 0
\(785\) −8.94925e32 −0.457916
\(786\) 1.32495e32 0.0668096
\(787\) −2.76711e33 −1.37505 −0.687523 0.726162i \(-0.741302\pi\)
−0.687523 + 0.726162i \(0.741302\pi\)
\(788\) 3.58475e33 1.75552
\(789\) −1.95445e33 −0.943275
\(790\) 1.58472e32 0.0753773
\(791\) 0 0
\(792\) 1.32230e32 0.0610929
\(793\) −8.58597e31 −0.0390974
\(794\) 7.49080e32 0.336196
\(795\) −7.27410e32 −0.321779
\(796\) 3.02835e33 1.32040
\(797\) −1.45260e33 −0.624273 −0.312136 0.950037i \(-0.601045\pi\)
−0.312136 + 0.950037i \(0.601045\pi\)
\(798\) 0 0
\(799\) 4.44320e32 0.185527
\(800\) 1.46038e33 0.601080
\(801\) −1.98904e33 −0.806992
\(802\) −8.03194e32 −0.321229
\(803\) 9.48011e31 0.0373753
\(804\) −1.36420e33 −0.530191
\(805\) 0 0
\(806\) 1.32821e32 0.0501665
\(807\) 2.47303e33 0.920838
\(808\) −1.73326e33 −0.636257
\(809\) −3.98093e33 −1.44071 −0.720356 0.693605i \(-0.756021\pi\)
−0.720356 + 0.693605i \(0.756021\pi\)
\(810\) 1.79019e31 0.00638734
\(811\) −9.82630e32 −0.345661 −0.172830 0.984952i \(-0.555291\pi\)
−0.172830 + 0.984952i \(0.555291\pi\)
\(812\) 0 0
\(813\) 6.78579e32 0.232038
\(814\) −6.20788e31 −0.0209297
\(815\) 9.72143e32 0.323160
\(816\) 7.10110e32 0.232749
\(817\) −2.31836e33 −0.749252
\(818\) 2.34763e32 0.0748112
\(819\) 0 0
\(820\) −1.75014e33 −0.542268
\(821\) −7.16302e32 −0.218852 −0.109426 0.993995i \(-0.534901\pi\)
−0.109426 + 0.993995i \(0.534901\pi\)
\(822\) 1.20823e32 0.0364020
\(823\) −1.75793e33 −0.522281 −0.261141 0.965301i \(-0.584099\pi\)
−0.261141 + 0.965301i \(0.584099\pi\)
\(824\) 1.74947e33 0.512558
\(825\) 4.39584e32 0.127005
\(826\) 0 0
\(827\) 2.54426e33 0.714904 0.357452 0.933932i \(-0.383646\pi\)
0.357452 + 0.933932i \(0.383646\pi\)
\(828\) 1.26118e32 0.0349485
\(829\) 2.11173e33 0.577113 0.288557 0.957463i \(-0.406825\pi\)
0.288557 + 0.957463i \(0.406825\pi\)
\(830\) 1.73057e32 0.0466434
\(831\) −1.10122e32 −0.0292727
\(832\) 7.00721e32 0.183707
\(833\) 0 0
\(834\) 1.25259e32 0.0319448
\(835\) −1.72878e32 −0.0434855
\(836\) 5.89724e32 0.146311
\(837\) −3.07358e33 −0.752146
\(838\) 1.57122e33 0.379253
\(839\) −2.51003e33 −0.597607 −0.298804 0.954315i \(-0.596588\pi\)
−0.298804 + 0.954315i \(0.596588\pi\)
\(840\) 0 0
\(841\) −8.89076e31 −0.0205961
\(842\) 6.34453e32 0.144981
\(843\) −3.54022e33 −0.798019
\(844\) 2.25432e33 0.501276
\(845\) −1.40036e33 −0.307176
\(846\) 2.79440e32 0.0604685
\(847\) 0 0
\(848\) −5.85029e33 −1.23204
\(849\) 2.74866e33 0.571060
\(850\) 4.63638e32 0.0950302
\(851\) −1.22186e32 −0.0247076
\(852\) 4.69971e33 0.937595
\(853\) 7.59654e33 1.49521 0.747605 0.664144i \(-0.231204\pi\)
0.747605 + 0.664144i \(0.231204\pi\)
\(854\) 0 0
\(855\) −7.12741e32 −0.136559
\(856\) 7.42903e32 0.140438
\(857\) −2.82227e33 −0.526404 −0.263202 0.964741i \(-0.584779\pi\)
−0.263202 + 0.964741i \(0.584779\pi\)
\(858\) −5.29422e31 −0.00974313
\(859\) −8.93357e33 −1.62220 −0.811098 0.584910i \(-0.801130\pi\)
−0.811098 + 0.584910i \(0.801130\pi\)
\(860\) 1.86022e33 0.333297
\(861\) 0 0
\(862\) −1.10469e33 −0.192710
\(863\) −7.98960e33 −1.37531 −0.687656 0.726037i \(-0.741360\pi\)
−0.687656 + 0.726037i \(0.741360\pi\)
\(864\) 4.07010e33 0.691349
\(865\) −9.95129e32 −0.166799
\(866\) 2.97478e32 0.0492038
\(867\) −3.20294e33 −0.522792
\(868\) 0 0
\(869\) 1.28682e33 0.204546
\(870\) −3.32118e32 −0.0520980
\(871\) −1.57196e33 −0.243351
\(872\) 9.66785e32 0.147703
\(873\) −6.11523e33 −0.922038
\(874\) −7.38490e31 −0.0109891
\(875\) 0 0
\(876\) 7.08701e32 0.102723
\(877\) −7.68421e33 −1.09927 −0.549634 0.835405i \(-0.685233\pi\)
−0.549634 + 0.835405i \(0.685233\pi\)
\(878\) 2.97604e32 0.0420196
\(879\) 5.53157e33 0.770861
\(880\) −4.41164e32 −0.0606806
\(881\) −3.64190e33 −0.494430 −0.247215 0.968961i \(-0.579515\pi\)
−0.247215 + 0.968961i \(0.579515\pi\)
\(882\) 0 0
\(883\) 8.89916e33 1.17707 0.588533 0.808473i \(-0.299706\pi\)
0.588533 + 0.808473i \(0.299706\pi\)
\(884\) 8.77651e32 0.114583
\(885\) 2.17647e33 0.280482
\(886\) 1.51850e33 0.193165
\(887\) 9.99033e33 1.25446 0.627232 0.778832i \(-0.284188\pi\)
0.627232 + 0.778832i \(0.284188\pi\)
\(888\) −9.57686e32 −0.118706
\(889\) 0 0
\(890\) −9.34530e32 −0.112878
\(891\) 1.45366e32 0.0173329
\(892\) 1.46645e34 1.72612
\(893\) 2.57180e33 0.298845
\(894\) −6.04351e32 −0.0693278
\(895\) −2.74805e33 −0.311215
\(896\) 0 0
\(897\) −1.04203e32 −0.0115018
\(898\) 2.22943e33 0.242950
\(899\) 6.76587e33 0.727925
\(900\) −4.58304e33 −0.486816
\(901\) −6.22993e33 −0.653353
\(902\) 9.04185e32 0.0936229
\(903\) 0 0
\(904\) −3.80544e32 −0.0384121
\(905\) −6.56015e33 −0.653815
\(906\) 1.78593e33 0.175748
\(907\) 1.04545e34 1.01583 0.507915 0.861407i \(-0.330416\pi\)
0.507915 + 0.861407i \(0.330416\pi\)
\(908\) 1.62148e34 1.55569
\(909\) 8.24294e33 0.780904
\(910\) 0 0
\(911\) 1.54151e34 1.42391 0.711957 0.702223i \(-0.247809\pi\)
0.711957 + 0.702223i \(0.247809\pi\)
\(912\) 4.11024e33 0.374909
\(913\) 1.40525e33 0.126573
\(914\) 8.58521e32 0.0763607
\(915\) 3.43576e32 0.0301773
\(916\) 8.50769e32 0.0737928
\(917\) 0 0
\(918\) 1.29217e33 0.109302
\(919\) −1.42600e34 −1.19122 −0.595611 0.803273i \(-0.703090\pi\)
−0.595611 + 0.803273i \(0.703090\pi\)
\(920\) 1.22281e32 0.0100878
\(921\) 8.39168e32 0.0683696
\(922\) −4.86313e33 −0.391301
\(923\) 5.41547e33 0.430345
\(924\) 0 0
\(925\) 4.44015e33 0.344166
\(926\) −4.92886e33 −0.377329
\(927\) −8.32003e33 −0.629083
\(928\) −8.95950e33 −0.669086
\(929\) 2.53657e33 0.187096 0.0935482 0.995615i \(-0.470179\pi\)
0.0935482 + 0.995615i \(0.470179\pi\)
\(930\) −5.31496e32 −0.0387210
\(931\) 0 0
\(932\) −1.82974e34 −1.30049
\(933\) 1.01887e34 0.715285
\(934\) −5.17272e33 −0.358699
\(935\) −4.69792e32 −0.0321790
\(936\) 1.13906e33 0.0770677
\(937\) 2.63986e34 1.76431 0.882157 0.470956i \(-0.156091\pi\)
0.882157 + 0.470956i \(0.156091\pi\)
\(938\) 0 0
\(939\) 9.74452e33 0.635486
\(940\) −2.06357e33 −0.132938
\(941\) 8.54613e33 0.543862 0.271931 0.962317i \(-0.412338\pi\)
0.271931 + 0.962317i \(0.412338\pi\)
\(942\) 3.45637e33 0.217287
\(943\) 1.77965e33 0.110522
\(944\) 1.75045e34 1.07392
\(945\) 0 0
\(946\) −9.61054e32 −0.0575440
\(947\) 9.16236e33 0.541979 0.270990 0.962582i \(-0.412649\pi\)
0.270990 + 0.962582i \(0.412649\pi\)
\(948\) 9.61984e33 0.562175
\(949\) 8.16635e32 0.0471484
\(950\) 2.68362e33 0.153073
\(951\) −3.91625e32 −0.0220696
\(952\) 0 0
\(953\) 1.38393e33 0.0761283 0.0380642 0.999275i \(-0.487881\pi\)
0.0380642 + 0.999275i \(0.487881\pi\)
\(954\) −3.91810e33 −0.212946
\(955\) 8.98127e33 0.482280
\(956\) 1.56775e34 0.831787
\(957\) −2.69686e33 −0.141375
\(958\) −7.26500e33 −0.376298
\(959\) 0 0
\(960\) −2.80400e33 −0.141795
\(961\) −9.18574e33 −0.458982
\(962\) −5.34759e32 −0.0264025
\(963\) −3.53306e33 −0.172365
\(964\) 2.73424e34 1.31811
\(965\) −6.06887e33 −0.289097
\(966\) 0 0
\(967\) 6.65131e32 0.0309387 0.0154694 0.999880i \(-0.495076\pi\)
0.0154694 + 0.999880i \(0.495076\pi\)
\(968\) −9.81895e33 −0.451334
\(969\) 4.37696e33 0.198815
\(970\) −2.87318e33 −0.128970
\(971\) −1.55122e34 −0.688103 −0.344052 0.938951i \(-0.611799\pi\)
−0.344052 + 0.938951i \(0.611799\pi\)
\(972\) −2.08449e34 −0.913772
\(973\) 0 0
\(974\) −3.50922e33 −0.150239
\(975\) 3.78666e33 0.160215
\(976\) 2.76325e33 0.115544
\(977\) −3.03575e34 −1.25452 −0.627260 0.778810i \(-0.715824\pi\)
−0.627260 + 0.778810i \(0.715824\pi\)
\(978\) −3.75460e33 −0.153344
\(979\) −7.58855e33 −0.306308
\(980\) 0 0
\(981\) −4.59778e33 −0.181282
\(982\) 8.17915e31 0.00318732
\(983\) 2.57708e34 0.992574 0.496287 0.868158i \(-0.334696\pi\)
0.496287 + 0.868158i \(0.334696\pi\)
\(984\) 1.39488e34 0.530999
\(985\) −1.65294e34 −0.621929
\(986\) −2.84444e33 −0.105782
\(987\) 0 0
\(988\) 5.08000e33 0.184569
\(989\) −1.89158e33 −0.0679310
\(990\) −2.95460e32 −0.0104880
\(991\) −1.23176e34 −0.432193 −0.216097 0.976372i \(-0.569333\pi\)
−0.216097 + 0.976372i \(0.569333\pi\)
\(992\) −1.43381e34 −0.497287
\(993\) −2.29119e34 −0.785498
\(994\) 0 0
\(995\) −1.39639e34 −0.467778
\(996\) 1.05052e34 0.347873
\(997\) −3.78133e34 −1.23780 −0.618900 0.785470i \(-0.712421\pi\)
−0.618900 + 0.785470i \(0.712421\pi\)
\(998\) 8.79375e33 0.284559
\(999\) 1.23747e34 0.395852
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.24.a.f.1.7 14
7.3 odd 6 7.24.c.a.2.8 28
7.5 odd 6 7.24.c.a.4.8 yes 28
7.6 odd 2 49.24.a.g.1.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.24.c.a.2.8 28 7.3 odd 6
7.24.c.a.4.8 yes 28 7.5 odd 6
49.24.a.f.1.7 14 1.1 even 1 trivial
49.24.a.g.1.7 14 7.6 odd 2